Modelling 2 STATISTICAL DATA MODELLING

Chapter 12 Physics and Self-Organization

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #12 Physics & Self-Organization

- Physics
- Self-Organization

Introduction

Physics & Machine Learning?

Why does would this matter?

Big problems

- "The" research question: Solve AI
- In other words: Universal machine learning

Big question

Does universal learning exist?

Introduction

Meta-Priors

- Math: No free lunch!
- Physics: ?

our focus

Biology: Sure (if you are optimistic)

Computer Science

- < 2010: We have none, but good luck.</p>
- 2010-2020: Ups, maybe
 - Deep networks solve very limited tasks
 - But they seem disturbingly universal at that

Introduction

Perspective

- Taking fundamental physics as we know it as model
- Does this tell us how to build a universal learning machine?
- We will not be able to answer this question.

Three steps

- 1. All of physics in 45min (from a CS perspective)
- 2. Methods / results on self-organizing systems
- 3. Do your own research (beyond this lecture)

Disclaimer

I am not a physicist

- Educated in computer science
- This lecture gives an overview / starting point
- This is not a physics lecture
- Take everything with a grain of scepticism

Physical Dynamics

Physics: Dynamical Systems

Dynamical systems

- State Space ("microstates")
 - Set Ω of possible system states

Examples

8 planets orbiting the sun

$$\Omega = \mathbb{R}^{2 \times 3 \times 9} = \mathbb{R}^{54}$$

Cellular automata

- Discrete state space on infinite grid

$$\Omega = \{\omega_1, \dots, \omega_N\}^{\mathbb{Z}^2}$$

Temporal evolution

function $s: \mathbb{R} \to \Omega$

Dynamical Systems

Dynamics

- State evolves over time
 - The future only depends on the "last time step"
- Continuous case:

 $f: \mathbb{R} \to \Omega, t \mapsto f(t)$ $\frac{d}{dt}f(t) = F(f(t), t)$

Discrete case:

 $f: \mathbb{Z} \to \Omega, t \mapsto \mathbf{s}(t)$ f(t+1) = F(f(t), t)

Dynamical Systems

Dynamics

- State evolves over time
 - The future only depends on the "last time step"
- Continuous case

 $f: \mathbb{R} \to \Omega, t \mapsto f(t)$ $\frac{d}{dt}f(t) = F(f(t), t) \text{ (Markov process)}$

Discrete case

 $f: \mathbb{Z} \to \Omega, t \mapsto \mathbf{s}(t)$ f(t+1) = F(f(t), t) (Markov chain)

"New information": F can be a random variable

Markovian dynamics

Integration

$$f: \mathbb{R} \to \mathbb{R}$$
$$f'(t) = F(f(t), t)$$

Newtonian Physics

Newtonian Physics

Newtonian Physics

Which means: $F(t, \mathbf{s}(t)) = m \cdot \mathbf{a}(t) = m \cdot \ddot{\mathbf{s}}(t)$

In other words...

$$\frac{d^2}{dt^2}\mathbf{s}(t) = \frac{1}{m}\mathbf{F}(t,\mathbf{s}(t))$$

Classical Fields & Waves

We Like the Springs

Wave Equation

$$\frac{\partial f^2}{\partial t} = -\mathbf{c}\Delta f(\mathbf{x}, t)$$

Information

- Information transported
 - through space
 - over time
- Reversible
 - practical

Classical Wave Models

General case

- More general local interactions
- More complex dynamics
- Wave propagation still possible

Concrete model

 Usually involves coupled fields

General Case

Local rules

- At each time instance, affect only direct neighborhood
- Information is transported through space over time

Symmetric

- Translations
- Rotations
- (Reflections)

Continuum

Local neighborhoods

"cellular automata" as discrete model systems

Properties

Locality

- Markovian: all memory in dynamic state
- Local interactions evolve over time

Symmetry

- **Relativistic** (invariant under Poincaré Group)
- Causality chains: Local interactions \rightarrow global behavior

General Relativity: Locality to the max

General Relativity

- Curved spacetime
- "General covariance"
 - One could deform it arbitrarily
 - Relevant are causal chains
- Information propagates according to metric

General Relativity: Locality to the max

General Relativity

- Curved spacetime
- "General covariance"
 - One could deform it arbitrarily
 - Relevant are causal chains
- Information propagates according to metric

Quantum Mechanics

We Probably Like the Cat

"Schrödinger"-Style QM:

- *n* Particles in \mathbb{R}^3
- Time $t \in \mathbb{R}$
- Wave function

$$\Psi_t\left(\underbrace{\mathbf{x}_1,\ldots,\mathbf{x}_n}_{=:\mathbf{X}}\right): \mathbb{R}^{3n} \times \mathbb{R} \to \mathbb{C}$$

We Probably Like the Cat

Wave function

$$\Psi_t\left(\underbrace{\mathbf{x}_1,\ldots,\mathbf{x}_n}_{=:\mathbf{X}}\right):\mathbb{R}^{3n}\times\mathbb{R}\to\mathbb{C}$$

Born-Rule

 $p_t(\mathbf{X}) = |\Psi_t(\mathbf{X})|^2$

Rules

- Dynamics $\frac{\partial}{\partial t} \Psi_t(\mathbf{X}) = \frac{1}{i\hbar} \widehat{\mathbf{H}} \Psi_t(\mathbf{X})$
 - Unitarian, non-linear operator $\widehat{\mathbf{H}}\Psi_t(\mathbf{X}) = \widehat{\mathbf{H}}(\Psi_t(\mathbf{X})) \cdot \Psi_t(\mathbf{X})$
- General observables $\Psi_t(\mathbf{X})^T \cdot \mathbf{M} \cdot \Psi_t(\mathbf{X})$
 - Hermitian (complex-symmetric) M
 - Observe Eigenfunctions of \mathbf{M} with p = eigenvalue

Quantum Field Theory

$$\Psi_{t}(\mathbf{x}) = \sum_{\mathbf{k}\in\mathbb{Z}^{3}} z_{\mathbf{k}} e^{i\mathbf{k}\mathbf{x}}, z_{\mathbf{k}} \in \mathbb{N}$$
$$p_{t}(z_{\mathbf{k}_{1}}, z_{\mathbf{k}_{2}}, \dots)$$

Schrödinger's Problem

- Cannot create/remove/convert particles
- Not relativistic

Quantum Field theory

- \approx statistics on Fourier-coefficients of fields
- Maintains symmetries of special relativity
 - Standard model: No general relativity

QM – tl;dr

We compute a Wavefunction $\Psi_t(\mathbf{X}): \mathbb{R}^{3n} \times \mathbb{R} \to \mathbb{C}$

This yields a distribution $p_t(\mathbf{X}) = |\Psi_t(\mathbf{X})|^2$

We sample once from *p*

- Obtain $\mathbf{X}_t \in \mathbb{R} \to \mathbb{R}^{3n}$
- This is life

Information (= Randomness) in Physics

Probabilistic Models of Physics

Classical Physics

- Deterministic dynamics, but only partial knowledge
- Far-away structures invisible
 - Wave equation transports information too us (e.g. light)
- Small scales invisible
 - Information transport across scales
 - Chaotic dynamics / "butterfly effect"

Probabilistic Models of Physics

Quantum Physics

- Distribution p derived from wave Ψ
- We compute the statistical dependency structure
 - Using a non-linear wave equation
 - This is deterministic similar to classical physics
- We sample from it: this is random

(correlated)

The Universe as a Generative Network

There is only one wave function $\boldsymbol{\Psi}$

- One big distribution p
 - Life is correlations (stat. dependencies)

Stochastic Machines

What are we up to?

Physics as information processing

View the dynamics of reality as computation

Physics as a universal machine

- We can build computers in the real world
- Rules of physics are Turing complete

Simulation

- We can simulate the rules of physics in a computer
 - Perfectly on a quantum computer
 - Approximate arbitrarily on a classical machine
 - Costs are prohibitive, of course

Prediction

Predictive Reasoning

- Brain tries to predict what is going to happen
 - Or other intelligent systems
- For things "we care" about
 - Macroscopic events
 - Only certain events (some "details" omitted)

Prediction

Predictive Reasoning

- Brain / system has limits
 - Imperfect knowledge "o(x)"
 - Limited capacity of model m
 - Limited experience ("training data")
- Build "best you can"

Prediction

Predictive Reasoning

- Short-cut
 - Predict physical dynamics
 - At coarse level
- Physical computer
 - Use less time + space than original event
 - Compression (maybe evolutionary-discriminative)

Short-Cut / Coarse-Grained Reasoning

[NASA]

[https://en.wikipedia.org/wiki/Big_Bang#/media/File:CMB_Timeline300_no_WMAP.jpg]

Computability Theory

Computability (of shortcuts)

- Infinite processes: Undecidable
- Limited space: Busy-beaver (grows too fast)
- Limited time & space: Still a lot?

Average behavior: seems more "restrained"

Summary

Physics

A big parallel machine

- Simple rules
- Parallel computing
- Turing-capable

Properties

- Symmetric
 - Poincaré group: Relativistic models
- Strict locality (causality chains)
 - All wave-models (classic & QFT)
- Non-deterministic
 - Classical models, too, if not all state is known

Breaking the NFL-Theorem

Our learning setting

- Learning algorithm

Learning algorithm
 Pattern creation algorithm
 In physical hardware

No Free Lunch / Bias-Variance Trade-Off

For n input bits

- 2ⁿ different pieces of data can be encoded
- 2^{2ⁿ} different binary classifications are possible
- "Storage" requirements
 - $\log_2 2^{2^n} = 2^n$ bits to encode arbitrary pattern
 - Now the generator and decoder "play the same game"

Universal Priors

Better than that?

- What kind of patterns emerge naturally?
- What kind of classes / structures might we be interested in naturally?

Self-organization in physical systems

- Vast area
- "Unsolved" as far as I know
- We will take a brief glimpse in what is known

Modelling 2 STATISTICAL DATA MODELLING

Chapter 12 Physics and Self-Organization

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #12 Physics & Self-Organization

- Physics
- Self-Organization

Overview

Two Topics

Two self-organization scenarios

- Thermodynamic equilibrium in a gas
 - Maximum entropy for prescriped mean energy
 - Connection to log-likelihoods and "energy functions"
- Coarse-graining of processes through renormalization groups
 - Microscopical dynamical system
 - Scale symmetry
 - Understanding of macroscopical properties

Disclaimer again

All of the above "rough sketch" from a CS person

Entropy in Physical Systems Reversibility & the Second Law

Reversible

Newtonian physics is reversible

- No information is ever lost
 - Assuming no singularities, such as point particles colliding
- We can play the ODE forward and backward

Reversible Dynamics

Discrete case

• *F* is a bijection

Continuous case

F is a bijection (+ some regularity conditions)

Time symmetry, discrete case

- F is independent of t:
 - $f(1) = f_0$, $f(1) = F(f_0)$, $f(2) = F^2(f_0)$, $f(3) = F^3(f_0)$, ...
 - Permutation group orbit $F^t(f_0)$ (finite cyclic group)

Where is reversibility lost?

Classical "coarse-grained" models

- Friction \rightarrow thermal molecular movements
 - Btw: Variational "Hamiltonian" approach only works in the reversible case

Macroscopic view

- Abstract from small details
- Information flows into the small scales!
 - ...and from the small scales butterfly effect in fluid dyn.

Quantum physics

- Evolution of Ψ is deterministic
 - But reconstruction from observations is imperfect

Classical, Reversible Physics: Variational Description

Quantities

Variational System Modeling

- State $s(t) \in \Omega$ (continuous)
- Energy H(s(t)) (here H = "Hamiltonian", not entropy!)
- Dynamics is known when energy function H is given

$$\frac{d\mathbf{p}}{dt} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}}, \qquad \frac{d\mathbf{q}}{dt} = +\frac{\partial \mathbf{H}}{\partial \mathbf{p}}$$

(**q** = position, **p** = impulse **v** · m)

Reversible Dynamics

- The formulation assumes reversibility
- "No energy lost"

Example

1D Mass-Spring System

• Kinetic energy $E_{kin}(q) = \frac{1}{2}m\dot{q}^2$

• $v = \dot{q}, p = m\dot{q}$

- Potential energy $E_{pot}(q) = \frac{1}{2}Dq^2$
 - In Hookean spring with spring constant D
- Hamiltonian

$$\mathbf{H} = \frac{1}{2}Dq^{2} + \frac{1}{2}m\dot{q}^{2} = \frac{1}{2}\left(Dq^{2} + \frac{p^{2}}{m}\right)$$

ODE

$$\frac{dp}{dt} = -\frac{\partial \mathbf{H}}{\partial q} = -\frac{Dq}{m}, \quad \frac{dq}{dt} = \frac{\partial \mathbf{H}}{\partial p} = \frac{p}{m} = \dot{q}$$

q

s(t)

ds(t)

dt

p

Macro States

Statistical Physics

- We do not see atoms
 - "Micro states"
- Because too small
- We only see macroscopical phenomena
 - "Macro states"

Macro state: Descriptors for Conditions

- "Glass is half-empty" (all particles on the bottom)
- "Pressure" (force per area due to collisions)
- "Temperature" ≈ average energy per particle

Macro States

Example: "discrete" gas, 9 particles, 4×9 spots

- "All particles in the upper left corner: One microstate
- "Particles can be anywhere": $\binom{4 \times 9}{9}$ microstates (many!)

Equilibrium

Equilibrium

- We let the system run "for ever"
 - Discrete system, for now
- Stop at a random time
 - After ages
- Sample a random configuration
 - Out of all possible states

Example

P("only upper left corner filled") = $\frac{1}{17550}$

P("any patter") = 1

Example:

- All permutations possible
 - Implies: each visited once during each cycle
- P(Macrostate) = ^{#states that fit macro state}

#all microstates

"Ideal Gas"

Consider "Gas in a Box"

- Continuous
- Particles move independently
- No interaction / collisions

Maximum Entropy

- Each particle independent
 - Because: no interactions
- State of the particle "typical"
 - Random one out of all possible.
 - All states visited = all states similarly likely

"Ideal Gas"

Typical particle state

- Maximum Entropy principle
- Distribution has maximum uncertainty: Maximum Entropy

State space

- $\Omega = (\mathbb{R}^3 \times \mathbb{R}^3)^N$ position velocity
- P(s, v) chosen s.t. entropy $H(P(s, v)) \rightarrow max$
 - MaxEnt for s: Uniform distribution over box
 - MaxEnt for v: Does not make sense
 - We need constraints!

Discretization

State Space of One Particle

• $\Omega = ([0,1]^3 \times \mathbb{R}^3)^N$ position: velocity:

position: velocity: just the box! anything goes

- Discretize
 - Box is a (fine) discrete grid
 - Velocities on a (fine) discrete grid

Model assumption

- Fixed temperature
 - Fixed average energy per particle

Discrete **s**: box grid Discrete **v**: infinite grid

Discretization

Model assumption

- Fixed temperature
 - Average energy per particle

Constraint

- Position must be in box
- Velocities

$$\boldsymbol{E} = \frac{1}{2} \boldsymbol{m} \|\boldsymbol{v}\|^2$$
$$\frac{1}{N} \sum_{i=1}^{N} E_i \approx \mu(\boldsymbol{E}) = \frac{1}{2} \boldsymbol{m} \cdot \mu(\boldsymbol{v}_i^2)$$

Discrete **s**: box grid Discrete **v**: infinite grid

Discretization

Deriviation (Sketch)

- Mean of velocities is zero
- Normal distribution

$$\mathcal{N}_{0,\sigma^2}(\mathbf{v}) = e^{-\frac{\mathbf{v}^2}{2\sigma^2}}$$

maximizes entropy!

Discrete **s**: box grid Discrete **v**: infinite grid

In general

• Gibs / Boltzmann Distribution $P(\text{state}) = \exp\left(-\frac{\text{energy}(\text{state})}{kT}\right)$

maximizes entropy at temperature T (k is a constant)

Variational Model

Variational System Modeling

- State $s(t) \in \Omega$ (continuous)
- Energy H(s(t)) (here H = "Hamiltonian", not entropy!)
- Dynamics is known when energy function **H** is given

$$\frac{d\mathbf{p}}{dt} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}}, \qquad \frac{d\mathbf{q}}{dt} = +\frac{\partial \mathbf{H}}{\partial \mathbf{p}}$$

(**q** = position, **p** = impulse **v** · m)

Equilibrium

• Constant temperature $T: P(s(t)) = \exp\left(-\frac{H(s(t))}{kT}\right)$

The Second Law

Entropy increases

- Universe starts in low-entropy state (boom)
- Reversible dynamics since then
- Entropy (of its macroscopic, observable state) increases

Statistical Doom?

"Earthrise" Nasa/Apollo 8, Bill Anders

Renormalization Groups

Scale-Symmetry

How do systems coarse-grain?

- In general: unknown (Turing complete!)
- Special case:
 - Model family, with only changing parameters
 - For example, Hamiltonian model
 - A scale-symmetry can be established
- In this case
 - We can understand the macroscopic behavior from the microscopic

Formal tool

"Renormalization group"

Scale-Symmetry

Consider system

- Function $s(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}^k$
- Governed by (physical) law with parameters c_1, \dots, c_n
 - For example, a Hamiltonian

$$\mathbf{H}(s) = f_{c_1, \dots, c_n}(s)$$

• Where f is a function with parameters c_1, \dots, c_n

Scale changes

- Consider system "at a different scale σ "
- New Parameters $c_1, \dots, c_n \mapsto F_{\sigma}(c_1, \dots, c_n)$
 - Hamiltonian: $\mathbf{H}^{(\sigma)}(s) = f_{F_{\sigma}(c_1,...,c_n)}(s)$

Examples for scale changes

Rescaling

• Just replace $\mathbf{x} \mapsto \frac{1}{\sigma} \mathbf{x}$

Discrete coarse-graining

 Replace s₁, s₂, ..., s_n by m(s₁, s₂), m(s₃, s₄), ..., m(s_{n-1}, s_n) for some averaging function m

Continuous Coarse-Graining

- Low-pass filter $\omega_{\sigma}(\mathbf{x})$ at scale σ
 - For example $\omega_{\sigma} = \mathcal{N}_{0,\sigma}$
- Coarser observables: $s^{(\sigma)} \coloneqq s \otimes \omega_{\sigma}$

Critical Points

Examine Mapping

 $c_1, \ldots, c_n \mapsto F_{\sigma}(c_1, \ldots, c_n)$

- System parameters remapped under coarse-graining
- Symmetry
 - Change scale, change parameters, then same behavior
 - Scale transforms form a "renormalization group"

Critical Points

$$c_1, \ldots, c_n = F_{\sigma}(c_1, \ldots, c_n)$$

- System behavior becomes scale-invariant
- This indicates fundamental changes at this point

Statistical Systems

Correlation function

- Measure correlation at distance r
 - In this example: Distance in cells
- $corr(r) = \mathbb{E}_{T=const.}(\langle s(x), s(x+r) \rangle)$

Degree of order

- Quickly dropping: unordered / random
- Slowly dropping: ordered / large-scale structure

Critical points

- Scale symmetry
- Special correlation function, such as power law r^{-2h}

Example 1: Exponential ODE

Toy Example

"Physical Law"

$$\frac{df(t)}{dt} = cf(t), \qquad c \in \mathbb{R}$$

Solution

 $f(t) = \exp(ct)$

Scale Transformation

 $f: \mathbb{R} \to \mathbb{R},$

$$t = \frac{1}{\sigma}t \rightarrow f(t) = \exp\left(\frac{c}{\sigma}t\right) \rightarrow F_{\sigma}(c) = \sigma c$$

Fixed point

• $\forall \sigma \in \mathbb{R}: F_{\sigma}(c) = c \text{ for } c = 0$

Visualization

Scale Symmetry

- Scale symmetry at c = 0
 - Boring, but symmetric
- Behavior changes qualitatively at this point
 - Raising instead of shrinking

Example 2: Fractal Brownian Motion

Toy Example

"Physical Law": Random Walk $f: \{1, ..., n\} \rightarrow \mathbb{R}, \quad f(t+1) = f(t) + \nu, \quad \nu \sim \mathcal{N}_{0,1},$

Solution in Fourier Space

$$f(t) = \sum_{\omega = -n}^{n} z_{\omega} e^{-i\omega t} \quad \text{with} \quad z_{\omega} \in \mathbb{C}, |z_{\omega}| \sim \mathcal{N}_{0,\omega^{-1}}$$

General FBM-Noise: Continuous spectrum

$$z_{\omega} \in \mathbb{C}, |z_{\omega}| \sim \mathcal{N}_{0,\omega^{-2h}}, \omega \in \mathbb{R}$$

"Fraktal exponent" *h*

Toy Example

Functions

$$f(t) = \int_{\mathbb{R}} z_{\omega} e^{-i\omega t} d\omega \quad \text{with} \quad z_{\omega} \in \mathbb{C}, |z_{\omega}| \sim \mathcal{N}_{0,\omega^{-2h}}$$

Scale Invariance ("stochastic fractal") $t = \sigma t \quad \rightarrow \quad f(\sigma t) = \sigma^{h} f(t)$

Perfect symmetry

• For h = 1: $f(\sigma t) = \sigma f(t)$

Example 3: Ising Model

Example System: Ising Model

State space

- Integer grid x_k , $k \in \Omega \subset \mathbb{Z}^d$
- Binary "spins" $s(x_k) \in \{-1,1\} (\rightarrow \text{magnetism})$
 - For simplicity: enumerate as s_1, \dots, s_n with $s_i = s(x_{k_i})$

Neg-Log-Likelihood / Hamiltonian

$$H(s_1, ..., s_n) = \sum_{i=1}^n c_i s_i + \sum_{i=1}^n \sum_{j \in N(i)} J_{ij} s_i s_j$$

Symmetric, no external field

$$\mathbf{H}(\mathbf{s}_1, \dots, \mathbf{s}_n) = J \sum_{i=1}^n \sum_{j \in N(i)} \mathbf{s}_i \mathbf{s}_j$$

Ising Model

Wikipedia user HeMath (CC Attribution-SA 4.0) https://commons.wikimedia.org/wiki/File:Ising_quench_b10.gif

Equilibrium at Fixed Temperature

Probability

$$p(\mathbf{s}_1, \dots, \mathbf{s}_n) = \frac{1}{Z} \exp\left(\frac{-\left(\sum_{i=1}^n c_i \mathbf{s}_i + \sum_{i=1}^n \sum_{j \in N(i)} J_{ij} \mathbf{s}_i \mathbf{s}_j\right)}{kT}\right)$$

Sampling

- MCMC sampler
- Metropolis-Hastings
 - Detailed balance in equilibrium
 - $p(\mathbf{x}) \cdot p_{trans}(\mathbf{x} \rightarrow \mathbf{y}) = p(\mathbf{y}) \cdot p_{trans}(\mathbf{y} \rightarrow \mathbf{x})$
 - Random moves, accept outcome with likelihood ratio $\frac{p(new)}{p(old)}$

Scale Symmetry

Coarse-graining

- Block renormalization: 2x2 blocks with one new state
- Scale space symmetry for this system
- Hamiltonian has the same form
- Only J changes

Group of transformations that changes parameters with scale

Renormalized

$$\mathbf{H}(\mathbf{s}_1, \dots, \mathbf{s}_n) = \sum_{i=1}^n \sum_{j \in N(i)} J_{ij}^{(\alpha)} \mathbf{s}_i \mathbf{s}_j$$

Scale Symmetry

Renormalization analysis

- High temperature
 - Correlation function drops exponentially
- Low temperature
 - Correlation function drops very slowly
- Critical point: perfect scale symmetry
 - Correlation function forms a power law
 - Transition from unordered to ordered phase
 - Model for magnetism (Curie-temperature)

Deep Networks

Phase transitions

Initialization of networks

- Variance of weights
 - linear weights, bias values
- Standard initialization
 - Keeps signal variance constant
 - "critical" initialization

Mean-field analysis [Schoenholz et al. 2017]

- Varying weight / bias variance
- Networks learn best close to phase transition
- Similar observations in neuroscience (neural activity)

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, Surya Ganguli Exponential expressivity in deep neural networks through transient chaos. NeurIPS 2016.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, Jascha Sohl-Dickstein Deep Information Propagation. ICLR 2017. Non-Equilibrium Self-Organization

Dynamical System View

Self-organized criticality

- Many natural systems operate at critical point
- Self-stabilizing dynamics
- Phase transition destroy structure

Bak, Tang, Wiesenfeld: Self-organized criticality: an explanation of 1/f noise. *Physical Review Letters, 1987.*

Machine Learning?

"Free Energy Principle"

- [Friston et al. 2006+]
- Hypothesis on emergence of intelligence
- Markovian systems
 - Inner & outer region
 - Interface: Markov blanket
- (Thermo-) dynamics: Outer fluctuations
 - Structure preservation implies Bayesian Inference
 - Similarities between free energy minimization and variational approximations of Bayesian inference

Karl Friston: The Free Energy Principle https://www.youtube.com/watch?v=Nlu_dJGylQl

"Thermodynamics of Life"

Origin of life

- Why/how do complex, self-replicating structures arise from random fluctuations?
- Driven system
 - The sun shines
 - Space is cold
 - Non-maximum-entropy structure can arise

"Dissipation-driven Adaptation"

- Hypothesis by Jeremy England
- Self-replicating machines create disorder more effectively

Summary

Self-Organization

Self-organizing principles

- Maximum entropy
 - As random as possible
- General dynamical systems with scale symmetry
 - Find emergent macroscopic structure through RG

Rather basic, but already very useful

More complex structures

- Wide field, beyond our lecture
- Active area of research