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Video #10
Space

* High-dimensional space
& the curse of dimensionality



The Curse of Dimensionality

Issues with high-dimensional data

= Structural anomalies — too much space
= Distance concentration
= Nalve dimensionality reduction
= The Johnson-Lindenstrauss Lemma

= Generalization problems — too little data
= Sampling requirements
= Curved space
= Computational problems — too much work

= Searching
= Integration



— too much space in high dimensions —

Structural / Logical
Anomalies



Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

= d-dimensional space:
d independent neighboring
directions to each point

= Volume-distance ratio explodes

—X: @ @ vol(r) € O(r9)
d=2 d=3 d—> ©

d=1



Dart Throwing
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Higher Dimensions are Weird
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Concentration of distances

= “Dart-throwing anomaly”
= Normal distributions
= Gather probability-mass in thin shells

p(r)~rd=1e="* (maximum in the limit Vd)
= Nearest neighbor =~ farthest neighbor

= For unstructured points (e.g. iid-random)
= Not true for if data is structured specifically




Heavy Corners
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looks benign in 2D all samples near corners
in high-dim.

Why do we always sample Gaussians?
= Uniform random variables on a cube
= Corners have most of the volume (growth <)

= Need symmetric shapes
= Gaussian is rotationally symmetric (and is separable)
= Sphere would also work
(10)



Dimensionality Reduction

Can we reduce dimensions?
= Assume point set
P = {xq,..,X,} € R

= Let's say, we only care about pairwise distances
Xi — ]‘, i,jE{l,..., }

= Example application: classifier
= (general discriminative tasks)

(1)



Dimensionality Reduction

“Trivial” result

= Embedding » points in d = n — 1 dimensions

= Only interesting if d >

= Just use differences x; — x4 as coordinate vectors

= Then run Gram-Schmidt-orthogonalization
to get orthogonal coordinate frame

Johnsen-Lindenstrauss Lemma

= Good approximate embedding in d € O(log )
= Guaranteed quality for any point set

= A bit more surprising

(12)



Johnson-Lindenstrauss Lemma
JL-Lemma: [Dasgupta & Gupta 2003]

= Point set P = {x4, ...,x,,} in R?
= There exists f: R - R* with k € O(e™?Inn)
(k = 4(e?/2—-€3/3)"1Inn)

= ..that preserves all inter-point distances
up to a factor of (1 + ¢)

Random orthogonal linear projection
= Works with probability > (1 —1/n)

S. Dasgupta, A. Gupta: An Elementary Proof of a Theorem of Johnson and Lindenstrauss
Random Structures and Algorithms, 22(1):60-65, 2003, https://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf



This means...

What Does the JL-Lemma Imply?

Pairwise distances in small point set P
(sub-exponential in d)
can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points themselves are well-
represented (just the pairwise distances)



Experiment

distance erro (eps, fact 1+eps)

dimensionality reduction

J —=— max. dist. error| |

—— max. rek. error
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Proof Sketch f Bij = ||x,||

Difference Vectors

= Normalize (relative error) /
2 Aire v \

= All n“ pairs yield poles ood pr. bad
r].
= Pole yields bad approximation R

2 poles d;; '& ”O'g(g sl;es
= Non-pole area much larger |
- High dimension Q good prj.
= Volume grows with:
sin® 1«

= Covering sphere with poles

= Need large number of poles
= Exponential in d




— too little data for high dimensions —

Generalization Problems



Sampling Requirements

Sampling costs grow exponentially with d

= Sampling a unit cube in R?
= Spacing e » n = 1/¢ samples
= Costs 0(n?)

dim-1

Sampling theory
= Resolve frequencies w = 1/¢

= Tensor-product Fourier basis

Rect . {ei(w1x1+...+a)dXd)|w1’ ey Wg = —TL..TL}

Isotropic: w? + -+ + w5 < n?

~~~~~~

= Exponential costs



Subspace Sampling

~unitcube

Sampled Hyperplane
= Space has dimension d \ . .
= Hyperplane has dimension k < d °°

o w o>
Discriminative Task //

= Neighborhood based classifier T
» Blue sample r away from plane (iregular)

= Nearest neighbor on plane should
be closer than blue sample

» Need Q(n"), n = r~! samples — exponential
= Need Q(n*logn*) = Q(kn*logn) random samples
(19




Random Samples?

Coupon-Collectors Theorem
= On expectation, we need
nH,
=(1n71F)Ji1
random draws to hit n bins /
coupons

= Thus, random i.i.d. uniform
samples increase effort
O(n) » 0(nlnn)

nbins —» nlogn
sample points
(irregular)

(20)



Learning Manifolds

(Common) Assumption

= Data of a class forms a smooth k-dimensional
surface (“k-manifold”) in d-dimensional space

= Model: Local flat approximation
= Again, costs are exponential in k

(21)



Consequence

Hard to learn

= Data manifolds with
intrinsically high dimension

= Common - think of all the poses of a dog

Distance-based classifiers...
= ...will have exponential sampling cost
= |.e., need exponential amount of training data!

Smoothness is distance based [Bengio]
= Nearest-Neighbors, Histograms, Parzen Windows
= Gaussian-Kernel-SVM, Gaussian processes



DNNs Can Learn combinatorially

three network layers Interpretation
Nested ReLU-layer = nested convex cells
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Activation Patterns
Encode combinatorial decisions
(which linear map to use)



Example: RelLU

Activations of a ReLU Neuron
= Binary weights - work as “or”-operator

= Negative weights act as “not"-operator
= Can build “NOR"-gates

NOR-gates are universal

= Can encode arbitrary logically functions with a
network of NOR-gates

= Depth make it efficient
= Shallow circuits might have exponential disadvantage

Impossible with distance-based methods
(24)



— too much work in high dimensions —

Computational Issues



- in high dimensions —

Computational Issues

SEARCH



Search

Given
= Point cloud x4, ..., x,, € R?
= Query point x € R

How to efficiently find
= (k-)nearest-neighbors of
= Neighbors in fixed radius » from

Example applications
= k-NN Classifier (old-school)

: : } Dimension d is large
= Using Siamese Networks (new-school)

(27)



Data Structures

Search Data structures

= Bounding volume hierarchy
= Hierarchical grouping of points
= Bounding volumes (e.g. spheres)
= Generic idea — many variants

= BSP-tree (‘binary space partition tree”)
= Split by planes
= (Usually) binary tree

= Complex, convex cells as bounding
volumes

= Half-space test per node




Variants

Variants

= k-D-tree (axis aligned BSP-tree)
= Use axis parallel splitting planes
= Cyclically alternate splitting dimension
= Median cut

= Quadtrees / Octrees
= Divide into 4 (8) congruent cubes
= Costs exponential with dimension
= Practically used only in R?, R3




Range Query Algorlthm

——_————
-

\ Nodes overlapping
;  the geometric range

Recursively from root node

= |f range overlaps bounding box

= Collect points in node (if any)
Keep those in range

= Recursion for child nodes

= |[f range does not overlap bounding box
= Return empty



Examples
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Nearest-Neighbor Query Algorithm

Algorithm: k nearest neighbors

Data structure: queue sorted by distance

Initialization: Put root node in queue

While not yet k points found and queue non-empty:

Take closest object from queue

If this is a point:
output the point

Otherwise, if this is a noc
If leaf node: Inserta

If inner node: Insert al

es
| points into queue
child-boxes into queue



-------------------

[ T




How to Search in High Dimensions

Nearest-Neighbor(s) / e-Neighbors
= Linear-time brute-force search always work

= Tree-based algorithms
= Reasonable space/ precomputation
= Worst-case search time bounds exponential in dimension

= |n practice
= kD-Trees work up to dimension 10-20

= Approximate search to speed it up
= Libraries: ANN, FLANN

= J-S-Lemma
= Reduce dimensionality to 10-20, then use ANN/FLANN
= Direct application: Locality-sensitive-hashing (LSH)

(34)



- in high dimensions —

Computational Issues

INTEGRATION



High Dimensional Integrals

Classic application domain

= High-dimensional integration
domains
« Let's say, () = [0,1]2°

Standard Integration
= Regular grid, k%° samples
= No need to try this...

N S

N A4

v

Rieman-sum

k subdivisions
per axis



Higher Dimensions

Monte-Carlo Approach:
= Sample n points
= Compute average
= Multiply with domain volume

Property
= Works if variance is not too large
= Dimension irrelevant

Y

n sample points
(irregular)



Example

When is Monte-Carlo integration possible?

bright spot

intensity

5000 on
10000

of the area

optimal — moderate variance — large variance —
no variance MC-int. possible not efficient

General observation

= Randomized algorithms are efficient if the
IS by random trials



Numerical Example

Averaging Samples:
= n =100 samples
= Fraction g of the domain with value 0.5/q
= Showing multiple pixels



Example

Speed of convergence:
= Now growing n
= Pixel: 50% black / 50% white
= Growing sample size

Observation

= Large sample size required
before noise vanishes

n="10000



Variance Reduction
Two reasons for long compute times

Biggest Problem

/ primary estimator
7 \ variance
eV
VD

Possible solution: Importance Sampling



Importance Sampling

Importance Sampling

= |dea: More samples in important regions
= Need to weight differently to avoid bias

= New estimator
= Choose sampling density p on ()

1 o £ ()
fﬂf(x)dx - n;P(Xi)

= (Note: No || factor required here.)

(p(x) >0Vx € Q)

= Sampling density p controls importance



lllustrative Example from Graphics
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More Complex Sampling Problems

What if sampling itself is costly?
= For example, from a MRF

1
p(xXq, ., Xp) = El_[p(xl) np(xi'xj)
i LJ

Markov-Chain Monte-Carlo
= Gibbs sampler (for graphical models / MRFs)
= Metropolis sampler (for unnormalized densities)

Nonetheless...

= Many (e.g. Bayesian) integration problems remain

intractable
(44)
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Video #10
Space
* High-dimensional space
& the curse of dimensionality
* Kernels: flat space extended

* Manifolds: curved space

(48)



Data Modeling with Kernels

Topics

= Inner products & kernel
= Definitions
= Networks as kernels
= Understanding kernels via dual PCA

= Gaussian Processes
= Data analysis with GP

= Application to DNN analysis
= Networks as GPs
= Neural tangent kernel
= Towards explaining “Double Descent”

(49)



Inner Products & Kernels

More on Kernel Methods

John Shawe-Taylor, Nello Cristianini:
Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004



Inner Products

Vector space V

= Inner product (x, v) of vectorsx,v € V
= Symmetric (commutative)

(x,y) = (v, %)

= Bilinear
(AX1 + X5, V) = HXq, V) + (X2, V)
= Positive definite
(x,x)>0and{x,x) =0 x=0
= |n finite dimensions, this are exactly functions
(x,v) = xI'Mv for SPD matrices M
or equivalently

(x,v) = (Tx)T(Tv) for invertible matrices T

(57)



Cartoon Example

Example Goal: Linear classification
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Kernels

" .E.q.'
i " ~
]
nanll

Feature spaces
= Data x € V from vector space V
= Transform data by function ¢:V - W
= Vector space W is called “feature space”

(53)



Kernels
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Kernels: Inner products in feature space
= Kernel k(x, v) = (p(x), p(v))

= Datax,v eV
= Why ¢?
= ¢ can emphasize / unveil structure

= Why kernels?

= Sometimes easier to compute (as in “tractable”)
(54)



“The Kernel Trick”

k(X, Y)\.y,/’/

original
space

- —— -

- - -

tractable
dimensionality
(typ. 10D - 100D)

S~

P - J

(p(x), p(¥)) gﬁ(y

S p)

—/

__________ >

(typ. 10'°D - infD)

intractable
dimensionality

feature
space



Why Kernels?

Expensive Kernels

= ,Polynomial kernel”
K(x,v) = ((x,v) + )’

computes implicitly all monomials up to degree D
= Attention: with non-uniform coefficients
= Direct mapping ¢ would be exponential in D

= Can analyze higher moments at moderate costs

(56)



Another Popular Kernel
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Gaussian / RBF / squared-exponential kernel

k(% v) = exp(—allx —y|*)
= Popular choice
= |Ignores detail in data below length-scale =~ ¢
= Go-to solution for kernel SVMs, GP regression

(57)



Fourier Analysis

Analysis
k(r) = exp(—ar?) with r:==||x — ]|

Fourier-Domain
= Fourier-transformation

T _(nw)?
K(w) = E-e a

= Low-pass filter on the distance function
= Exponential frequency drop-off

(58)



Fourier Analysis

Multi-Dimensional FT
= Gaussian cross section along x 1L
= Constant along x ||

(59)



Fourier Analysis
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Numerical approximation
= Assume Data in x € [0,2rr]“

k(x,v) = 2 Zwe—i(w,x— ) — z Zwe—i(w,x)ei(w, )

weza wezd

with non-zero Fourier coefficients z,, € R
(60)



Note Networks as Kernels

How does a deep network classifier work?
= Apply deep network fL o ---o f1 on inputs x
= Final layer fL usually a (fully-connected) linear layer
= Followed by soft-max & x-entropy loss or hinge-loss

Kernel-machine
= Consider fX71o...0 f1 alearned kernel

= Last layer: logistic/softmax regression or SVM

= Kernel LR / Kernel-SVM

= But the kernel is rather “fancy”
= Most traditional practice: "handcrafted” kernels

(67)



Simple
Kernelization

(62)



How to Kernelize “any” Algorithm
Run Kernel-PCA (a.k.a. dual-PCA / MDS)

= Data
X = (Xl Xn)

= Feature matrix (do not compute!)

| |
¢(X) = <¢(X1) qb(xn))
| |
= Its Gram matrix (kernel evaluations only)

G= ( (oG 0(x)) ) = (X)) (X),



How to Kernelize “any” Algorithm

Run Kernel-PCA (dual-PCA / MDS)
= Take a “square root” of G:

| |
,,\/E"=¢(X)=(¢(X1) ¢(xn)>
| |
= Obtained from eigenvalue decomposition
6 = vavT = (WA WA VD)
= Recovering rotated feature space
¢ (X) = R(VAVT) for some orthogonal R

= Because VG is not unique

G = VAVT = (WE) RR (VAVT)
I

(64)



Why is this good?

Kernel-algorithm recipe
= Compute kernel-matrix G

= Eigendecomposition VG = VAT
= Embedding = columns of VAVT
= Use embedded points in ML-algorithm

Complexity reduction
= n data points
= Embedding: at most n dimensions
= Potentially high-dim. feature space (before R)

(65)



Does this do the trick?

Invariance
= Kernel (Gram) matrix is rotation invariant

(O] [p(X)] = [p(O]"RTR[p(X)] = [Rp(X)]" [RP(X)]
= Embedding does not alter information

Costs

= Kernel matrix is always needed
= 0(n?) costs

= Spectral decomposition is typically 0 (n3)
= Might be suboptimal
= But very easy to employ

(66)



Nystrom Projection

Nystrom Projection
= Embed new feature ¢ (x):

K(Xq,X)
emb(¢p(x)) = VTA‘1< 1 )

K (X, X)



Nystrom Projection

Nystrom Projection

= Reminder: ¢X) =UAVT G =¢pX)TpX) =vAazvT
embpca(p(X)) =UTH(X)  emb,,., (p(X)) = AVT
= Project new feature ¢ (x) on principal axes ug, ..., u,:

emb(¢(x)) =UTp(x) /\
= (VAT o) (x) d(X) = UAVT

=1 = U=¢p(X)VA~L
/2/1—1 i,1<¢(xi):¢(x))\ - yT :¢\(/T3\—1¢(X)T
=1

\Z% 900,90



Nystrom Projection

Nystrom Projection

= Reminder: ¢X) =UAVT G =¢pX)TpX) =vAazvT
embpca(p(X)) =UTH(X)  emb,,., (p(X)) = AVT
= Project new feature ¢ (x) on principal axes ug, ..., u,:

emb($(x)) = UTp(x)
= (VTATT (0T ()

/i /1_11 i1k (X, X)\
i=1

\;% i,nK(Xi:X)/



Nystrom Projection

Nystrom Projection
= Embed new feature ¢ (x):

K(Xq,X)
emb(¢p(x)) = TA‘l( 1 )

K (X, X)

Training & Inference
= Determine factorization for training

= Use Nystrom-Projection for inference

= Input new data points into non-kernelized ML-algorithm
= Embedding varies with k(x;, - )

= Gaussian: Smoothed proximity to x4, ..., X,

= Distance-based learning scheme



Note: MDS

We can convert

= Gram matrix — all pairwise distances
= Losing global translation

= All pairwise distances — Gram matrix
= Up to a global translation

Consequences

= After feature-map, algorithms are distance-based
= Johnsen-Lindenstrauss-Lemma
— Can be approximated in rel. low dimensions
— Much less information than full vectors
= Kernel design by distances-design
= Often more intuitive

(71)



Gaussian Process
Regression

Background Literature

Carl Edward Rasmussen, Christopher K. I. Williams
Gaussian Processes for Machine Learning
The MIT Press, 2006.

http://www.gaussianprocess.org/gpml/



Linear Regression (w/linear basis)

Regression

= Data points

(X1, Y1), or Ky v) EREX R
= Looking for approx. function

f(xp) = y;
Linear Regression
= Ansatz
fw(x) = (w,x)
= Objective

Z:Hw X; — yl” —Z(x wTwx; — 2wTx;y; + y?) - min.

(73)



Linear Regression (w/linear basis)

Kernelized Linear Regression
= Ansatz

fu () = (W, (%))

= Objective

Y w0 = il
i=1

= ) (WTleG)P(x)TTw = 2w h(x)y; + y2) = min.
=1

= Still: Quadratic optimization problem in w

= Gaussian probabilistic model
= Simply solve a linear system

(74)



How Interesting is This?

Moderately Interesting?
= Ansatz

fu(X) =W, p(x))

b1 (x)
px) =
by (%)

is just approximation with a linear basis (Mod-1)
= For example

d(x) = (1,x,x2, .., x)7T
yields polynomial fitting (Video 05d)

with

(75)



Non-Parametric GPS



Gaussian Processes

Main idea
= Consider function space

= Define Gaussian distribution in function space
= (Gaussian priors
= Gaussian data terms

= Use this to solve various ML-problems

Technical challenge
= Gaussians in infinite-dim. space

(77)



Gaussian Processes

Gaussian processes
= We would like to infer functions
f:R* - R
= We assume a “Gaussian distribution”
= For any finite sample x4, ..., x,, € R?
f(xq1), ..., f(x;,) are normal distributed
= withmean u =0,

e, u(xq), o, u(x,) =0
= ..and covariance

cov (f(Xl) f( J)) = Ky, %)
_E[(f(xl) —E[f (x)D - (f( ]) E[f( ])D]

= The "kernel” k is called the covariance function.

(78)



Nothing to see here, move on...

Comparison: vector case

X1
X =
Xn

Functions / GPs

R

£ ()

)
) -

1
: )
n

H(?Cl)

u(;cn)

Y = ( .. cov(Xq,X;) .. )
), K= ( '. K(Xq,Xj) .. )

(79)



Gaussian Process Regression

Regression

= Data points
(Xl; yl)' ) (XTU yn) € ]Rd X R
= Looking for approx. function

f(xp) = y;

Prior on function space

= Normal distribution on functions f~N
= |n the sense of the previous slide

Data term
= Noisy observations f(x;) ~ %, , ()

(80)



Bayes Rule

Combining Data + Prior
P(D|f)P
p(fiD) = o 2

~P(DIf)P(f)

Notation (next slide)
= Training data points x4, ..., x,, € R?
with values vy, ..., v,, € R
= Query data points 7, ..., x5, € R%
= Unknown function f:

= Unknown function values Y = (f(xy), ...,f(xn))T
— Not necessarily equal to (v4, ..., V)

- Unknown query function values V* = (f(x}), ..., f( ;kn))T 1)



Bayes Rule

Data Term P(f1D) ~ P(DIf)P(f)

» PVID) = | [ 2,0
=1

Prior

nNoz[ ] wuth ¥ = (K(Y‘% ;((((Y )))

where K(X,V) = ( .. (x5, 7;) .. )

(82)



Inference

Determine new function values

= Multiply Gaussians
= Result is again a Gaussian
= Mean and covariance matrix change (combination)

= Means for new variables yield interpolation
= Variances are also available!

Corresponding linear system

(K(Y,Y)+a‘21 K(Y, *))
K(V*,Y) K(Y*,Y*)

(83)



Example 1:
lmage Reconstruction






Minimization Problem

Continuous
op J(f(x) d(x)) dx + oy JIIVf(x)Ilzdx — min.

(86)



Euler-Lagrange Equation

Variational problem
E(f) » min. with

E(f) = j F (1, e X (30, 00, f (), o, B f (%)) dlx

Q)
Necessary condition
o a Oy partid
darg(f ()} axl darg{d,,f (x)}

N derivative of F

by corr. argument




Diffusion / Poisson Equation

Harmonic energy

E(f) = j 17 GOII2 dx — min.
Q

Necessary condition
Af(x) =0

Proof
= Euler-Lagrange-Equation (Mod-1)



Diffusion / Poisson Equation
Harmonic energy

B = | 770N dx = | (3,,£00) + -+ (94,F(0)

Necessary condition

i . d (x > (axlf(x))2 ot (ﬁxdf(x))z)
07 Z 0%, Garg(d, / (0}




Eigen Analysis

Eigenfunctions of the Laplacian
Af =07 f +-+05,f

Eigenfunctions
= Square domain Q = [0,27]?
= Eigenbasis: Fourier-Basis

—i(a)1x+(1)2 )

by, w, (X, V) =e , W1, W, EZ

= Eigenvalues
— .2 2



All Just Gaussians...

L «— data w/noise

«—=Fourier basis

’~—— posterior




So what does it do?

Optimization problem

2T 2TC
EF) =] (fFO)—d) dx+c - f (VF())" dx
0 0

. J . J
Y Y

likelihood (data) prior
Frequency response

100 100%

prior eigenvalue data: relative weight

80 80%
60 60%
40 40%

20 20%

0 0%

frequency »

9

frequency »



Visualization (2D)

Eigenvalues grow with 2D frequencies

200
150

A(a)l; (1)2) 100




Visualization (2D)
Dampening of high frequencies (2D)




Insights

The following three things are identical
= Maximum a priori reconstruction with ||Vf||%-prior

= Dampening of frequency spectrum with
1

1+ [|w]l?

frequency response (w = frequency)



Differential Regularization as GP

Kernel interpretation
= Assume f is given as Fourier series

f() = Zpezz Zwe ™

= Derivative Vf has Fourier series

VF(x) = z i -z 0o

WEZ?2

= Thus
K(wy, 03) = w1 - W,

= Spatial kernel via inverse FT
= See [Rasmussen & Williams 2004] for details



Better Inference

Go full Bayesian

= We usually have hyperparameters
= Strength of the regularizer
= Properties of the kernel
— E.g. parameter a in RBF-kernel
— Determines spectral properties / smoothing

= We can just marginalize over everything
= Regularizer weight
= Kernel parameters

= As everything is Gaussian, the marginal likelihood
can be computed

= Integration over “all models” can be done in closed-form

= Averaging still exponential in number of parameters @)
97



Example 2: Fractal
Browntan Motion



Brown Noise

ractal noise
= Uniform i.i.d. noise rare in nature

= Fractal Brownian Motion” (FBM):
Noise with decaying Power-
Spectrum




FBM Noise (1D)

Formal Definition

= Function
f:[0,2r]¢ > R
= Gaussian distribution

on such functions
= (Gaussian process

= Fourier spectrum

= Each Fourier-coefficient
IS I.I.d. Gaussian

« Meanpu, =0

. . 1
- Varianceis o5 = —7 forh >0

white noise




FBM NOISE (1 D) white noise

Fourier synthesis

00]

Flx) = z a,, sin(wx + @), FBM noise

w=1

=
-
. .

Ay ~ N

‘uz(), azﬁ

0, ~ rnd[0,27]

h > 0 (,fractal exponent*) “fractal landscape”




joint work with Martin Bokeloh, 2006]



——

joint work with Martin Bokeloh, 2006]



Deep Networks

Sounds all nice, but how
is this relevant to demystifying deep learning?

(105)



GPs & DNNs

Three Examples
= Wide network layers approach GPs
= The neural tangent kernel (NTK)
= A model for the “double-descent” phenomenon

(106)



Two Layers Network [Neal 1996

Considering Preactivations (and next. Layer)
d
W= ) w0
j=1

]fio:(p(yi())

= Assuming that weights are initialized i.i.d.
= Mean zero, typ. normal distributed (not important)

= Each yi( ) is the sum of i.i.d. random variables

= Converges to normal distribution (CLT)
— Assuming distributions with mean and variance
= Mean zero

= Variance grows linearly with d
R.M. Neal: Bayesian Learning for Neural Networks. Springer-Verlag, 1996. (108)



Layer Output

In the infinite-width-limit
= Networks yield Gaussian processes at initialization

Speaking of initialization...

z\/_ T

= LeCun-Initialization
= Normal distributed initialization
= Normalize output to unit variance

= Our equation

= We assume w()

~Np 1 and normalize by — J_ explicitly
(109)



The Neural Tangent Kernel

Something very simple

= Let f(x; W) the full multi-layer network
= fis afunction of inputs x and weights W
= fis highly non-linear
= Using LeCun-Initialization W,

= Taylor-approximation
fFEGW) = (x5 W) + Vi f (X0; Wp) - (W — W)

= Linearized version is a Gaussian process
= Non-linear feature map in X
= Linear in weights W
= Training amounts to solving a linear system

= Think of fitting non-linear basis functions w/linear weights
(110)



The Neural Tangent Kernel

First-order Taylor
= NTK-Approximation

fEGW) = (x5 W) + Vi f (X0; Wp) - (W — W)

This can't be good, can it?
= Linear approximation only valid close to W,

Now: Infinite width limit

= Very wide networks:
weights W change very little during training

= Empirical finding (for now)
= Seems to converge
(117)



It Does Converge...

Proof sketch:
= Measuring non-linearity as
2
|4y |

IVFII2
= Ratio of Hessian H; to Gradient (Jacobian) Vf

= Chainrule: replace f(x) » f(ax) leads to

f) = af'(ax) f'G) - a?f"(ax)

= Multi-variate

?[|Hy W)
ZAGDIE

f(W) - f(«W) leads to

(112)



Layer scaling

Deep Network Layer
- R TP®
i

Going wide...
= Wetake d, » «

1
Thus, we take o = N - 0
= Network becomes approximately linear
= Converges to linear for infinite width

= One can compute the limit kernel analytically!

(113)



So, All Linear Regression Then?

Practical findings

= Reasonably good performance
= Better than standard kernels such as RBF

= But; still below finite-width DNNs

= Fully-connected NTK networks quoted 7% below standard

= Best convolutional NTK network I've seen performs at
‘AlexNet’-Level on CIFAR-10

= Finite width seems to be important

Strong theoretical tool
= GPs are much easier to understand than DNNs

(114)



(Deep?) Double Descent



The Generalization Conundrum

Random labels Real labels

I 98 %
' p < 1= overfitting p < 1= overfitting
-5.0 4
2.
g TS 3.
S o 35
2 4.0 Q
S -3.5 >
& a
S =30 e
! -25 o
2 <
LRl ¥ > 1 = underfitting
@ -15 L 12 %
g. 2.0 25 3.0 3.5 40 45 2.0 25 3.0 35 4.0 45
o >98%
S -55 ] l
e =
§ -50 ] ;
g -as 1 &
g -4.0 | Q
2 -3.5 | z
= -30 | g 2
o
=25 . s
-2.0 | I <
—1:5 <12 %

2.0 25 3.0 3.5 40 45 20 25 3.0 3.5 4.0 45
Dataset Size ~ log,g N

Generalization behavior is weird
= Networks are able to fit random data
= Still generalize on “reasonable” data

[A. Achille, S. Soatto: Emergence of Invariance and Disentanglement in Deep Representations
Journal of Machine Learning Research 18 (2018) 1-34. (Figure 1, CC-BY 4.0)]



The “Double-Descent”

generalization | classical

error BV-Trade-Off

interpolation #parameters

‘modern”
overparametrized
regime

Closer inspection: “‘Double-Descent” [Belkin 2019]

= Underparametrized regime:
“Classical” Bias-Variance-Trade-Off

= Overparametrized regime:
Error reduced again (maybe even lower)



Overparametrized Double-Descent

Let's assume, we just do function fitting

= Searching function
f:R* - R™
= Basis functions
by, ..., b.: R - R™
= Ansatz

k
FOO =) 4ibi()
=1

= With Gaussian prior p(4;) = Ny g,

(118)



Overparametrized Double-Descent

Example: Image reconstruction
= Fourier basis functions

boss w, = exp(i(w1x1 + wzxz))

= Prior
p(/lwpwz) = NO,Ji=w%+w%

(119)



Overparametrized Double-Descent

Let's assume, we just do function fitting

= Searching function
f:R* - R™
= Basis functions
by, ..., b.: R - R™
= Ansatz

k
FOO =) 4ibi()
=1

= With Gaussian prior p(4;) = Ny g,

(120)



We Now Do Function Fitting

“Realistic” Numerics

= We replace the prior by uniform prior
p(4;) = Ny,
= Rescale basis functions accordingly
b = lbi
Oj
= Yields same solution
= That is also what a kernel feature map would do

(121)



We Now Do Function Fitting

Least-Squares-Fitting
= Giventraining datax;,y;, j=1,..,n

= We solve

arg min z
Al,...,lk .

j=1

= And pick 14, ..., 4, with minimal ||A[|?

k
Z Aibi(%;) =y
=1

in case of ambiguity

= An SVD-solver (pseudo inverse) would do this
= Most (mildly-regularized) numerical descent solvers

would do this

(122)



What Do We Get?

Now, change parameters

= We pick only a subset S of basis functions
ScB= {bl' ""bk}

= Underparametrized D
= #S « n:underfitting possible

= Interpolation , Classical’
= #S = n: exact fit to the data with random S BV-Trade-Off
= Results might be rather bad

= Overparametrized
= Convergence to regularized solution Convergence

- Many solutions, picking with minimal ||A]|2 >Egertetglrj)lasr(i)ﬁt0ilon
= This leads to regularization!

J \

(123)



Et Voila!

generalization ]
error

‘classical’
BV-Trade-Off

‘modern’
overparametrized
regime

»

interpolation #parameters

Double Descent



Double-Descent in GPs with RFF

Conclusions

= Simple least-squares fitting can double-descent
= Increase parameters
= By adding more basis functions
= Approximation first overfits, then gets better again

= Deep networks can be approximated by GPs

= Belkin et al. discuss “Random Fourier Features” for
approximating an RBF-kernel

= NTK-view: Better approximation by increasing width

= Not a complete explanation
= Only plausible hypothesis for effect structure

(125)



Sources on Double-Descent

C. Zhang, S. Bengio, M. Hardt, B. Recht, 0. Vinyals:
Understanding deep learning requires rethinking generalization. ICLR 2017.
https://arxiv.org/pdf/1611.03530.pdf

A. Achille, S. Soatto:
Emergence of Invariance and Disentanglement in Deep Representations.

Journal of Machine Learning Research 18 (2018) 1-34.
https://arxiv.org/pdf/1706.01350.pdf

M. Belkin, D. Hsu, S. Ma, S. Mandal:
Reconciling modern machine-learning practice and the classical bias-variance
trade-off. Proc. of the National Academy of Sciences 116 (32), 15849-15854, 2019.

https://arxiv.org/pdf/1812.11118.pdf

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak I. Sutskever:
Deep Double Descent: Where Bigger Models and More Data Hurt. ICLR 2020.
https://openreview.net/forum?id=B1g5sA4twr

(126)



summary



Kernels - Virtual Euclidean Space

Feature maps w/kernels
= Map input into “deformed” feature space
= Kernels are the scalar product of the feature space
= Efficient handling of complex feature spaces

Gaussian processes
= Gaussian model on functions
= Covariance function could be interpreted as kernel

Analysis of DNNs
= Kernel / GP approximation provide models

(128)



Modelling 2 & m

STATISTICAL DATA MODELLING

dim-1

Chapter 10
Space

Michael Wand - Institut fur Informatik, JGU Mainz - michael.wand@uni-mainz.de



Video #10
Space
* High-dimensional space
& the curse of dimensionality

* Kernels: flat space extended

* Manifolds: curved space



Overview

Curved Space

= Brief intro to concepts from differential geometry

= Fundamental forms: Metric & Curvature
= 2D and 3D Curves & Surfaces
= Intrinsic geometry

= Applications to deep learning

(135)



Differential Geometry Intro

Embedded Geometry Intrinsic Geometry

d-dim. Manifold embedded in R™ no ambient space
(d <n) (“general relativity”)



Differential Geometry Intro

Embedded Geometry

d-dim. Manifold embedded in R
(d <n)




Manifolds



Elementary Topology

Homeomorphism
= h: X -
= h is bijective
= h is continuous
= h~1 exists and is continuous
= Basically, a continuous deformation

4_—_>
‘_——>

Topological equivalence

= Objects are topologically equivalent if there exists a
homeomorphism that maps between them

= “Can be deformed into each other”



Surfaces of Volumes

Boundaries of volumes in 3D

= Topological equivalence classes
= Sphere
= Torus
= n-fold Torus

= Genus = number of tunnels




Manifold

homeomorphism

Definition: Manifold

= A d-manifold M':
At every x € M there exists an e-environment
homeomorphic to a d-dimensional disc
= "With boundary”: disc or half-disc



Parametric Functions



Parametric Patches (up o)

D — d normal
//coordinates

ot acre R” ny (%)

(up to)
> d tangent
coordinates

(w, )

Parametric Patch
= Mapping f:R? 2 () -» R”
= Assumption: f € C®, (L open

= Geometry G = (L)



Regular Parametrizations

vl O c R

(&, V)

Regular Parametrization

= “Does not stop anywhere”
= Formally: vx € Q:detVf (V)T =0




Tangent Space

vl O c R

(&, v)

Tangent Space

= Assume regular parametrization

= Tangent space T;(x) = span(d; f (x), ...
= Vector space — as affine space: origin f(x)

n, (x)
T~ {0xf ()
“ f(x
T9<X> ax1f<x>
u" G=f()c IRD
) adf(x))

(145)



Complex Geometry Overlapping “Charts”

chart 1

[more of them,
cover whole bunny]



Examples

(Curves & Surfaces)



Parametric Curves

Parametric Curves:
= A differentiable function

f: (a,b) > R"

describes a parametric curve
¢ = f((a,b)),C € R"

= Parametrization regular: f'(t) # 0 forall ¢

= Unit-speed parametrization: ||f'(t)|| = 1



Tangents

Tangents / normals
= Any curve C € R"™: unit tangent vector

f(t)
tangent(t) =
sent(®) = 7o
= For curves C €S R?: unit normal vector
0 —1\ f'()
normal(t) =
O=0G o)iFon



Parametric Surfaces

A
vl O c R?

ne G=f(Q)cR?

Function f(x) = f(u,v) - R3
= Tangents: u(u,v) =ad,f(u,v),

v(u,v) = 0,f(u,v)
a‘LLf(ut )Xa f(u' )
0 f (u,v) %0, f (w,)l

= Normal: n(u,v) = ”



The Metric Tensor



First Fundamental Form
O, f (%)

_________
- S
Ptag ~
-

First fundamental form a.k.a. metric tensor
= Regular parametric patch
ffRT20->RP
= f will distort angles and distances
= Visible in the scalar product.

= First order Taylor approximation measures effect

f(x) = f(xg) + V(X)X — X0)



First Fundamental Form

O f (Xo)
a b fla+x) f(b+x,)
;/; ----------- » L
o X fxg) M) x f(x)

First Fundamental Form a.k.a. metric tensor
= First order Taylor approximation:
f(X) = f(x0) + Vf(xo)(x— %)
= Scalar product of vectors a,b € R?:
( f(xo+a)—f(xo), f(Xo+Db)—f(X0))

~ (Vf(x0) 2, Vf(xo)-b) = aT(Vf(xo)" - Vf(x))b

\ - -

first fundamental form
[r(%0)




Surfaces (2-Manifolds)

First Fundamental Form

= Metric tensoris a d X d matrix
= Symmetric, positive definite (reqular parametrization)

= Generalized scalar product
= Bilinear Form
Ir(a,b):=aT - (VfT-Vf)-b
= For surfaces (d = 2)

0,f0,f 0,f0,f
(V/T-vf) = (aufavf avfa,,f) = (1]? g)

If(a, b) — Ea1b1 + F(a1b2 + azbl) + Gazbz



A N

converging
S to “flat”

¢$$

u

First fundamental form

= Property of the parametrization
= Does not characterize surface itself
= Can always find parametrization with I, = identity matrix

— Local orthogonal tangent-frame

= Higher-order derivatives capture geometry
= Derivative of first fundamental form



Examples

(Curves & Surfaces)



Length of a Curve

The length of a curve

= The length of a regular curve C is defined as:

rb
J If"(Olldt

a

length(C) =

b
= f \/det 1 (t) dt

= Independent of the parametrization
= Proof: integral transformation theorem

= length(C) = |b - «a| for a unit-speed parametrization



Surface Area

Surface Area

= Patch §
s:R2D2 0> R3
= |Integrate over constant function
Soypm1

over surface
= Then apply integral transformation theorem:

area(§) = f\/detls(t) dx
Q

- j 10,5(0) X 3,5(0)lldx
Q



Curvature

(of curves)



Curvature

Curvature:

= First derivatives:
= Curve direction / speed of movement

= Curvature:
= Encoded in 2nd order information

Why not just use /' ?

= Problem: Depends on parametrization
= Different velocity yields different results

= Need to distinguish acceleration...
= ..intangential and
= ..non-tangential directions.



Curvature & 2nd Derivatives
C = f((ab))

normal(t)

(1) tanéent(t)

Definition of curvature

= Need non-tangential component of "
= Project on normal

= Ignore accelerating/slowing down
= Normalize speed



Space Curves

()
Curvature of a curve C € R?

= Curvature defined as

CF @ x £l

<O =" or

= Assuming regular parametrization
= " does not vanish



Torsion
f”,(t) \

X

.
e
.
.
.

HOIREG

F1@O X0 (1) _ det(f'(0), 1" (0, f" (D)

OO X OR THOEYHGIE

Definition torsion of f at ¢
= Curve C € R3
= Regular parametrization
= Non-zero curvature



Theorem

Fundamental Theorem of Space Curves

= Two curves C € R?
= Unit speed parameterized
= identical, positive curvature (k > 0)
= and identical torsion

are identical up to a rigid motion.

= In the 2D case, torsion is not required
= Would be zero everywhere



Curvature

(of surfaces)



Second Fundamental Form

Again: Missing Information

= First fundamental form
measures only length changes.

= Cylinder looks like a flat sheet

Complete (extrinsic) geometry
= Measure curvature of a surface as well.

= Requires second order information
= Anything first order is inherently “flat”



Second Fundamental Form

Basic Idea
= Compute second derivative vectors

= Project in normal direction
= Remove tangential acceleration



Second Fundamental Form

Definition
= Regular parametrization s: R? 2 (0 » R?
= Second fundamental form of s:

_ 0, 5(X0) - n(Xg)  09,,,5(Xp) - n(Xg) _ (€ f
Hs(x0) = (aws<x§> n(xe) Buys(xy) n<x§>> =(; )

Notation as bilinear form

d..s'n 0d,.,S N
— T uu uv
ls(a,b) =a (aw,s ‘n  0,,S - n) b



Remark: Christoffel Symbols

Second fundamental form

[ = (auus ‘N 0,,S n)
d,,S*N 0,,5 N

= Extrinsic curvature

= Projection on normal — measure only curvature away
from tangent space

Full picture
= We can measure tangential curvature, too
= Useful for intrinsic view (non-embedded manifolds)
= “Christoffel Symbols”



Full Second-Order Expansion

Parametric surface
ssRZ220 - R3

Second order representation
0,y = I'fju + T4 v + en
0,5 = I''bu + T4Hv + fn
0,,s = I')ou + IT'4Hv + gn

Christoffel Symbols '/

= Projections of second derivatives into tangent plane
= |ntrinsic curvature properties



Shape Operator

Second fundamental form

H(XO) N ( (at xp)
0

= 2"d fundamental form is parametrization dependent!

0,,S N 0,,S- n)
d,,S*N 0J,,5 N

Definition: The shape operator

= Orthogonal tangent vectors u, v yield
the shape operator S(x,) (a.k.a. curvature tensor)
= Directional derivative of normal vector
= Still depends on choice of coordinates (e.g., rotation of u,v).



Alternative Formulation (Gauss)

Z

s 2

X

Orthogonal tangent frame

= Local height field parameterization s(x) = z(x, y)
= Orthonormal x, y coordinates tangential to surface
= Function values z in normal direction
= Origin at zero

= Then: shape operator = second fundamental form

= matrix of second derivatives



Alternative Formulation (Gauss)

Z

Q Tangential height fields,
orthogonal frame:

T =S = Hy(x)

Local height field parameterization
= 2nd order Taylor approximation
z(x) = %x H,(x)-x + J],x)-x + 2z(0)

N - N - N -

=—ex24+2fxy+gy>2 0 0

(e f)_(auuz auvz)
f g OuvZ  OyyZ



In Practice

Cloud of data points

= k-nearest neighbors

= PCA for approx. tangent plane

= Least-squares fitting of height field

(174)
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Basic Idea

In other words:

= First fundamental form: 1
Linear part (squared) of local
Taylor approximation.

= Second fundamental form: 11
Quadratic part of heightfield
approximation

= Both matrices are symmetric.
= Next: eigenanalysis, of course...




Principal Curvature

Eigenanalysis
= Eigenvalues of shape operator
are called principal curvatures «, k..

= Corresponding eigenvectors are called
directions of principle curvature.




Examples

Stanford Bunny

(dense point cloud)

 curvature

principal
curvature k;

mean

principal
curvature «,

Gaussian
curvature

[courtesy of Martin Bokeloh]



Normal Curvature

Definition
= Normal curvature k(r) in direction r at x,
kg, (X) =11 -S(xp) - 1
(for |Ir]| = 1, r € R?)

Relation to curvature of plane curves n
= |ntersect the surface with plane spanned by

| |
n(x,) and (u(xo) v(x0)> - 1 through s(x,).
| |

= |dentical curvatures (up to sign)

T



Normal & Principal Curvatures

Relation to principal curvature

= Maximum principal cuvature «,
= maximum of normal curvature

= Minimum principal cuvature «,
= minimum of normal curvature



Gaussian & Mean Curvature

More Definitions

= Gaussian curvature K = kk,
= Product of principal curvatures

= Mean curvature H := %(Kl + 1)

= Average of principle curvatures

Theorems
= K(x) = det(S(x))

= H(x) = %tr(S(x))



Gaussian & Mean Curvature

More Definitions

= Gaussian curvature K = kk,
= Product of principal curvatures

= Mean curvature H := %(Kl + 1)

= Average of principle curvatures
last part:

Theorems /— holds for general

fundamental forms!

C K(x) = det(S(x)) = Sl _ o= S

detl  EG—F2
\

1 G-2fF+gE
" H(x) = Etr(S(X)) - ez(ch—Fzg)

\& shape operator only!




Global Properties

Definitions

= An isometry is a mapping between surfaces that
preserves distances on the surface
(“geodesic distances”)

= Developable surface: Gauss curvature zero
everywhere
= |.e. no curvature in at least one direction.
= Examples: Cylinder, Cone, Plane

Developable surfaces

= Developable surfaces can be (locally) mapped to a
plane isometrically (flattening out, unroll).



Theorema Egregium

Theorema egregium (Gauss, 1828)
= Surfaces (2-manifolds) in 3D

= Any isometric mapping preservers Gaussian
curvature
= Gaussian curvature is invariant under isometric maps
= “Intrinsic surface property”

Consequence

= The earth (~ sphere) cannot be mapped to a plane
in a length preserving way.

= Maps / atlases distort distances



Gauss Bonnet Theorem

Gauss Bonnet Theorem

= Let § c R3 be smooth, compact, orientable surface
without boundary

= Then, the area integral of the Gauss curvature is
related to the genus g of the surface:

jK(X)dX =4m(1 —g)
S




Fundamental Theorem of Surfaces

Theorem
= Given two parametric patchesin §,5, € R3,
= defined on the same domain (Q:
S; = s;(Q).
= Assume that first and second fundamental form are
identical
I, =1,, 11, = II,.
= Then there exists a rigid motion that maps on
surface to the other

S, =T(S,),forsomeT € E(3).



Summary

Objects are the same up to a rigid motion, if...:
= Curves R — R?% Same speed, same curvature
= Curves R — R3: Same speed, same curvature, torsion
= Surfaces R? — R3: Same first & second fundamental form
= Volumetric objects R3 — R3: Same first fundamental form

A

i

_ _\\

|~
|~

A

1

4

»
»

[ \;5\9{ 4"

plane curve Space curve surface Space warp




Intrinsic Differential
Geometry



Differential Geometry Intro

Embedded Geometry Intrinsic Geometry

d-dim. Manifold embedded in R™ no ambient space
(d <n) (“general relativity”)



Differential Geometry Intro

Intrinsic Geometry

no ambient space
(“general relativity”)



Illustration

S = S(Q) cC Rdz

Metric Distortion  (Extrinsic Counterpart: [VsVs"])
( ”)u [VsTVs]



Illustration

- Rlemannlan Metric

(on a Riemannian Manifold)

Metric Tensor
( ”)u [VsTPs]



Illustration

Example:
We alter the standard metric

standard non-standard
metric (SPD quadric
at each point)

Metric Tensor
( ”)u [VsTVs]



Curvature

Given

= Abstract parameter domain Q ¢ R¢
= Metric g: Q - R**¢

Higher-order properties

(1) Define derivative of g
= “Covariant derivative” or “connection”
= Canonical choice: Levi-Cevita-connection
— Behaves like projection into tangent plane
— No torsion

(2) Riemann Curvature Tensor

= [nvariants are the analog to “Gaussian curvature”

(195)



Space(-Time) is not Euclidean

Guide Star

IM Pegasi
(HR 8703)

*

= 642 kilometers
_—Frame-dragging Precession ' {00 miles)
/ 39 milliarcseconds/year 3

(0.000011 degrees/year)

. . Geodetic Precession
6,606 milliarcseconds/year
(0.0018 degrees/year)

Geodetic Precession Frame-dragging Precession

http://en.wikipedia.org/wiki/Gravity_Probe_B



Geodesics



Geodesics

Definition (w,v, n\
3

= A geodesic is a curve with
no intrinsic curvature

Embedded case

= After projection into the tangent space,
we have no curvature

()] =

Shortest path
= Shortest paths on smooth manifolds are geodesics




Geodesic Distances

Shortest distance between two points

= “Geodesic distance” % % 3\

= Path itself:
Often also called “Geodesic”

Intuition

= |f there was still intrinsic curvature
= Path could be straightened

= Shortens path




Computing Shortest Paths

Approximate Global Optimum

= Discretize
= Graph representation
= Sample points on surface
= Mesh or Point-Cloud with k-nearest-neighbor-Graph

= Connect nearby points with edges
= Local Euclidean distance as weights
= First-order approximation of intrinsic metric
= First-order consistent error

= Dijkstra graph shortest path
= Not consistent — metrification errors
= Discrete directions lead to overestimation



Neighborhood Graphs
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Discrete Geodesics

Dijkstra” geodesics green “smoothed

* Advantages | red Dijkstra
= Easy to implement Ak -_
= Global optimum

= Disadvantages

= O(nlogn) cost for
n points, one-to-all paths
(one-to-one not faster!)

= Approximate — substantial errors

shortest path with
i point-cloud NN-graph
(overestimation) Image: Art Tevs]



Continuous Geodesics

Continuous geodesics green "smoothed

= Smoothing | red Dijkstra
= Start with coarse path e
= Minimize path length

- [U[E
a |ldt
= Constrained least-squares

= Disadvantages
- Expensive Image: Art Tevs]

= Global optimum not guaranteed
(theoretical issue, works in practice)

2
c(t) H dt — min.




Applications




Differential Geometry in ML

Example Applications

= [somap
= Approximate intrinsic geometry

= The Fisher information matrix
= A natural metric for distributions

= Intrinsic views of deep networks
= Networks in input space

(205)



ISOMAP



lsomap

Mapping Manifolds to Euclidean Space
= Approximation
= Assuming disc topology

Algorithm: “ISOMAP”

= Compute all pairwise
intrinsic distances
= Typically: k-NN graph,
Dijkstra’s Algorithm
= Run MDS on pairwise distances g
= Another kernel-PCA variant o
= Intrinsic metric for embedding

(207)



The Fisher
Information Matrix

References

James Martens: New Insights and Perspectives on the Natural Gradient Method
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https://jmlir.org/papers/volume21/17-678/17-678.pdf

Agustinus Kristiadi: Fisher Information Matrix / Natural Gradient Descent
https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/



Fisher Information

Big picture

= We often use parametric distributions
pe(x), O€eR”

= Natural metric on parameter space Q(6)

Information theory
= Use KL-divergence to measure distance

Differential geometry

= Derive metric tensor for changes in distribution
= Not distance in parameter space

(209)



Note: Notation

Gradient operator

V=

_ax

Hessian operator / matrix
(0, Oy,

V§Vx=

_axl_

d |

(210)



KL-Divergence

Consider
= KL(pollpe+e) fore - 0
= 0,e e R?
= pg Sooth in 6

Let's see

KL(pgllpe+e) = z P (x)(log, pe (x;) —log, P+ (X))
x€Q(X)

= Note: for small ||¢||, the KL-divergence is symmetric

(211)



KL-Divergence

Gradients

VKL@ollpord) = ) [Vepo(0](logz pa(x) — 10gz Po.se ()
XEQ(X)

= ) eIV 1ogz P ()

XEQ(X)

(212)



KL-Divergence

Gradients

VKL@ollpord) = ) [Vepo(0](logz pa(x) — 10gz Po.se ()
XEQ(X)

= ) eIV 1ogz P ()

XEQ(X)

== ) Pe(I(V. 10g2 Po.se ()

XEQ(X)
= [Ex~p9(x) [Ve (— log, pe+e (x))]
=0 ()

(213)



Expected “Score Function”

Expected gradients of log-likelihoods are zero

Eypy0[Va(0g2 P (D] = ) pa()(Vallog, pe(x)))

XEQ(X)

N
oY)

(214)



Expected “Score Function”

Expected gradients of log-likelihoods are zero

Eypy0[Va(0g2 P (D] = ) pa()(Vallog, pe(x)))

XEQ(X)
/\ ()
Vope (X
Vv —
Vlog f(x) = ff(g)} ) E;X) pg(X)( pe (%) )
= z Vope (%)
XEQ(X)

= Vg z pe(x) = Vgl = 0



KL-Divergence

Gradients
VKL(pollpe+e) = IE':x~p9(x) [Ve(—logz pe+e(x))] = 0

Hessian
[VZVE]KL(p(-)“p9+e) — IIE':x~p@(x) [VZ [ve (_ 1082 p9+e(x))]]

(216)



KL-Divergence

Gradients

VEKL(pG||p9+e) — Ex~p9(x) [Ve(_ log, p9+e(x))] =0

Note (probably not stressed enough in the video):

— We take IE:x~pe(x) [---] of ve(_ log; p(—)+e(x))

true distribution ~ comparison
— In the proof sketch (Slide 214/215), 0 is at the “true” value
— In general, gradients of log-likelihoods do not vanish!

— Optimization in DL is all about gradient descent
neg-log-likelihoods!

— The gradient only vanishes, because 6 are the true parameters

4

(217)



KL-Divergence

Gradients
VKL(pollpe+e) = IE':x~p9(x) [Ve(—logz pe+e(x))] = 0

Hessian
[VZVE]KL(p(-)“p9+e) — IIE':x~p@(x) [VZ [ve (_ 1082 p9+e(x))]]

(218)



KL-Divergence

Gradients
VKL(pollpe+e) = IE':x~pg(x) [Ve(—logz pe+e(x))] = 0

Hessian
[VZVE]KL(p(-)“p9+e) — IIE':x~p@(x) [VZ [ve (_ 1082 p9+e(x))]]

VT VE Po+e (X)
€
p9+e(x)

= Expyx) [—

= E

x~Polx) | Do+e(X)?

e

([VT ]p9+e(x))p9+e(x) vep9+e(x) ve p6+e(x)]

v f&) _ V(g -fx)VgXx)

96 9607
(219)



KL-Divergence

Hessian
[VZVE]KL(Z?BHP(LHE)

([Vzve]Peﬂ(X))Peﬂ(X) T vep0+e(x) ) V£p9+€(X)

= [E
p0+e(x)2

x~pe(x) |

(220)



KL-Divergence

Hessian
[VZVE]KL(Z?BHP(LHE)

=[E

x~pg(x)

. ([Vzve]Peﬂ(X))Peﬂ(X) T vep0+e(x) ) V£p9+€(X)
p0+e(x)2

— _ z [vzve]p9+e(x) + Ex~p9(x) [(VEPGHE(X)) (VZPGH(X))]

x€Q(X) Po+e(X) Po+e(X)
vep9+e(x) vep9+e(x) !
- VZVG te x~pg(x
| ]XE;X)PB (X) + Exepyx) [( Po+e(X) >( Po+e(X) > ]

= Eyxepy[Ve(—1og, Posc (X)) - Vo (—log, po i ()]
(221)



Summary

“Score Function”: Derivative of neg-log-likelihood

Ve(—log, pose(%))

Gradient: \Vanishes

VGKL(pG”p9+e) — IE':x~pe(x) [Ve(_ log, p9+e(x))] =0

Hessian: Covariance Matrix

[VZVG]KL(T)OHPEHG)
— II5:x~pe(x) [Ve(_ lng p9+e(x)) ) ve(_ 1082 p9+e(X))T]

(222)



Summary

Hessian is the Fischer information matrix

F = [VLV ]KL(pellpe+e)
— IEvapg(x) [Ve (_ logz P9+E(X)) ) Ve (_ 1082 p(—)+e(X))T]

Usage as metric tensor
(d6,,d0,) = (d6,)T -F-d

(223)



Applications

“Natural Gradient Descent”

= Standard Gradient Descent
= Deep network f: R% — R4
= Loss function: Neg-log-likelihood L(fy)
= Parameters 0 (weights)
= Learning rate
= Gradient descent

0;11 < 0; —VgL(f)

(224)



Applications

“Natural Gradient Descent”
= Standard Gradient Descent

0,41 < 0; — 1VoL(fo)
= “Natural” Gradient Descent
0;41 <« 0; — AF1V4L(fp)

Discussion

= Problem: Inverting the F-Matrix
= Too expensive for deep networks

= Approximations possible
= ADAM uses diagonal F

(225)



Application

Jeffreys Prior

= Inferring parameters via

p(6|D) ~p(D[6)P(6)
= We have a likelihood p(D|6)
= What prior P(6) should we use?

Approach
= We want “uninformative” prior
. . reparameterization
= Independent of parametrization " scales quadraticall

P]effreys(g) = \/det Fp(D|9)

%

volume element
in F-metric (226)




Jeffreys Prior

Discussion
= Often used as “objective” Bayesian prior

= |t does not solve the problem of infinite domains
= E.g., improper prior for mean of a Gaussian

= Results invariant under change of domain
parametrization
= However, not invariant under transformations of the ouput

= Computation might be costly

(227)



Intrinsic View
of Deep Networks

Credits: David Hartmann



ReLU Networks Subdivide Input Space
N / | A 7

SAS=Z Dor”
SIS A o=
- S S

I
A

\ /

(“
A
N

=

5

S22
R NS
[ |

Take this one step further
= Feedforward network with ReLU nonlinearity
= Map outputs into input space
» Input x € R% — Outputs f(x) € R* in dy-manifold
= Embed outputs in R%



ReLU Networks

Fully-connected ReLU network
fHx, W)

= ¢ (W(L)go(W(L_l)go(--- W©x) ... ))

In matrix notation
f(x, W)
— ROWOREL-DWwE-1) ... (W)
= Diagonal 0/1 ReLU matrices R("

= Attention! R(”) depends on preactivation
= Non-linear, non-constant function of x

(230)



ReLU Networks

Embedding into input space
= (me(l))* (R<L>w<L>)* £ (x, W)

where MT is the Moore-Penrose pseudo-inverse of M
(data dependent, different P -I. for each x)

What does it show?

= Visualizes network f as deformation of the input

= Visualization uses additional PCA-dimensionality
reduction

(231)



Results after PCA [David Hartmann|

1.00 .

- targets

0.50 4

0.25 4

0.00 » -

—0.25

—0.50

—0.75 1

-1.00 4

0.0 0.2 0.4 0.6 0.8 1.0 -1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1..00

R

optimization process

layer-wise result 239



summary



Space might not be flat...

Differential geometry

= Studying geometry independent of parametrization
= Useful to abstract from “implementation details”

= Length/volumes, curvature, higher-order moments

Intrinsic (differential) geometry

= View from inside the manifold
= |gnore outer space
« Useful if this does not matter for the application

= Starts with the metric
= Specify metric tensor
= Intrinsic curvature can be derived (under assumptions)

(234)
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