Modelling 2
 STATISTICAL DATA MODELLING

Chapter 12

Physics and Self-Organization

Video \#12

Physics \& Self-Organization

- Physics
- Self-Organization

Introduction

Physics \& Machine Learning?

- Why does would this matter?

Big problems

- "The" research question: Solve AI
- In other words: Universal machine learning

Big question

- Does universal learning exist?

Introduction

Meta-Priors

- Math: No free lunch!
- Physics: ?

our focus

- Biology: Sure (if you are optimistic)

Computer Science

- < 2010: We have none, but good luck.
- 2010-2020: Ups, maybe
- Deep networks solve very limited tasks
- But they seem disturbingly universal at that

Introduction

Perspective

- Taking fundamental physics as we know it as model
- Does this tell us how to build a universal learning machine?
- We will not be able to answer this question.

Three steps

1. All of physics in 45 min (from a CS perspective)
2. Methods / results on self-organizing systems
3. Do your own research (beyond this lecture)

Disclaimer

I am not a physicist

- Educated in computer science
- This lecture gives an overview / starting point
- This is not a physics lecture
- Take everything with a grain of scepticism

Physical Dynamics

Physics: Dynamical Systems

Dynamical systems

- State Space ("microstates")
- Set Ω of possible system states
- Examples
- 8 planets orbiting the sun

$$
\Omega=\mathbb{R}^{2 \times 3 \times 9}=\mathbb{R}^{54}
$$

- Cellular automata
- Discrete state space on infinite grid

$$
\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}^{\mathbb{Z}^{2}}
$$

- Temporal evolution
function $s: \mathbb{R} \rightarrow \Omega$

Dynamical Systems

Dynamics

- State evolves over time
- The future only depends on the "last time step"
- Continuous case:

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \Omega, t \mapsto f(t) \\
& \frac{d}{d t} f(t)= F(f(t), t)
\end{aligned}
$$

- Discrete case:

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \Omega, t \mapsto \mathrm{~s}(t) \\
& f(t+1)=F(f(t), t)
\end{aligned}
$$

Dynamical Systems

Dynamics

- State evolves over time
" The future only depends on the "last time step"
- Continuous case

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \Omega, t \mapsto f(t) \\
\frac{d}{d t} f(t)=F(f(t), t)(\text { Markov process })
\end{gathered}
$$

- Discrete case

$$
\begin{gathered}
f: \mathbb{Z} \rightarrow \Omega, t \mapsto \mathrm{~s}(t) \\
f(t+1)=F(f(t), t) \text { (Markov chain) }
\end{gathered}
$$

- "New information": F can be a random variable
- Markovian dynamics

Integration

Function f

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} \\
f^{\prime}(t)=F(f(t), t)
\end{gathered}
$$

Newtonian Physics

Newtonian Physics

Newtonian Physics

$$
" F=m \cdot a "
$$

Which means:

$$
\mathbf{F}(t, \mathbf{s}(t))=m \cdot \mathbf{a}(t)=m \cdot \ddot{\mathbf{s}}(t)
$$

In other words...

$$
\frac{d^{2}}{d t^{2}} \mathbf{s}(t)=\frac{1}{m} \mathbb{F}(t, \mathbf{s}(t))
$$

Typical Forces

force vector

$$
\mathrm{F}_{1,2}=\|\mathrm{F}\| \frac{\left(\mathrm{s}_{i}-\mathrm{s}_{j}\right)}{\left\|\mathrm{s}_{i}-\mathrm{s}_{j}\right\|}
$$

dissipation friction
$\mathbf{F}=-c \mathbf{v}(t)$
air resistance
$\mathbf{F}=-c \mathbf{v}(t)^{2}$
electric charge (Coulomb law)
$\|F\|=\epsilon_{0} \frac{q_{1} q_{2}}{r^{2}}$
(sign matters)

$$
\|F\|=\gamma \frac{m_{1} m_{2}}{r^{2}}
$$

gravitation

$$
\begin{gathered}
\text { Classical } \\
\text { Fields \& Waves }
\end{gathered}
$$

We Like the Springs

Wave Equation
 $\frac{\partial f^{2}}{\partial t}=-c \Delta f(x, t)$

Information

- Information transported
- through space
- over time
- Reversible
- practical

Classical Wave Models

General case

- More general local interactions
- More complex dynamics
- Wave propagation still possible

Concrete model

- Usually involves coupled fields

General Case

Local rules

- At each time instance, affect only direct neighborhood
- Information is transported through space over time

Symmetric

- Translations
- Rotations
- (Reflections)

Continuum

$\partial_{t}, \nabla_{x}, \Delta_{x}, \ldots$

Local neighborhoods

"cellular automata" as discrete model systems

Properties

Locality

- Markovian: all memory in dynamic state
- Local interactions evolve over time

Symmetry

- Relativistic (invariant under Poincaré Group)
- Causality chains: Local interactions \rightarrow global behavior

General Relativity: Locality to the max

General Relativity
 - Curved spacetime

- "General covariance"
- One could deform it arbitrarily
- Relevant are causal chains
- Information propagates according to metric

General Relativity: Locality to the max

General Relativity
 - Curved spacetime

- "General covariance"
- One could deform it arbitrarily
- Relevant are causal chains
- Information propagates according to metric

Quantum Mechanics

We Probably Like the Cat

"Schrödinger"-Style QM:

- n Particles in \mathbb{R}^{3}
- Time $t \in \mathbb{R}$
- Wave function

$$
\Psi_{t}(\underbrace{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}}_{=: \mathrm{X}}): \mathbb{R}^{3 n} \times \mathbb{R} \rightarrow \mathbb{C}
$$

We Probably Like the Cat

Wave function

$$
\Psi_{t}(\underbrace{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}}_{=: \mathrm{X}}): \mathbb{R}^{3 n} \times \mathbb{R} \rightarrow \mathbb{C}
$$

Born-Rule

$$
p_{t}(\mathbf{X})=\left|\Psi_{t}(\mathbf{X})\right|^{2}
$$

Rules

- Dynamics $\frac{\partial}{\partial \mathrm{t}} \Psi_{t}(\mathbf{X})=\frac{1}{i \hbar} \widehat{H} \Psi_{t}(\mathbf{X})$
- Unitarian, non-linear operator $\widehat{H} \Psi_{t}(\mathbf{X})=\widehat{H}\left(\Psi_{t}(\mathbf{X})\right) \cdot \Psi_{t}(\mathbf{X})$
- General observables $\Psi_{t}(\mathbf{X})^{\mathrm{T}} \cdot \mathbf{M} \cdot \Psi_{t}(\mathbf{X})$
- Hermitian (complex-symmetric) M
- Observe Eigenfunctions of \mathbf{M} with $p=$ eigenvalue

Quantum Field Theory

Schrödinger's Problem

- Cannot create/remove/convert particles
- Not relativistic

Quantum Field theory

- \approx statistics on Fourier-coefficients of fields
- Maintains symmetries of special relativity
- Standard model: No general relativity

QM - tl;dr

We compute a Wavefunction

$$
\Psi_{t}(\mathbf{X}): \mathbb{R}^{3 n} \times \mathbb{R} \rightarrow \mathbb{C}
$$

This yields a distribution

$$
p_{t}(\mathbf{X})=\left|\Psi_{t}(\mathbf{X})\right|^{2}
$$

We sample once from p

- Obtain $X_{t} \in \mathbb{R} \rightarrow \mathbb{R}^{3 n}$
- This is life

Information (= Randomness) in Physics

Probabilistic Models of Physics

Classical Physics

- Deterministic dynamics, but only partial knowledge
- Far-away structures invisible
- Wave equation transports information too us (e.g. light)
- Small scales invisible
- Information transport across scales
- Chaotic dynamics / "butterfly effect"

Probabilistic Models of Physics

Quantum Physics

- Distribution p derived from wave Ψ
- We compute the statistical dependency structure
- Using a non-linear wave equation
- This is deterministic - similar to classical physics
- We sample from it: this is random

The Universe as a Generative Network

There is only one wave function Ψ

- One big distribution p
- Life is correlations (stat. dependencies)

Stochastic Machines

What are we up to?

Physics as information processing

- View the dynamics of reality as computation

Physics as a universal machine

- We can build computers in the real world
- Rules of physics are Turing complete

Simulation

- We can simulate the rules of physics in a computer
- Perfectly on a quantum computer
- Approximate arbitrarily on a classical machine
- Costs are prohibitive, of course

Prediction

Intelligent system:

Predictive Reasoning

- Brain tries to predict what is going to happen
- Or other intelligent systems
- For things "we care" about
- Macroscopic events
- Only certain events (some "details" omitted)

Prediction

Intelligent system:

Predictive Reasoning

- Brain / system has limits
- Imperfect knowledge "o(x)"
- Limited capacity of model m
- Limited experience ("training data")
- Build "best you can"

Prediction

Intelligent system:

Predictive Reasoning

- Short-cut
- Predict physical dynamics
- At coarse level
- Physical computer
- Use less time + space than original event
- Compression (maybe evolutionary-discriminative)

Short-Cut / Coarse-Grained Reasoning

[NASA]

Computability Theory

Computability (of shortcuts)

- Infinite processes: Undecidable
- Limited space: Busy-beaver (grows too fast)
- Limited time \& space: Still a lot?

Average behavior: seems more "restrained"

Summary

Physics

A big parallel machine

- Simple rules
- Parallel computing
- Turing-capable

Properties

- Symmetric
- Poincaré group: Relativistic models
- Strict locality (causality chains)
- All wave-models (classic \& QFT)
- Non-deterministic
- Classical models, too, if not all state is known

Breaking the NFL-Theorem

Our learning setting

- Learning algorithm
- Pattern creation algorithm
both implemented in physical hardware

No Free Lunch / Bias-Variance Trade-Off

- For n input bits
- 2^{n} different pieces of data can be encoded
- $2^{2^{n}}$ different binary classifications are possible
- "Storage" requirements
- $\log _{2} 2^{2^{n}}=2^{n}$ bits to encode arbitrary pattern
- Now the generator and decoder "play the same game"

Universal Priors

Better than that?

- What kind of patterns emerge naturally?
- What kind of classes / structures might we be interested in naturally?

Self-organization in physical systems

- Vast area
- "Unsolved" as far as I know
- We will take a brief glimpse in what is known

Modelling 2
 STATISTICAL DATA MODELLING

Chapter 12

Physics and Self-Organization

Video \#12

Physics \& Self-Organization

- Physics
- Self-Organization

Overview

Two Topics

Two self-organization scenarios

- Thermodynamic equilibrium in a gas
- Maximum entropy for prescriped mean energy
- Connection to log-likelihoods and "energy functions"
- Coarse-graining of processes through renormalization groups
- Microscopical dynamical system
- Scale symmetry
- Understanding of macroscopical properties

Disclaimer again

" All of the above "rough sketch" from a CS person

Entropy in
 Physical Systems

Reversibility \& the Second Law

Reversible

Newtonian physics is reversible

- No information is ever lost
- Assuming no singularities, such as point particles colliding
- We can play the ODE forward and backward

Reversible Dynamics

Discrete case

- F is a bijection

Continuous case

- F is a bijection (+ some regularity conditions)

Time symmetry, discrete case

- F is independent of t :
- $f(1)=f_{0}, f(1)=F\left(f_{0}\right), f(2)=F^{2}\left(f_{0}\right), f(3)=F^{3}\left(f_{0}\right), \ldots$
- Permutation group orbit $F^{t}\left(f_{0}\right)$ (finite cyclic group)

Where is reversibility lost?

Classical "coarse-grained" models

- Friction \rightarrow thermal molecular movements
- Btw: Variational "Hamiltonian" approach only works in the reversible case

Macroscopic view

- Abstract from small details
- Information flows into the small scales!
- ...and from the small scales - butterfly effect in fluid dyn.

Quantum physics

- Evolution of Ψ is deterministic
- But reconstruction from observations is imperfect

Classical, Reversible Physics: Variational Description

Quantities

Variational System Modeling

- State $s(t) \in \Omega$ (continuous)
- Energy $\mathbb{H}(s(t))$ (here $\mathbb{H}=$ "Hamiltonian", not entropy!)
- Dynamics is known when energy function H is given

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial \mathbf{q}}, \quad \frac{d \mathbf{q}}{d t}=+\frac{\partial H}{\partial \mathbf{p}} \\
& (\mathbf{q}=\text { position, } \mathbf{p}=\text { impulse } \mathbf{v} \cdot m)
\end{aligned}
$$

Reversible Dynamics

- The formulation assumes reversibility
- "No energy lost"

Example

1D Mass-Spring System

- Kinetic energy $E_{\text {kin }}(q)=\frac{1}{2} m \dot{q}^{2}$
spring
- $v=\dot{q}, p=m \dot{q}$
- Potential energy $E_{p o t}(q)=\frac{1}{2} D q^{2}$
- In Hookean spring with spring constant D
- Hamiltonian

$$
H=\frac{1}{2} D q^{2}+\frac{1}{2} m \dot{q}^{2}=\frac{1}{2}\left(D q^{2}+\frac{p^{2}}{m}\right)
$$

- ODE

$$
\frac{d p}{d t}=-\frac{\partial \mathrm{H}}{\partial q}=-\frac{D q}{m}, \quad \frac{d q}{d t}=\frac{\partial \mathrm{H}}{\partial p}=\frac{p}{m}=\dot{q}
$$

Macro States

Statistical Physics

- We do not see atoms
- "Micro states"
- Because too small
- We only see macroscopical phenomena
- "Macro states"

Macro state: Descriptors for Conditions

- "Glass is half-empty" (all particles on the bottom)
- "Pressure" (force per area due to collisions)
- "Temperature" \approx average energy per particle

Macro States

Example: "discrete" gas, 9 particles, 4×9 spots

- "All particles in the upper left corner: One microstate
- "Particles can be anywhere": $\binom{4 \times 9}{9}$ microstates (many!)

Equilibrium

Equilibrium

- We let the system run "for ever"
- Discrete system, for now
- Stop at a random time
- After ages
- Sample a random configuration
- Out of all possible states

Example

$P\left(\right.$ "only upper left corner filled") $=\frac{1}{17550}$

$P($ "any patter" $)=1$

Example:

- All permutations possible
- Implies: each visited once during each cycle
- $P($ Macrostate $)=\frac{\text { \#states that fit macro state }}{\text { \#all microstates }}$

"Ideal Gas"

Consider "Gas in a Box"

- Continuous
- Particles move independently
- No interaction / collisions

Maximum Entropy

- Each particle independent

- Because: no interactions
- State of the particle "typical"
- Random one out of all possible.
- All states visited = all states similarly likely

"Ideal Gas"

Typical particle state

- Maximum Entropy principle
- Distribution has maximum uncertainty: Maximum Entropy

State space

- $\Omega=(\underbrace{\mathbb{R}^{3}}_{\text {position }} \times \underbrace{\mathbb{R}^{3}}_{\text {velocity }})^{N}$

- $P(s, v)$ chosen s.t. entropy $\mathrm{H}(P(s, v)) \rightarrow$ max
- MaxEnt for s : Uniform distribution over box
- MaxEnt for v : Does not make sense
- We need constraints!

Discretization

State Space of One Particle

$-\Omega=\left([0,1]^{3} \times \mathbb{R}^{3}\right)^{N}$

- Discretize
- Box is a (fine) discrete grid
- Velocities on a (fine) discrete grid

Model assumption

Discrete s: box grid Discrete \mathbf{v} : infinite grid

- Fixed temperature
- Fixed average energy per particle

Discretization

Model assumption

- Fixed temperature
- Average energy per particle

Constraint

- Position must be in box
- Velocities

$$
E=\frac{1}{2} m\|\mathbf{v}\|^{2}
$$

Discrete s: box grid Discrete \mathbf{v} : infinite grid

Discretization

Deriviation (Sketch)

- Mean of velocities is zero
- Normal distribution

$$
\mathcal{N}_{0, \sigma^{2}}(\mathbf{v})=e^{-\frac{\mathbf{v}^{2}}{2 \sigma^{2}}}
$$

maximizes entropy!

In general

Discrete s: box grid Discrete \mathbf{v} : infinite grid

- Gibs / Boltzmann Distribution

$$
P(\text { state })=\exp \left(-\frac{\text { energy }(\text { state })}{k T}\right)
$$

maximizes entropy at temperature T (k is a constant)

Variational Model

Variational System Modeling

- State $s(t) \in \Omega$ (continuous)
- Energy $\boldsymbol{H}(s(t))$ (here $\boldsymbol{H}=$ "Hamiltonian", not entropy!)
- Dynamics is known when energy function \mathbb{H} is given

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial q}, \quad \frac{d q}{d t}=+\frac{\partial H}{\partial p} \\
& (q=\text { position, } p=\text { impulse } v \cdot m)
\end{aligned}
$$

Equilibrium

- Constant temperature $T: P(s(t))=\exp \left(-\frac{\mathrm{H}(s(t))}{k T}\right)$

The Second Law

„Big Bang"

„later"

Entropy increases

- Universe starts in low-entropy state (boom)
- Reversible dynamics since then
- Entropy (of its macroscopic, observable state) increases

Statistical Doom?

The Universe is not in equilibrium (yet)

Heat radiation

("Entropy for the rest of the universe")

"Earthrise"
Nasa/Apollo 8, Bill Anders

Renormalization Groups

Scale-Symmetry

How do systems coarse-grain?

- In general: unknown (Turing complete!)
- Special case:
- Model family, with only changing parameters
- For example, Hamiltonian model
- A scale-symmetry can be established
- In this case
- We can understand the macroscopic behavior from the microscopic

Formal tool

- "Renormalization group"

Scale-Symmetry

Consider system

- Function $s(\mathrm{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$
- Governed by (physical) law with parameters c_{1}, \ldots, c_{n}
- For example, a Hamiltonian

$$
\mathbb{H}(s)=f_{c_{1}, \ldots, c_{n}}(s)
$$

- Where f is a function with parameters c_{1}, \ldots, c_{n}

Scale changes

- Consider system "at a different scale σ "
- New Parameters $c_{1}, \ldots, c_{n} \mapsto F_{\sigma}\left(c_{1}, \ldots, c_{n}\right)$
- Hamiltonian: $\mathrm{H}^{(\sigma)}(s)=f_{F_{\sigma}\left(c_{1}, \ldots, c_{n}\right)}(s)$

Examples for scale changes

Rescaling

- Just replace $\mathrm{x} \mapsto \frac{1}{\sigma} \mathrm{x}$

Discrete coarse-graining

- Replace $s_{1}, s_{2}, \ldots, s_{n}$ by

$$
m\left(s_{1}, s_{2}\right), m\left(s_{3}, s_{4}\right), \ldots, m\left(s_{n-1}, s_{n}\right)
$$

for some averaging function m

Continuous Coarse-Graining

- Low-pass filter $\omega_{\sigma}(\mathbf{x})$ at scale σ
- For example $\omega_{\sigma}=\mathcal{N}_{0, \sigma}$
- Coarser observables: $s^{(\sigma)}:=s \otimes \omega_{\sigma}$

Critical Points

Examine Mapping

$$
c_{1}, \ldots, c_{n} \mapsto F_{\sigma}\left(c_{1}, \ldots, c_{n}\right)
$$

- System parameters remapped under coarse-graining
- Symmetry
- Change scale, change parameters, then same behavior
- Scale transforms form a "renormalization group"

Critical Points

$$
c_{1}, \ldots, c_{n}=F_{\sigma}\left(c_{1}, \ldots, c_{n}\right)
$$

- System behavior becomes scale-invariant
- This indicates fundamental changes at this point

Statistical Systems

Correlation function

- Measure correlation at distance r
- In this example: Distance in cells
- $\operatorname{corr}(r)=\mathbb{E}_{T=\text { const. }}(\langle s(x), s(x+r)\rangle)$

Degree of order

- Quickly dropping: unordered / random
- Slowly dropping: ordered / large-scale structure

Critical points

- Scale symmetry
- Special correlation function, such as power law $r^{-2 h}$

Example 1: Exponential ODE

Toy Example

"Physical Law"

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad \frac{d f(t)}{d t}=c f(t), \quad c \in \mathbb{R}
$$

Solution

$$
f(t)=\exp (c t)
$$

Scale Transformation

$$
t=\frac{1}{\sigma} t \quad \rightarrow \quad f(t)=\exp \left(\frac{c}{\sigma} t\right) \rightarrow \quad F_{\sigma}(c)=\sigma c
$$

Fixed point

- $\forall \sigma \in \mathbb{R}: F_{\sigma}(c)=c$ for $c=0$

Visualization

Scale Symmetry

- Scale symmetry at $c=0$
- Boring, but symmetric
- Behavior changes qualitatively at this point
- Raising instead of shrinking

$$
\begin{aligned}
& \text { Example 2: } \\
& \text { Fractal Brownian Motion }
\end{aligned}
$$

Toy Example

"Physical Law": Random Walk

$$
f:\{1, \ldots, n\} \rightarrow \mathbb{R}, \quad f(t+1)=f(t)+v, \quad v \sim \mathcal{N}_{0,1},
$$

Solution in Fourier Space

$$
f(t)=\sum_{\omega=-n}^{n} \mathrm{z}_{\omega} e^{-i \omega t} \quad \text { with } \mathrm{z}_{\omega} \in \mathbb{C},\left|\mathrm{z}_{\omega}\right| \sim \mathcal{N}_{0, \omega} \omega^{-1}
$$

General FBM-Noise: Continuous spectrum

$$
z_{\omega} \in \mathbb{C},\left|z_{\omega}\right| \sim \mathcal{N}_{0, \omega}-2 h, \omega \in \mathbb{R}
$$

„Fraktal exponent" h

Toy Example

Functions

$$
f(t)=\int_{\mathbb{R}} \mathrm{z}_{\omega} e^{-i \omega t} d \omega \quad \text { with } \quad \mathrm{z}_{\omega} \in \mathbb{C},\left|\mathrm{z}_{\omega}\right| \sim \mathcal{N}_{0, \omega^{-2 h}}
$$

Scale Invariance ("stochastic fractal")

$$
t=\sigma t \quad \rightarrow \quad f(\sigma t)=\sigma^{h} f(t)
$$

Perfect symmetry

- For $h=1: f(\sigma t)=\sigma f(t)$

Example 3: Ising Model

Example System: Ising Model

State space

- Integer grid $x_{\mathrm{k}}, \mathrm{k} \in \Omega \subset \mathbb{Z}^{d}$
- Binary "spins" $s\left(x_{\mathrm{k}}\right) \in\{-1,1\}$ (\rightarrow magnetism)
- For simplicity: enumerate as s_{1}, \ldots, s_{n} with $s_{i}=s\left(x_{\mathrm{k}_{i}}\right)$

Neg-Log-Likelihood / Hamiltonian

$$
H\left(s_{1}, \ldots, s_{n}\right)=\sum_{i=1}^{n} c_{i} s_{i}+\sum_{i=1}^{n} \sum_{j \in N(i)} J_{i j} s_{i} s_{j}
$$

Symmetric, no external field

$$
\mathrm{H}\left(s_{1}, \ldots, s_{n}\right)=J \sum_{i=1}^{n} \sum_{j \in N(i)} s_{i} s_{j}
$$

Ising Model

Wikipedia user HeMath (CC Attribution-SA 4.0) https://commons.wikimedia.org/wiki/File:Ising_quench_b10.gif

Equilibrium at Fixed Temperature

Probability

$$
p\left(s_{1}, \ldots, s_{n}\right)=\frac{1}{Z} \exp \left(\frac{-\left(\sum_{i=1}^{n} c_{i} s_{i}+\sum_{i=1}^{n} \sum_{j \in N(i)} J_{i j} s_{i} s_{j}\right)}{k T}\right)
$$

Sampling

- MCMC sampler
- Metropolis-Hastings
- Detailed balance in equilibrium
- $p(\mathbf{x}) \cdot p_{\text {trans }}(\mathbf{x} \rightarrow \mathbf{y})=p(\mathbf{y}) \cdot p_{\text {trans }}(\mathbf{y} \rightarrow \mathbf{x})$
- Random moves, accept outcome with likelihood ratio $\frac{p(\text { new })}{p(\text { old })}$

Scale Symmetry

Coarse-graining

- Block renormalization: 2×2 blocks with one new state
- Scale space symmetry for this system
- Hamiltonian has the same form
- Only J changes
- Group of transformations that changes parameters with scale

Renormalized

$$
H\left(s_{1}, \ldots, s_{n}\right)=\sum_{i=1}^{n} \sum_{j \in N(i)} J_{i j}^{(\alpha)} s_{i} s_{j}
$$

Scale Symmetry

Renormalization analysis

- High temperature
- Correlation function drops exponentially
- Low temperature
- Correlation function drops very slowly
- Critical point: perfect scale symmetry
- Correlation function forms a power law
- Transition from unordered to ordered phase
- Model for magnetism (Curie-temperature)

Deep Networks

Phase transitions

Initialization of networks

- Variance of weights
- linear weights, bias values
- Standard initialization
- Keeps signal variance constant
- "critical" initialization
- Mean-field analysis [Schoenholz et al. 2017]
- Varying weight / bias variance
- Networks learn best close to phase transition
- Similar observations in neuroscience (neural activity)

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, Surya Ganguli
Exponential expressivity in deep neural networks through transient chaos. NeurlPS 2016.
Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, Jascha Sohl-Dickstein
Deep Information Propagation. ICLR 2017.

Non-Equilibrium
 Self-Organization

Dynamical System View

Self-organized criticality

- Many natural systems operate at critical point
- Self-stabilizing dynamics
- Phase transition destroy structure

Machine Learning?

"Free Energy Principle"

- [Friston et al. 2006+]
- Hypothesis on emergence of intelligence

- Markovian systems
- Inner \& outer region
- Interface: Markov blanket
- (Thermo-) dynamics: Outer fluctuations
- Structure preservation implies Bayesian Inference
- Similarities between free energy minimization and variational approximations of Bayesian inference

"Thermodynamics of Life"

Origin of life

- Why/how do complex, self-replicating structures arise from random fluctuations?
- Driven system
- The sun shines
- Space is cold
- Non-maximum-entropy structure can arise

"Dissipation-driven Adaptation"

- Hypothesis by Jeremy England
- Self-replicating machines create disorder more effectively

Summary

Self-Organization

Self-organizing principles

- Maximum entropy
- As random as possible
- General dynamical systems with scale symmetry
- Find emergent macroscopic structure through RG

Rather basic, but already very useful
More complex structures

- Wide field, beyond our lecture
- Active area of research

