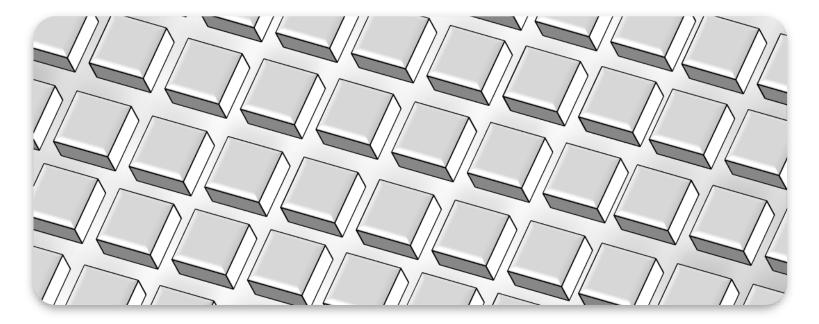
## Modelling 2 Statistical data modelling







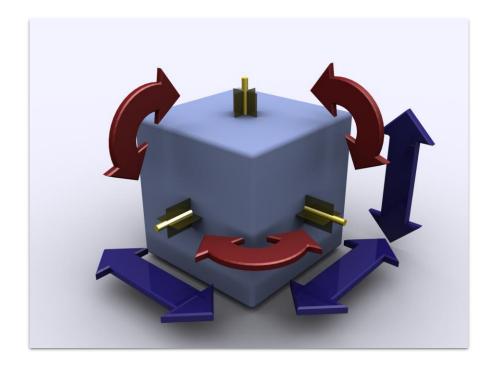
# Chapter 11 Symmetry

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

# Video #10 Symmetry

- Symmetry is the absence of information
- Group Theory
- Equivariance & Networks

# Symmetry is the absence of Information

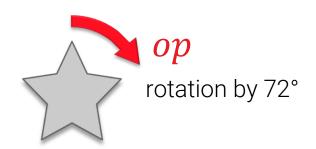


#### **Intuition: Geometry**

• Object  $\mathcal{X} \subset \mathbb{R}^d$  (Geometry)



Operations that do not change the geometry:



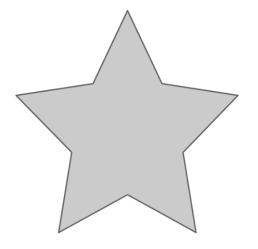
#### **All operations**

Set of operations that do not change the object



Rotation by {0°, 72°, 144°, 216°, 288°}

#### **Geometric point of view**

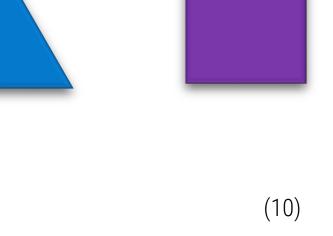


- Symmetry is the absence of information
- Rotation has no effect (on the subset of  $\mathbb{R}^2$ )
- Information "does not exist"

## Examples

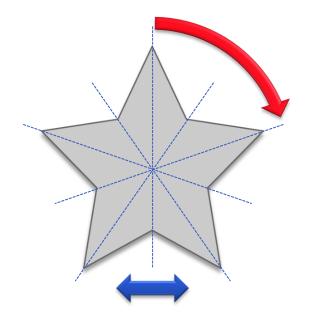
#### Geometry

Symmetric shapes

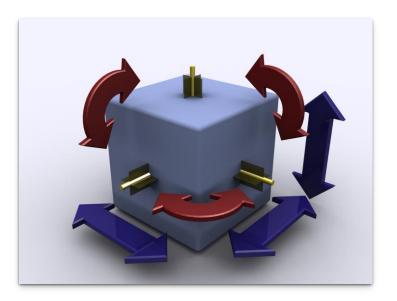


## More Examples

## **Star** (2D)



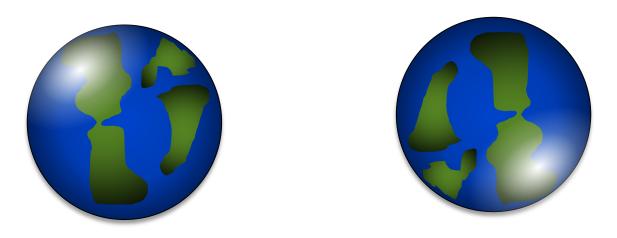
Cube (3D)



5 rotations R 10 rotations and reflections  $R = \{0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}\}$  24 rotations48 rotation + reflections

# (Physical) Modelling

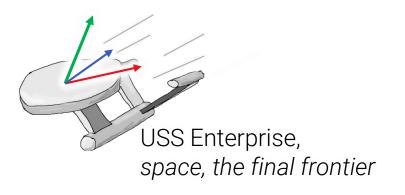
# Symmetry in Nature

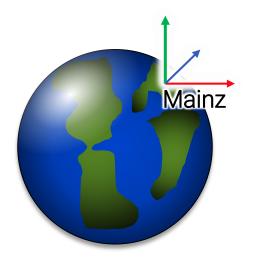


#### **Invariance of Physical Laws**

- Physical laws are symmetric
  - Rotations, translations(, reflections) do not matter
- "Galilean" invariance:
  - Choice of coordinate frame irrelevant

# Symmetry in Physics





## Relativity

#### 4D Space-time symmetry: "Poincare group"

- Rotations, translations, "boosts"
- Time is different from space (Minkowski-space)
- Change of velocity leaves physical laws unchanged
  - Including speed of light (information propagation)
  - There is no absolute velocity

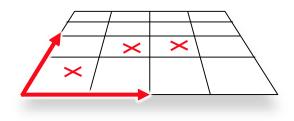
We are totally at rest...

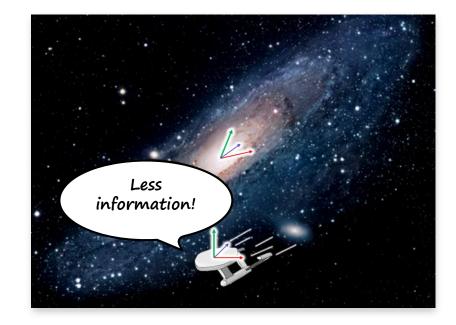
Nope, that's us

We are totally at rest...

## **Redundant Model**



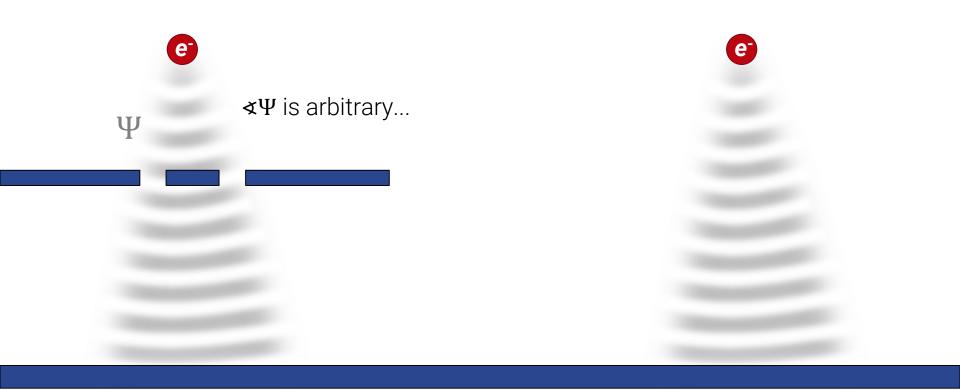




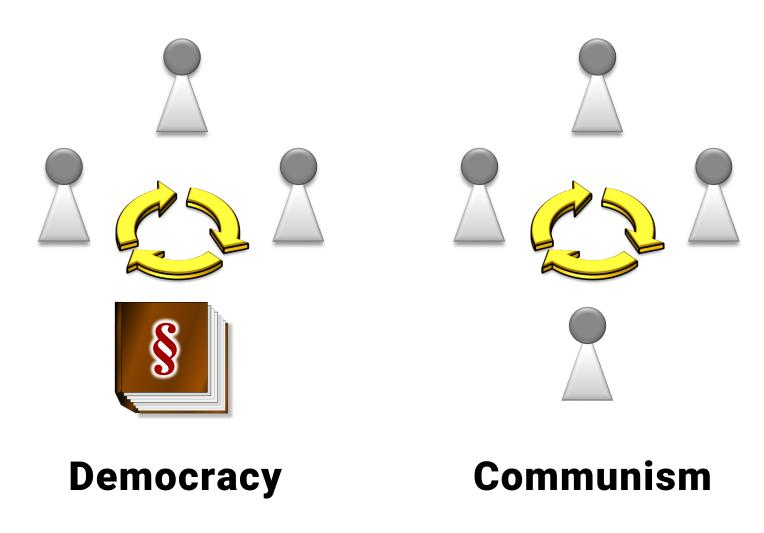
#### **Evolutionary Concept** Absolute reference points

#### New Model No absolute reference

## Symmetry in Quantum Physics







\*) do not take this too seriously...

# Summary

## Symmetry

- Object remains invariant under transformations
- Information changed by transformation is irrelevant
  - Concretely (5-fold symmetric "Star")
  - Semantically (choice of coordinate system)

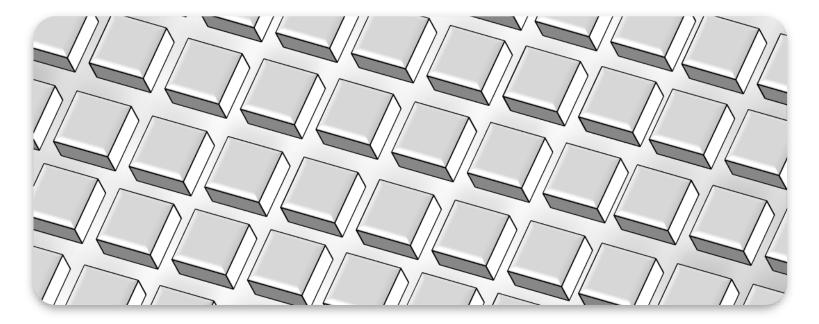
### **Symmetry in Empirical Science**

- The same law applies in different scenarios
- Symmetry = invariance
  - Or equivariance, as we will see later

## Modelling 2 Statistical data modelling







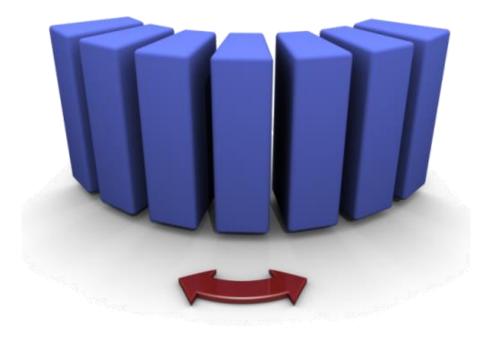
# Chapter 10 Symmetry

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

# Video #10 Symmetry

- Symmetry is the absence of information
- Group Theory
- Equivariance & Networks

# Mathematical Model



## Definition Group Axioms

• Closed: Set *G*, closed mapping " $\circ$ ": *G*, *G*  $\rightarrow$  *G* 

Associative:

$$(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$$

Neutral element:

 $id \in G: id \circ g = g \circ id = g$ 

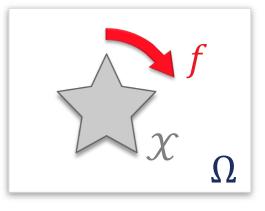
• Inverse: For each  $g \in G$  exists an  $g^{-1} \in G$ :  $g \circ g^{-1} = g^{-1} \circ g = id$ 

## **Formalization of symmetry**

- Transformations of Domain  $\Omega$ 
  - $f: \Omega \to \Omega, f$  bijective
- Object  $\mathcal{X} \subseteq \Omega$
- Set G of operation f that leave  $\mathcal{X}$  intact

•  $f(\mathcal{X}) = \mathcal{X} \Rightarrow f \in G$ 

- Consider all concatenations of such operations
  - Such as  $f \circ g \circ h \circ f \circ h$  with  $f, g, h \in G$
- The set G of operations forms a group wrt. "o"
  - $G \coloneqq \{f: \Omega \to \Omega | f(\mathcal{X}) = \mathcal{X}\}$
  - Operation "•" = function concatenation



# **Transformation Groups**

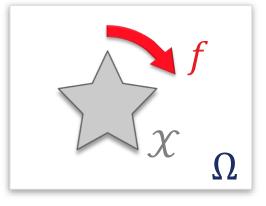
## **Transformation Group**

- $G = \{f: \Omega \to \Omega | f(\mathcal{X}) = \mathcal{X}\}$
- G is a group
  - Algebraically closed:
  - Associative (trivial!):
  - Neutral element:
  - Inverse element:

 $[f, g \in G] \Rightarrow [f \circ g \in G]$  $(f \circ g) \circ h = f \circ (g \circ h)$  $id \in G \ (id(\mathcal{X}) = \mathcal{X})$  $[f \in G] \Rightarrow [f^{-1} \in G]$ 

#### **General Groups? Group Actions!**

- Group not made of transformations
  - Associate  $g \in G$  with transformation of something else
- Example: Z mod 5 and 72° rotations



# Transformation Groups and General Groups Symmetry & Group Theory

## **Discrete Groups**

### Example

- Addition in N modulo 5
- Multiplication in N<sup>+</sup> modulo 5

### "Cayley tables" (multiplication tables)

| + | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |

| * | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 |
| 2 | 2 | 4 | 1 | 3 |
| 3 | 3 | 1 | 4 | 2 |
| 4 | 4 | 3 | 2 | 1 |

## **Permutation Groups**

## **Permutations (Bijections)**

- Swapping element of a set S
- Set  $\Pi(S)$  of all permutations of a set S forms a group

#### Theorem

- All groups are isomorphic to a permutation group
  - Bijection group in the  $\infty$ -case
- Proof: multiplication table as representation
  - (finite case)

# Structural Insight

## **Groups = Symmetry** (Transformation groups)

- "←'
  - Symmetry transformations
    - Fully Information preserving
    - Always applicable
  - Always a group structure
- "⇒"
  - Groups isomorphic to permutation of sets
  - Most abstract notion of transformations/symmetry

## Important Transformation Groups

## Names for transformation groups

- GL(d) invertible linear maps in  $\mathbb{R}^d$ 
  - invertible matrices:
  - $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ , det  $\mathbf{A} \neq 0$
- O(d) orthogonal transforms in  $\mathbb{R}^d$ 
  - reflections, rotations:
  - $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}, \ \mathbf{A} = \mathbf{A}^{\mathrm{T}}$
- E(d) isometries of the Euclidean space  $\mathbb{R}^d$ 
  - translations, reflections, rotations
  - $\mathbf{x} \mapsto \mathbf{A}\mathbf{x} + \mathbf{t}, \ \mathbf{A} = \mathbf{A}^{\mathrm{T}}$
- Prefix "S" removes reflections: SO(d), SE(d)
  - det  $\mathbf{A} > 0$

# Equivalence Classes – ignoring stuff –

# Equivalence Classes

## Modeling "irrelevant" information

Transformation group

 $G \coloneqq \{ f \in \mathcal{T} | f \colon \Omega \to \Omega \}$ 

- Transformations might change  $\mathcal{X}$ 
  - But in aspects we do not care about
- Ignore similar states

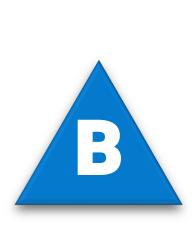
 $\mathcal{Y} \equiv \mathcal{X}$  if and only if  $\exists f \in G: \mathcal{Y} = f(\mathcal{X})$ 

Written as

$$\mathcal{Y} = \mathcal{X} \mod \mathbf{G}$$



## Example





**A**, **B**, **C**  $\subset$   $\mathbb{R}^2$ 

# $\mathbf{A} \equiv \mathbf{B} \equiv \mathbf{C} \mod SE(2)$ <br/>(rigid copies)

# Generators – building groups –

# **Generators for Groups**

### Subgroups

- Subsets of groups that are groups
  - I.e., subset is algebraically closed

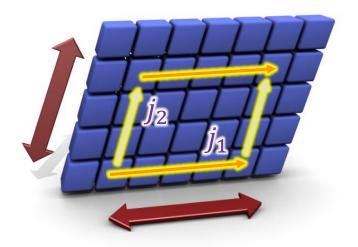
## (Discretely) Generated Groups

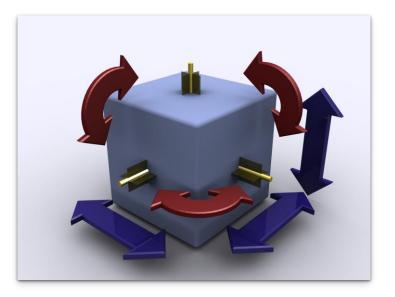
- Let G be a group, and  $g_1, \dots, g_n \in G$
- The set of all objects

$$\langle g_1, \dots, g_n \rangle \coloneqq g_{i_1}^{j_1} \circ \dots \circ g_{i_k}^{j_k},$$
$$i_1, \dots, i_k \in \{1, \dots, n\}, j_1, \dots, j_k \in \mathbb{Z}$$

is called the sub group of G generated by  $g_1, \dots, g_n$ 

## To commute or not to commute...





## $g_1 \circ g_2 = g_2 \circ g_1$ *"flat" grid* $g_1^{j_1} \circ \cdots \circ g_k^{j_k}$ can be sort: element coordinates

not commutative

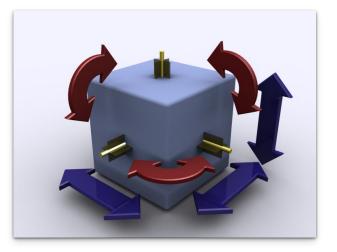
### Generators

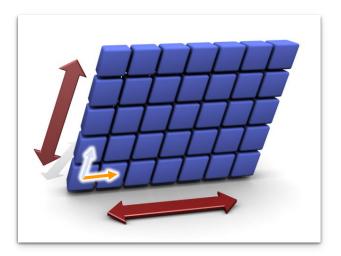
#### Example

- Group *SO*(3)
- Subgroup:  $O_h \subset SO(3)$
- Example generators: x-rotation 90°, y-rotation 90°, z-rotation 90°, x-reflection

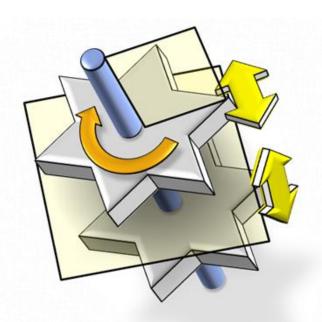
#### **Commutative example**

- Two translations
- Group represented as a grid



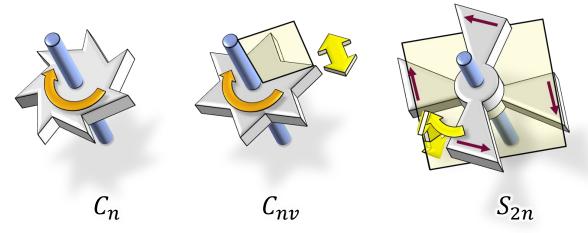


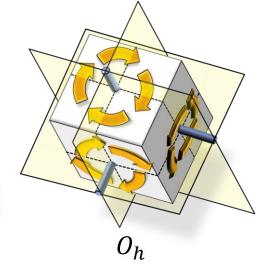
# Example: Christallographic Groups



## Euclidean Symmetry Groups

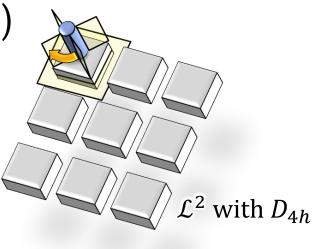
**Point Groups** (Subgroups of SO(3))





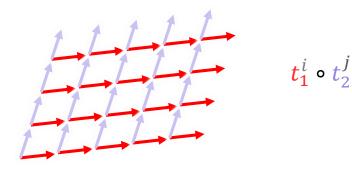
#### (Christallographic) Lattices (E(3))

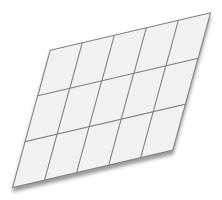
- Translations
  - 1 Translation in 1D
  - Up to 2 in 2D, up to 3 in 3D
- Combination w/point group



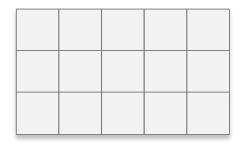
# Wallpaper Groups (2D Chrystals)

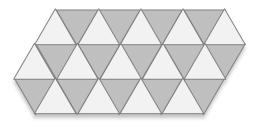
Building Blocks: 2D Grids (Transl. Lattice)

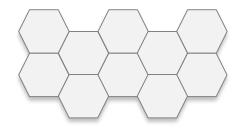




#### **Combination with Rotations / Reflections**







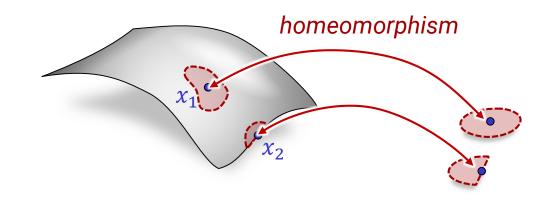
2-fold / 4-fold





# Lie-Groups

### Manifold



#### Now considering

Groups that are also manifolds

### **Generators for Groups**

(Continuously) Generated Groups

- Let G be a group, and  $g_1, \dots, g_n \in G$
- The set of all objects

$$\langle g_1, \ldots, g_d \rangle \coloneqq g_1^{x_1} \circ \cdots \circ g_d^{x_d},$$

 $x_1, \dots, x_d \in \mathbb{R}$ 

is called the sub group of G generated by  $g_1, \dots, g_n$ 

• Vector space  $\mathbb{R}^d$  of vectors  $(x_1, ..., x_k)$ 

#### (Think of $g_1, \dots, g_n$ as matrices)

### Manifolds & Tangent Spaces

#### Local Parameterization of a manifold

- Point on a sphere
- Tangent parameterization
- New variables u, v

### Walk on manifold?

- Walk in tangent space
- Normalize result
  - Project on manifold
- Example application:
  - Non-linear optimization



$$\mathbf{n}(u,v) = \frac{\mathbf{n}'(u,v)}{\|\mathbf{n}'(u,v)\|}$$

[Hoffer et al. 04]

# Example: Rotations in SO(3) $\sqrt{\binom{1}{0}\binom{0}{1}}$

### **Rotation group SO(3)**

$$\mathbf{R}_{\alpha,\beta,\gamma} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & 0 & -\sin \beta\\ 0 & 1 & 0\\ \sin \beta & 0 & \beta \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \gamma & -\sin \gamma\\ 0 & \sin \gamma & \cos \gamma \end{pmatrix}$$

First order Taylor (Tangent Vectors)

$$\nabla_{\alpha,\beta,\gamma} \mathbf{R}_{\alpha,\beta,\gamma} = \begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix}$$
  
c.f: tangent space  $\mathbf{r}_{0} \mathbf{n}(u,v)$   
of the sphere  $\mathbf{n}_{0} \mathbf{n}(u,v)$ 

### Example: Rotations in SO(3)

#### **Taylor Expansion**

$$\mathbf{R}_{\lambda\alpha,\lambda\beta,\lambda\gamma} \doteq \mathbf{I} + \lambda \nabla_{\alpha,\beta,\gamma} \mathbf{R}_{\alpha,\beta,\gamma}$$

Exponential Map (geodesic in tangent direction)

$$\mathbf{R}_{\lambda\alpha,\lambda\beta,\lambda\gamma} = \exp(\mathbf{I} + \lambda \nabla_{\alpha,\beta,\gamma} \mathbf{R}_{\alpha,\beta,\gamma}) = \begin{pmatrix} 1 & \alpha & \beta \\ -\alpha & 1 & \gamma \\ -\beta & -\gamma & 1 \end{pmatrix}^{\lambda}$$

- Geodesic in tangent direction
  - Equivalent: Matrix exponential by Taylor-series

c.f: sphere ► (tangent space)  $\mathbf{n}_0$   $\mathbf{n}(u, v)$ 

 $\mathbf{n}(u,v) = \mathbf{n}_0 + u \cdot \mathbf{t}_u + v \cdot \mathbf{t}_v$ 

### Lie-Groups

### Lie Algebra

- Vector space of "tangent directions"
  - Same structure at every  $\mathbf{T} \in \mathbf{G}$  (symmetry)
  - Linear combinations of "directions"

### Lie Group

- Continuous manifold contains group elements
- Exponential map
  - Follow the path on the manifold

#### Theorem

- Compact, connected Lie groups: exponential map surjective
- Maps of vector space reach "the whole group"

# Summary

## Brief Excerpt of Group Theory

#### Understanding symmetry

Symmetry Theory "=" Group Theory

#### **Mathematical structures**

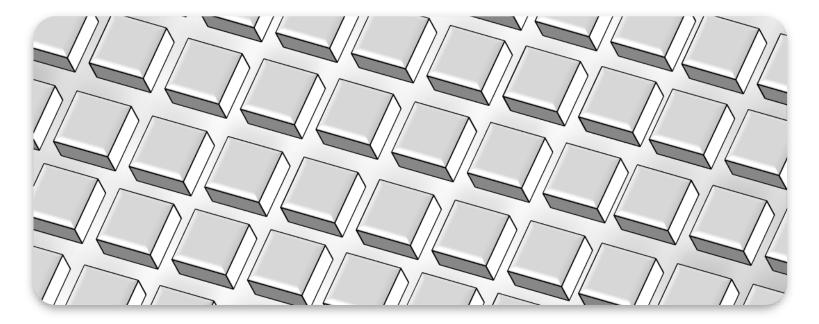
- Definition of groups
  - Group actions if group elements are not explicitly transformation
- Taken quotients & equivalence classes
- Generators, structure of commutative groups
- Lie Groups: Continuously generated groups

#### Next: Equivariance

### Modelling 2 Statistical data modelling







### Chapter 10 Symmetry

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

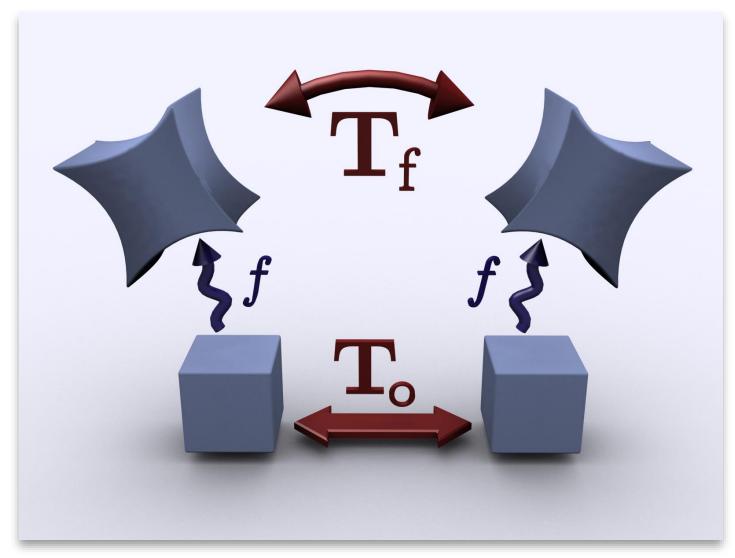
## Video #10 Symmetry

- Symmetry is the absence of information
- Group Theory
- Equivariance & Networks

# Symmetry Preservation



### **Preservation of Symmetry**



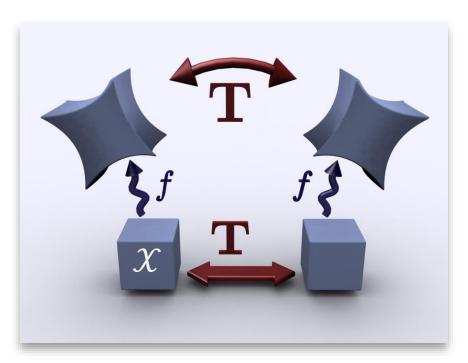
### Maps *f* that Preserve Symmetry

#### Symmetry preservation

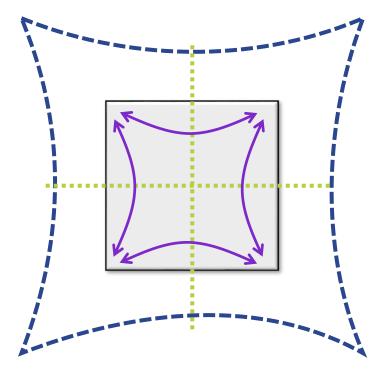
- Mapping f that preserve symmetry from group G
- For example: Geometric deformation

### Symmetric *f*

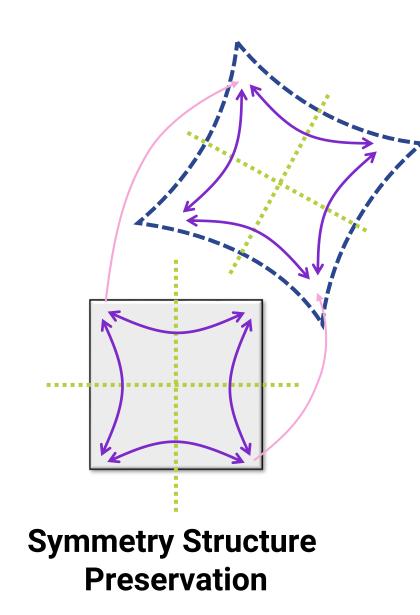
For all  $\mathbf{x} \in \mathcal{X}$ : For all  $\mathbf{T} \in G$ :  $\mathbf{T}f(\mathbf{x}) = f(\mathbf{T}\mathbf{x})$ 



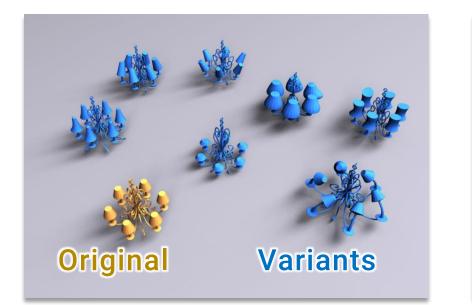
### **Keep Invariants**



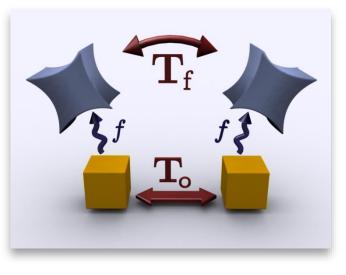
#### **Symmetry Preservation**



### Symmetry-Preserving 3D Deformation

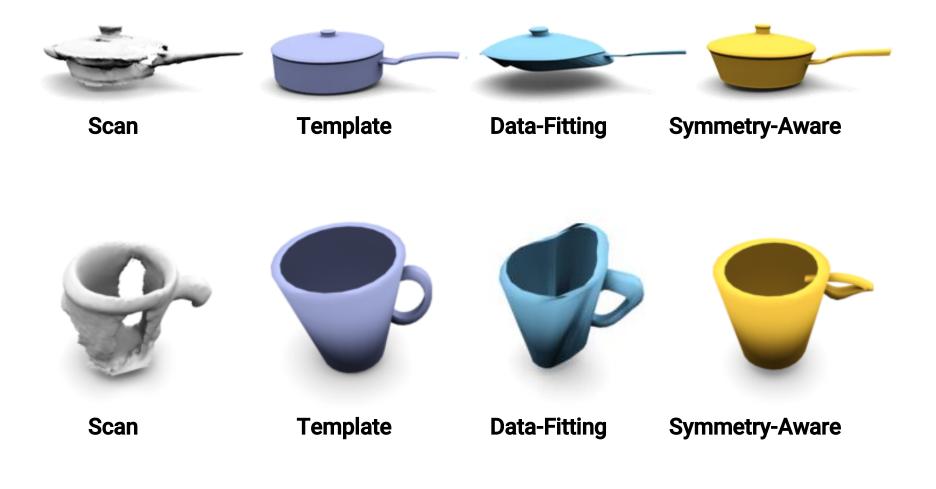






[joint work with Martin Bokeloh, 2011]

### Scan Matching



### Mathematical Formalization

### Setting

- "Input" group G<sub>in</sub>
- "Output" Group Gout

### **Group Homomorphism**

- $h: G_{in} \rightarrow G_{out}$
- $h(a \circ b) = h(a) \circ h(b), \quad a, b \in G_{in}$
- Algebraic structure preserved
  - Special case: group isomorphism exact same structure
  - Isomorphism = bijective homomorphism

### Useful Theorems

#### Definitions

- $\operatorname{ker}(h) = \{g \in G_{in} | h(g) = id\}$
- $\operatorname{im}(h) = \{ f \in G_{out} | \exists g \in G_{in} : f = h(g) \}$

#### Theorems

- ker(h) is a (normal) subgroup of G<sub>in</sub>
- im(h) is a subgroup of Gout
- im(h) is isomorphic to G<sub>in</sub> \ ker(h)

### **Normal Subgroup**

• Normal subgroup  $N \subseteq G$ :  $\forall g \in G$ :  $g \circ N = N \circ g$ 

### Useful Theorems

#### Definitions

- $A \setminus G$  = "Quotient group of A mod G"
  - $a_1 \equiv a_2 \mod G$  as new equality operator
  - G is a normal subgroup of A

•  $a \equiv b \mod G : \Leftrightarrow \exists g_l, g_r \in G : a = b \circ g_r \stackrel{\nvDash}{=} g_l \circ b$ 

normal subgroup  $N \subseteq G$ :  $\forall g \in G : g \circ N = N \circ g$ 

## **Deformation Example / CNNs**

#### Symmetry preservation

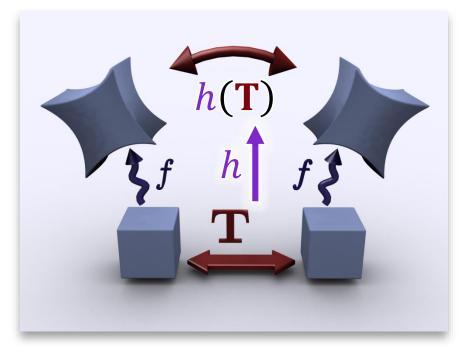
f is group-equivariant if

 $T_f = h(T_o)$ 

for a group homomorphism *h* 

#### Important special cases

- f is co-variant if  $T_f = T_o$
- f is invariant if  $T_f = id$



## **Deformation Example / CNNs**

#### **Neural networks**

- CNNs are group equivariant
  - "Pixel-wise" translation group  $(\mathbb{Z}^d, +)$
- Co-variant output of convolutional layers
  - Translations of input images translates output
- Invariant output of CNN classifiers
  - Translations do not change class

## **Deformation Example / CNNs**

#### **General concept**

- Group-convolutional neural network layer
  - Input function  $x : \mathbb{R}^d \to \mathbb{R}^k$
  - Set of filters  $w: \mathbb{R}^d \to \mathbb{R}^k$
  - Transformation group:  $G \subseteq \{g : \mathbb{R}^d \to \mathbb{R}^d | g \text{ bijective}\}$
- Compute cross-correlations for all  $g \in G$ :  $f_g(x) = \langle x, w \circ g \rangle$
- Deeper Layers
  - Input function  $x: G \to \mathbb{R}^k$
  - Set of filters  $w: G \to \mathbb{R}^k$
- CNNs do exactly this for  $G = (\mathbb{Z}^d, +)$

# Other Applications

## Symmetry & Networks

#### **Representational Symmetries**

- ReLu networks are symmetric under
  - Permutations of hidden neurons
  - Rescaling of adjacent layers
- And nothing else
  - If you want exact symmetry
  - Approximate symmetry: unknown

#### **Learning Symmetries**

- Finding general symmetry groups in data
- Instead of "just" using CNNs / G-CNNS

# Summary

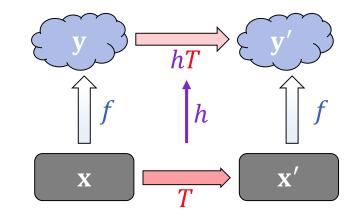
### Equivariance

#### **Two operations**

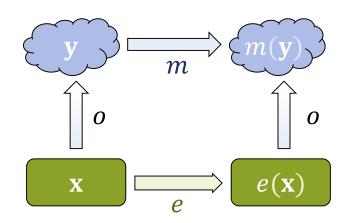
- Transformations / changes T
- Property / structure extractor *f*

#### Symmetry transfers

- Objects x have symmetries / invariants
- Extracted property  $f(\mathbf{x})$  has the "same symmetries"
  - Same algebraic structure
- f is equivariant
- Abstract basis for data driven methods



## Formalization of Modelling



#### Modeling

- Model *m*, state-of-the world x
- "Symmetric" setup of experiment e
- Observations o must preserve symmetry

 $m \circ o \approx o \circ e$ 

Choose *m* accordingly (not *o*, obviously)