Modelling 2 STATISTICAL DATA MODELLING

Informatik

Chapter 10
 Space

Michael Wand • Institut für Informatik, JGU Mainz • michael.wand@uni-mainz.de

Video \#10 Space

- High-dimensional space \& the curse of dimensionality
- Kernels: flat space extended
- Manifolds: curved space

The Curse of Dimensionality

Issues with high-dimensional data

- Structural anomalies - too much space
- Distance concentration
- Naïve dimensionality reduction
- The Johnson-Lindenstrauss Lemma
- Generalization problems - too little data
- Sampling requirements
- Curved space
- Computational problems - too much work
- Searching
- Integration
- too much space in high dimensions Structural / Logical Anomalies

Higher Dimensions are Weird

Issues with High-Dimensional Spaces:

- d-dimensional space: d independent neighboring directions to each point
- Volume-distance ratio explodes

$d=1$

$$
\begin{gathered}
\operatorname{vol}(r) \in \Theta\left(r^{d}\right) \\
\qquad d \rightarrow \infty
\end{gathered}
$$

Dart Throwing

normal distribution

by radius: bulls-eye unlikely

Higher Dimensions are Weird

Concentration of distances

- "Dart-throwing anomaly"
- Normal distributions
- Gather probability-mass in thin shells

$$
p(r) \sim r^{d-1} e^{-r^{2}} \text { (maximum in the limit: } \sqrt{d} \text {) }
$$

- Nearest neighbor \approx farthest neighbor
- For unstructured points (e.g. iid-random)
- Not true for if data is structured specifically

Heavy Corners

looks benign in 2D

all samples near corners in high-dim.

Why do we always sample Gaussians?

- Uniform random variables on a cube
- Corners have most of the volume (growth r^{d})
- Need symmetric shapes
- Gaussian is rotationally symmetric (and is separable)
- Sphere would also work

Dimensionality Reduction

Can we reduce dimensions?

- Assume point set

$$
P=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subseteq \mathbb{R}^{d}
$$

- Let's say, we only care about pairwise distances

$$
\left|x_{i}-x_{j}\right|, \quad i, j \in\{1, \ldots, n\}
$$

- Example application: classifier
- (general discriminative tasks)

Dimensionality Reduction

"Trivial" result

- Embedding n points in $d=n-1$ dimensions
- Only interesting if $d>n$
- Just use differences $\mathbf{x}_{i}-\mathbf{x}_{1}$ as coordinate vectors
- Then run Gram-Schmidt-orthogonalization to get orthogonal coordinate frame

Johnsen-Lindenstrauss Lemma

- Good approximate embedding in $d \in O(\log n)$
- Guaranteed quality for any point set
- A bit more surprising

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta \& Gupta 2003]

- Point set $P=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ in \mathbb{R}^{d}
- There exists $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ with $k \in \mathcal{O}\left(\epsilon^{-2} \ln n\right)$

$$
\left(k \geq 4\left(\epsilon^{2} / 2-\epsilon^{3} / 3\right)^{-1} \ln n\right)
$$

- ...that preserves all inter-point distances up to a factor of $(1+\epsilon)$

Random orthogonal linear projection

- Works with probability $\geq(1-1 / n)$
S. Dasgupta, A. Gupta: An Elementary Proof of a Theorem of Johnson and Lindenstrauss Random Structures and Algorithms, 22(1):60-65, 2003, https://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf

This means...

What Does the JL-Lemma Imply?

Pairwise distances in small point set P
(sub-exponential in d)
can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points themselves are wellrepresented (just the pairwise distances)

Experiment

Proof Sketch

Difference Vectors

- Normalize (relative error)
- All n^{2} pairs yield poles
- Pole yields bad approximation
- n^{2} poles $d_{i j}$
- Non-pole area much larger
- High dimension
- Volume grows with:

$$
\sin ^{d-1} \alpha
$$

- Covering sphere with poles
- Need large number of poles
- Exponential in d

- too little data for high dimensions Generalization Problems

Sampling Requirements

Sampling costs grow exponentially with d

- Sampling a unit cube in \mathbb{R}^{d}
- Spacing $\epsilon \rightarrow n=1 / \epsilon$ samples
- Costs $\mathcal{O}\left(n^{d}\right)$

Sampling theory

- Resolve frequencies $\omega=1 / \epsilon$
- Tensor-product Fourier basis Rect.: $\left\{e^{i\left(\omega_{1} x_{1}+\cdots+\omega_{d} x_{d}\right)} \mid \omega_{1}, \ldots, \omega_{d}=-n . . n\right\}$ Isotropic: $\omega_{1}^{2}+\cdots+\omega_{d}^{2} \leq n^{2}$
- Exponential costs

Subspace Sampling

Sampled Hyperplane

- Space has dimension d
- Hyperplane has dimension $k<d$

Discriminative Task

- Neighborhood based classifier
- Blue sample r away from plane

- Nearest neighbor on plane should be closer than blue sample
- Need $\Omega\left(n^{k}\right), n=r^{-1}$ samples - exponential
- Need $\Omega\left(n^{k} \log n^{k}\right)=\Omega\left(k n^{k} \log n\right)$ random samples

Random Samples?

Coupon-Collectors Theorem

- On expectation, we need

$$
\underbrace{\mathrm{H}_{n}}_{=(\ln n) \pm 1}
$$

random draws to hit n bins / coupons

- Thus, random i.i.d. uniform samples increase effort

$$
O(n) \rightarrow O(n \ln n)
$$

Learning Manifolds

(Common) Assumption

- Data of a class forms a smooth k-dimensional surface (" k-manifold") in d-dimensional space
- Model: Local flat approximation
- Again, costs are exponential in k

Consequence

Hard to learn

- Data manifolds with intrinsically high dimension
- Common - think of all the poses of a dog

Distance-based classifiers...

- ...will have exponential sampling cost
- I.e., need exponential amount of training data!

Smoothness is distance based [Bengio]

- Nearest-Neighbors, Histograms, Parzen Windows
- Gaussian-Kernel-SVM, Gaussian processes

DNNs Can Learn combinatorially

three network layers

Interpretation
Nested ReLU-layer = nested convex cells

Activation Patterns

Encode combinatorial decisions
(which linear map to use)

Example: ReLU

Activations of a ReLU Neuron

- Binary weights - work as "or"-operator
- Negative weights act as "not"-operator
- Can build "NOR"-gates

NOR-gates are universal

- Can encode arbitrary logically functions with a network of NOR-gates
- Depth make it efficient
- Shallow circuits might have exponential disadvantage

Impossible with distance-based methods

- too much work in high dimensions Computational Issues
- too much work in high dimensions Computational Issues

SEARCH

Search

Given

- Point cloud $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$
- Query point $\mathrm{x} \in \mathbb{R}^{d}$

How to efficiently find

- (k-)nearest-neighbors of x
- Neighbors in fixed radius r from x

Example applications

- k-NN Classifier (old-school)
- Using Siamese Networks (new-school) $\}$

Data Structures

Search Data structures

- Bounding volume hierarchy
- Hierarchical grouping of points
- Bounding volumes (e.g. spheres)
- Generic idea - many variants
- BSP-tree ("binary space partition tree")
- Split by planes
- (Usually) binary tree
- Complex, convex cells as bounding volumes
- Half-space test per node

Variants

Variants

- k-D-tree (axis aligned BSP-tree)
- Use axis parallel splitting planes
- Cyclically alternate splitting dimension
- Median cut
- Quadtrees / Octrees
- Divide into 4 (8) congruent cubes
- Costs exponential with dimension
- Practically used only in $\mathbb{R}^{2}, \mathbb{R}^{3}$

Range Query Algorithm

Recursively from root node

- If range overlaps bounding box
- Collect points in node (if any) Keep those in range
- Recursion for child nodes
- If range does not overlap bounding box
- Return empty

Examples

Nearest-Neighbor Query Algorithm

Algorithm: k nearest neighbors
Data structure: queue sorted by distance
Initialization: Put root node in queue While not yet k points found and queue non-empty:

Take closest object from queue
If this is a point:
output the point
Otherwise, if this is a node:
If leaf node: Insert all points into queue
If inner node: Insert all child-boxes into queue

How to Search in High Dimensions

Nearest-Neighbor(s) / ϵ-Neighbors

- Linear-time brute-force search always work
- Tree-based algorithms
- Reasonable space/ precomputation
- Worst-case search time bounds exponential in dimension
- In practice
- kD-Trees work up to dimension 10-20
- Approximate search to speed it up
- Libraries: ANN, FLANN
- J-S-Lemma
- Reduce dimensionality to 10-20, then use ANN/FLANN
- Direct application: Locality-sensitive-hashing (LSH)
- too much work in high dimensions Computational Issues

INTEGRATION

High Dimensional Integrals

Classic application domain

- High-dimensional integration domains
- Let's say, $\Omega=[0,1]^{20}$

Standard Integration

- Regular grid, k^{20} samples
- No need to try this...

Rieman-sum

Higher Dimensions

Monte-Carlo Approach:

- Sample n points
- Compute average
- Multiply with domain volume

Property

- Works if variance is not too large

- Dimension irrelevant

Example

When is Monte-Carlo integration possible?

optimal -
no variance

moderate variance -MC-int. possible

large variance not efficient

General observation

- Randomized algorithms are efficient if the crucial information is easy to find by random trials

Numerical Example

$q=1$

$q=0.5$

$q=0.1$

$q=0.01$

$q=0.001$

Averaging Samples:

- $n=100$ samples
- Fraction q of the domain with value $0.5 / q$
- Showing multiple pixels

Example

Speed of convergence:

$$
n=1
$$

- Now growing n
- Pixel: 50\% black / 50\% white

$$
n=10
$$

- Growing sample size

Observation

$$
n=100
$$

- Large sample size required before noise vanishes

$$
n=1000
$$

$$
n=10000
$$

Variance Reduction Two reasons for long compute times

> Biggest Problem primary estimator variance

Possible solution: Importance Sampling

Importance Sampling

Importance Sampling

- Idea: More samples in important regions
- Need to weight differently to avoid bias
- New estimator
- Choose sampling density p on Ω

$$
\int_{\Omega} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}(p(x)>0 \forall x \in \Omega)
$$

- (Note: No $|\Omega|$ factor required here.)
- Sampling density p controls importance

Illustrative Example from Graphics

6000 km

1 million light sources

$$
1 \text { light source } \frac{1 \mathrm{~m}}{1}
$$

New York

More Complex Sampling Problems

What if sampling itself is costly?

- For example, from a MRF

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i} p\left(x_{i}\right) \prod_{i, j} p\left(x_{i}, x_{j}\right)
$$

Markov-Chain Monte-Carlo

- Gibbs sampler (for graphical models / MRFs)
- Metropolis sampler (for unnormalized densities)

Nonetheless...

- Many (e.g. Bayesian) integration problems remain intractable

Modelling 2 STATISTICAL DATA MODELLING

Informatik

Chapter 10
 Space

Michael Wand • Institut für Informatik, JGU Mainz • michael.wand@uni-mainz.de

Video \#10 Space

- High-dimensional space \& the curse of dimensionality
- Kernels: flat space extended
- Manifolds: curved space

Data Modeling with Kernels

Topics

- Inner products \& kernel
- Definitions
- Networks as kernels
- Understanding kernels via dual PCA
- Gaussian Processes
- Data analysis with GP
- Application to DNN analysis
- Networks as GPs
- Neural tangent kernel
- Towards explaining "Double Descent"

Inner Products \& Kernels

More on Kernel Methods
John Shawe-Taylor, Nello Cristianini:
Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004

Inner Products

Vector space V

- Inner product $\langle\mathrm{x}, \mathrm{y}\rangle$ of vectors $\mathrm{x}, \mathrm{y} \in V$
- Symmetric (commutative)

$$
\langle x, y\rangle=\langle y, x\rangle
$$

- Bilinear

$$
\left\langle\lambda \mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}\right\rangle=\lambda\left\langle\mathrm{x}_{1}, \mathrm{y}\right\rangle+\left\langle\mathrm{x}_{2}, \mathrm{y}\right\rangle
$$

- Positive definite

$$
\langle\mathbf{x}, \mathrm{x}\rangle \geq 0 \text { and }\langle\mathrm{x}, \mathrm{x}\rangle=0 \Leftrightarrow \mathrm{x}=0
$$

- In finite dimensions, this are exactly functions

$$
\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{x}^{T} \mathbf{M y} \text { for SPD matrices } \mathbf{M}
$$

or equivalently
$\langle\mathrm{x}, \mathrm{y}\rangle=(\mathrm{Tx})^{T}(\mathrm{Ty})$ for invertible matrices T

Cartoon Example

Example Goal: Linear classification

original space

"feature space"
$\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$
$(x, y) \mapsto\left(x^{2}, x y, y^{2}\right)$

Kernels

Feature spaces

- Data $\mathrm{x} \in V$ from vector space V
- Transform data by function $\phi: V \rightarrow W$
- Vector space W is called "feature space"

Kernels

Kernels: Inner products in feature space

- Kernel $\kappa(\mathrm{x}, \mathrm{y}):=\langle\phi(\mathrm{x}), \phi(\mathrm{y})\rangle$
- Data $\mathbf{x}, \mathbf{y} \in V$
- Why ϕ ?
- ϕ can emphasize / unveil structure
- Why kernels?
- Sometimes easier to compute (as in "tractable")

"The Kernel Trick"

Why Kernels?

Expensive Kernels

- „Polynomial kernel"

$$
\kappa(\mathbf{x}, \mathbf{y})=(\langle\mathbf{x}, \mathbf{y}\rangle+c)^{D}
$$

computes implicitly all monomials up to degree D

- Attention: with non-uniform coefficients
- Direct mapping ϕ would be exponential in D
- Can analyze higher moments at moderate costs

Another Popular Kernel

Gaussian / RBF / squared-exponential kernel

$$
k(\mathbf{x}, \mathbf{y})=\exp \left(-a\|\mathbf{x}-\mathrm{y}\|^{2}\right)
$$

- Popular choice
- Ignores detail in data below length-scale $\approx \sigma$
- Go-to solution for kernel SVMs, GP regression

Fourier Analysis

Analysis

$$
k(r)=\exp \left(-a r^{2}\right) \text { with } r:=\|\mathbf{x}-\mathbf{y}\|
$$

Fourier-Domain

- Fourier-transformation

$$
K(\omega)=\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{(\pi \omega)^{2}}{a}}
$$

- Low-pass filter on the distance function
- Exponential frequency drop-off

Fourier Analysis

Multi-Dimensional FT

- Gaussian cross section along x \perp y
- Constant along x || y

Fourier Analysis

Numerical approximation

- Assume Data in $\mathrm{x} \in[0,2 \pi]^{d}$

$$
k(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{w} \in \mathbb{Z}^{d}} z_{\mathrm{w}} e^{-i\langle\mathrm{w}, \mathrm{x}-\mathrm{y}\rangle}=\sum_{\mathrm{w} \in \mathbb{Z}^{d}} z_{\mathrm{w}} e^{-i\langle\mathrm{w}, \mathrm{x}\rangle} e^{i\langle\mathrm{w}, \mathrm{y}\rangle}
$$

with non-zero Fourier coefficients $z_{\mathrm{w}} \in \mathbb{R}$

Note Networks as Kernels

How does a deep network classifier work?

- Apply deep network $f^{L} \circ \ldots \circ f^{1}$ on inputs \mathbf{x}
- Final layer f^{L} usually a (fully-connected) linear layer
- Followed by soft-max \& x-entropy loss or hinge-loss

Kernel-machine

- Consider $f^{L-1} \circ \ldots \circ f^{1}$ a learned kernel
- Last layer: logistic/softmax regression or SVM
- Kernel LR / Kernel-SVM
- But the kernel is rather "fancy"
- Most traditional practice: "handcrafted" kernels

Simple Kernelization

How to Kernelize "any" Algorithm

Run Kernel-PCA (a.k.a. dual-PCA / MDS)

- Data

$$
\mathbf{x}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{x}_{1} & \cdots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right)
$$

- Feature matrix (do not compute!)

$$
\phi(\mathbf{X})=\left(\begin{array}{ccc}
\mid & & \mid \\
\phi\left(\mathrm{x}_{1}\right) & \cdots & \phi\left(\mathrm{x}_{n}\right) \\
\mid & & \mid
\end{array}\right)
$$

- Its Gram matrix (kernel evaluations only)

$$
\mathrm{G}=\left(\begin{array}{lll}
\ddots & & \ddots \tag{63}\\
& \left\langle\phi\left(\mathrm{x}_{i}\right), \phi\left(\mathrm{x}_{j}\right)\right\rangle & \ddots \\
\ddots & & \ddots
\end{array}\right)=\phi(\mathbf{X})^{T} \phi(\mathbf{X}),
$$

How to Kernelize "any" Algorithm

Run Kernel-PCA (dual-PCA / MDS)

- Take a "square root" of G:

$$
{ }^{\prime} \sqrt{\mathbf{G}^{\prime}}=\phi(\mathrm{X})=\left(\begin{array}{ccc}
\mid & \mid \\
\phi\left(\mathrm{x}_{1}\right) & \cdots & \phi\left(\mathrm{x}_{n}\right) \\
\mid & & \mid
\end{array}\right)
$$

- Obtained from eigenvalue decomposition

$$
G=V \Lambda V^{T}=(V \sqrt{\Lambda})\left(\sqrt{\Lambda}^{T} V^{T}\right)
$$

- Recovering rotated feature space

$$
\phi(\mathbf{X})=\mathbb{R}\left(\sqrt{\Lambda} V^{T}\right) \text { for some orthogonal } \mathbb{R}
$$

- Because $\sqrt{\mathrm{G}}$ is not unique

$$
\begin{equation*}
G=V \Lambda V^{T}=(V \sqrt{\Lambda}) \underbrace{R^{T} \mathbb{R}}_{I}\left(\sqrt{\Lambda} V^{T}\right) \tag{64}
\end{equation*}
$$

Why is this good?

Kernel-algorithm recipe

- Compute kernel-matrix G
- Eigendecomposition $\sqrt{G}=\sqrt{\Lambda} V^{T}$
- Embedding = columns of $\sqrt{\Lambda} V^{T}$
- Use embedded points in ML-algorithm

Complexity reduction

- n data points
- Embedding: at most n dimensions
- Potentially high-dim. feature space (before R)

Does this do the trick?

Invariance

- Kernel (Gram) matrix is rotation invariant

$$
[\phi(\mathbf{X})]^{T}[\phi(\mathbf{X})]=[\phi(\mathbf{X})]^{T} \mathbf{R}^{T} \mathbb{R}[\phi(\mathbf{X})]=[\mathbf{R} \phi(\mathbf{X})]^{T}[\mathbf{R} \phi(\mathbf{X})]
$$

- Embedding does not alter information

Costs

- Kernel matrix is always needed
- $\mathcal{O}\left(n^{2}\right)$ costs
- Spectral decomposition is typically $\mathcal{O}\left(n^{3}\right)$
- Might be suboptimal
- But very easy to employ

Nyström Projection

Nyström Projection

- Embed new feature $\phi(\mathrm{x})$:

$$
e m b(\phi(\mathrm{x}))=\mathrm{V}^{T} \Lambda^{-1}\left(\begin{array}{c}
\kappa\left(\mathrm{x}_{1}, \mathrm{x}\right) \\
\vdots \\
\kappa\left(\mathrm{x}_{n}, \mathrm{x}\right)
\end{array}\right)
$$

Nyström Projection

Nyström Projection

- Reminder: $\quad \phi(\mathbf{X})=\mathbf{U} \Lambda \mathbf{V}^{T} \quad \mathrm{G}=\phi(\mathbf{X})^{T} \phi(\mathbf{X})=\mathrm{V} \Lambda^{2} \mathrm{~V}^{T}$

$$
e m b_{P C A}(\phi(\mathbf{X}))=\mathbf{U}^{T} \phi(\mathbf{X}) \quad e m b_{\text {dual }}(\phi(\mathbf{X}))=\Lambda \mathbf{V}^{T}
$$

- Project new feature $\phi(\mathbf{x})$ on principal axes $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}$:

$$
\begin{array}{rlrl}
\operatorname{emb}(\phi(\mathbf{x}))= & \mathbf{U}^{T} \phi(\mathbf{x}) & \\
= & \left(\mathbf{V}^{T} \Lambda^{-1} \phi(\mathbf{X})^{T}\right) \phi(\mathbf{x}) & & \mathbf{X})=\mathbf{U} \Lambda \mathbf{V}^{T} \\
& \left(\sum_{i=1}^{n} \frac{1}{\lambda_{1}} v_{i, 1}\left\langle\phi\left(\mathbf{x}_{i}\right), \phi(\mathbf{x})\right\rangle\right) & \Rightarrow \mathbf{U}=\phi(\mathbf{X}) \mathbf{V} \Lambda^{-1} \\
\Rightarrow & \mathbf{U}^{T}=\mathbf{V}^{T} \Lambda^{-1} \phi(\mathbf{X})^{T}
\end{array}
$$

Nyström Projection

Nyström Projection

- Reminder: $\quad \phi(\mathbf{X})=\mathbf{U} \Lambda \mathbb{V}^{T} \quad \mathrm{G}=\phi(\mathbf{X})^{T} \phi(\mathbf{X})=\mathrm{V} \Lambda^{2} \mathrm{~V}^{T}$

$$
e m b_{P C A}(\phi(\mathbf{X}))=\mathbf{U}^{T} \phi(\mathbf{X}) \quad e m b_{\text {dual }}(\phi(\mathbf{X}))=\Lambda \mathbf{V}^{T}
$$

- Project new feature $\phi(\mathbf{x})$ on principal axes $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}$:

$$
\begin{aligned}
\operatorname{emb}(\phi(\mathbf{x})) & =\mathbf{U}^{T} \phi(\mathbf{x}) \\
& =\left(\mathbb{V}^{T} \Lambda^{-1} \phi(\mathbf{X})^{T}\right) \phi(\mathbf{x}) \\
& =\left(\begin{array}{c}
\sum_{i=1}^{n} \frac{1}{\lambda_{1}} v_{i, 1} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right) \\
\vdots \\
\sum_{i=1}^{n} \frac{1}{\lambda_{n}} v_{i, n} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right)
\end{array}\right)
\end{aligned}
$$

Nyström Projection

Nyström Projection

- Embed new feature $\phi(x)$:

$$
e m b(\phi(\mathrm{x}))=\mathrm{V}^{T} \Lambda^{-1}\left(\begin{array}{c}
\kappa\left(\mathrm{x}_{1}, \mathrm{x}\right) \\
\vdots \\
\kappa\left(\mathrm{x}_{n}, \mathrm{x}\right)
\end{array}\right)
$$

Training \& Inference

- Determine factorization for training
- Use Nyström-Projection for inference
- Input new data points into non-kernelized ML-algorithm
- Embedding varies with $\kappa\left(\mathrm{x}_{i}, \cdot\right)$
- Gaussian: Smoothed proximity to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$
- Distance-based learning scheme

Note: MDS

We can convert

- Gram matrix \rightarrow all pairwise distances
- Losing global translation
- All pairwise distances \rightarrow Gram matrix
- Up to a global translation

Consequences

- After feature-map, algorithms are distance-based
- Johnsen-Lindenstrauss-Lemma
- Can be approximated in rel. low dimensions
- Much less information than full vectors
- Kernel design by distances-design
- Often more intuitive

Gaussian Process Regression

Background Literature

Carl Edward Rasmussen, Christopher K. I. Williams
Gaussian Processes for Machine Learning
The MIT Press, 2006.
http://www.gaussianprocess.org/gpml/

Linear Regression (w/linear basis)

Regression

- Data points

$$
\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}
$$

- Looking for approx. function

$$
f\left(\mathbf{x}_{i}\right) \approx y_{i}
$$

Linear Regression

- Ansatz

$$
f_{w}(x)=\langle w, x\rangle
$$

- Objective

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|\mathrm{w}^{\mathrm{T}} \mathbf{x}_{i}-y_{i}\right\|^{2}=\sum_{i=1}^{n}\left(\mathrm{x}_{i}^{\mathrm{T}} \mathrm{w}^{\mathrm{T}} \mathrm{w} \mathbf{x}_{i}-2 \mathrm{w}^{\mathrm{T}} \mathbf{x}_{i} y_{i}+y_{i}^{2}\right) \rightarrow \min . \tag{73}
\end{equation*}
$$

Linear Regression (w/linear basis)

Kernelized Linear Regression

- Ansatz

$$
f_{\mathrm{w}}(\mathrm{x})=\langle\mathrm{w}, \phi(\mathrm{x})\rangle
$$

- Objective

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|\mathrm{w}^{\mathrm{T}} \phi\left(\mathrm{x}_{i}\right)-y_{i}\right\|^{2} \\
= & \sum_{i=1}^{n}\left(\mathrm{w}^{\mathrm{T}}\left[\phi\left(\mathrm{x}_{i}\right) \phi\left(\mathrm{x}_{i}\right)^{\mathrm{T}}\right] \mathrm{w}-2 \mathrm{w}^{\mathrm{T}} \phi\left(\mathrm{x}_{i}\right) y_{i}+y_{i}^{2}\right) \rightarrow \min .
\end{aligned}
$$

- Still: Quadratic optimization problem in w
- Gaussian probabilistic model
- Simply solve a linear system

How Interesting is This?

Moderately Interesting?

- Ansatz

$$
f_{\mathrm{w}}(\mathrm{x})=\langle\mathrm{w}, \phi(\mathrm{x})\rangle
$$

with

$$
\phi(\mathrm{x})=\left(\begin{array}{c}
b_{1}(\mathrm{x}) \\
\vdots \\
b_{k}(\mathrm{x})
\end{array}\right)
$$

is just approximation with a linear basis (Mod-1)

- For example

$$
\phi(x)=\left(1, x, x^{2}, \ldots, x^{D}\right)^{T}
$$

yields polynomial fitting (Video 05d)

Non-Parametric GPs

Gaussian Processes

Main idea

- Consider function space
- Define Gaussian distribution in function space
- Gaussian priors
- Gaussian data terms
- Use this to solve various ML-problems

Technical challenge

- Gaussians in infinite-dim. space

Gaussian Processes

Gaussian processes

- We would like to infer functions

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

- We assume a "Gaussian distribution"
- For any finite sample $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$ $f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathrm{x}_{n}\right)$ are normal distributed
- ...with mean $\mu=0$, i.e. $\mu\left(x_{1}\right), \ldots, \mu\left(x_{n}\right)=0$
- ...and covariance

$$
\begin{aligned}
& \operatorname{cov}\left(f\left(\mathrm{x}_{i}\right), f\left(\mathrm{x}_{j}\right)\right)=\kappa\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right) \\
& \left.=\mathbb{E}\left[f\left(x_{i}\right)-\mathbb{E}\left[f\left(x_{i}\right)\right]\right) \cdot\left(f\left(x_{j}\right)-\mathbb{E}\left[f\left(x_{j}\right)\right]\right)\right]
\end{aligned}
$$

- The "kernel" κ is called the covariance function.

Nothing to see here, move on...

Comparison: vector case

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mu=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right), \quad \boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\ddots & & \ddots \\
& \operatorname{cov}\left(\mathbf{x}_{1}, \mathbf{x}_{j}\right) & \\
\ddots & & \ddots
\end{array}\right)
$$

Functions / GPs
$f \rightarrow\left(\begin{array}{c}f\left(x_{1}\right) \\ \vdots \\ f\left(x_{n}\right)\end{array}\right)$,
$\mu \rightarrow\left(\begin{array}{c}\mu\left(x_{1}\right) \\ \vdots \\ \mu\left(x_{n}\right)\end{array}\right)$,
$\mathbf{K}=\left(\begin{array}{l}\because \\ \because\end{array}\right.$
$\left.\begin{array}{l}\because \\ \ddots\end{array}\right)$

Gaussian Process Regression

Regression

- Data points

$$
\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}
$$

- Looking for approx. function

$$
f\left(\mathbf{x}_{i}\right) \approx y_{i}
$$

Prior on function space

- Normal distribution on functions $f \sim \mathcal{N}_{0, \kappa}$
- In the sense of the previous slide

Data term

- Noisy observations $f\left(\mathrm{x}_{i}\right) \sim \mathcal{N}_{y_{i}, \sigma}(y)$

Bayes Rule

Combining Data + Prior

$$
P(f \mid D)=\frac{P(D \mid f) P(f)}{P(D)} \sim P(D \mid f) P(f)
$$

Notation (next slide)

- Training data points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$ with values $y_{1}, \ldots, y_{n} \in \mathbb{R}$
- Query data points $\mathrm{x}_{1}^{*}, \ldots, \mathrm{x}_{m}^{*} \in \mathbb{R}^{d}$
- Unknown function f :
- Unknown function values $\mathbf{Y}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n}\right)\right)^{\mathbf{T}}$
- Not necessarily equal to $\left(y_{1}, \ldots, y_{n}\right)$
- Unknown query function values $\mathrm{Y}^{*}=\left(f\left(\mathrm{x}_{1}^{*}\right), \ldots, f\left(\mathrm{x}_{m}^{*}\right)\right)^{\mathrm{T}}$

Bayes Rule

Data Term

$$
P(f \mid D) \sim P(D \mid f) P(f)
$$

- $P(\mathrm{Y} \mid D)=\prod_{i=1}^{n} \mathcal{N}_{y_{i}, \sigma}(\mathrm{Y})$

Prior

- $P\left(\left[\begin{array}{l}\mathbf{Y} \\ \mathbf{Y}^{*}\end{array}\right]\right)=\prod_{i=1}^{n} \mathcal{N}_{\mathbf{0}, \Sigma}\left(\left[\begin{array}{l}\mathbf{Y} \\ \mathbf{Y}^{*}\end{array}\right]\right)$ with $\mathbf{\Sigma}=\left(\begin{array}{ll}K(\mathbf{Y}, \mathbf{Y}) & K\left(\mathbf{Y}, \mathbf{Y}^{*}\right) \\ K\left(\mathrm{Y}^{*}, \mathbf{Y}\right) & K\left(\mathrm{Y}^{*}, \mathrm{Y}^{*}\right)\end{array}\right)$

$$
\text { where } K(\mathbf{X}, \mathrm{Y})=\left(\begin{array}{lll}
\ddots & & \ddots \\
& \kappa\left(\mathrm{x}_{i}, \mathrm{y}_{j}\right) & \ddots \\
\ddots & & \ddots
\end{array}\right)
$$

Inference

Determine new function values

- Multiply Gaussians
- Result is again a Gaussian
- Mean and covariance matrix change (combination)
- Means for new variables yield interpolation
- Variances are also available!

Corresponding linear system

$$
\left[\left(\begin{array}{cc}
K(\mathbf{Y}, \mathbf{Y})+\sigma^{-2} \mathbf{I} & K\left(\mathbf{Y}, \mathbf{Y}^{*}\right) \\
K\left(\mathbf{Y}^{*}, \mathbf{Y}\right) & K\left(\mathbf{Y}^{*}, \mathbf{Y}^{*}\right)
\end{array}\right)\right]\binom{\mathbf{Y}}{\mathbf{Y}^{*}}=\binom{\sigma^{-2} \mathbf{y}}{\mathbf{0}}
$$

Example 1: Image Reconstruction

Minimization Problem

Continuous

$$
\sigma_{D}^{-2} \int_{\Omega}(f(\mathbf{x})-d(\mathbf{x}))^{2} d \mathbf{x}+\sigma_{X}^{-2} \int_{\Omega}\|\nabla f(\mathbf{x})\|^{2} d \mathbf{x} \rightarrow \min .
$$

Minimize

Equivalent minimization objective

Euler-Lagrange Equation

Variational problem

$$
E(f) \rightarrow \text { min. with }
$$

$$
E(f)=\int_{\Omega} F\left(x_{1}, \ldots, x_{d}, f(\mathrm{x}), \partial_{x_{1}} f(\mathrm{x}), \ldots, \partial_{x_{d}} f(\mathrm{x})\right) d \mathrm{x}
$$

Necessary condition

$$
\begin{array}{r}
\frac{\partial F}{\partial \arg \{f(\mathrm{x})\}}=\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} \frac{\partial F}{\begin{array}{c}
\text { ordinary partial } \\
\text { derivative by } x_{i}
\end{array}} \begin{array}{r}
\text { derivative of } F \\
\text { by corr. argument }
\end{array}
\end{array}
$$

Diffusion / Poisson Equation

Harmonic energy

$$
E(f)=\int_{\Omega}\|\nabla f(\mathrm{x})\|^{2} d \mathrm{x} \rightarrow \min .
$$

Necessary condition

$$
\Delta f(\mathrm{x})=0
$$

Proof

- Euler-Lagrange-Equation (Mod-1)

Diffusion / Poisson Equation

Harmonic energy

$$
E(f)=\int_{\Omega}\|\nabla f(\mathrm{x})\|^{2} d \mathrm{x}=\int_{\Omega}\left(\partial_{x_{1}} f(\mathrm{x})\right)^{2}+\cdots+\left(\partial_{x_{d}} f(\mathrm{x})\right)^{2} d \mathrm{x}
$$

Necessary condition

$$
\begin{aligned}
0 & =\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} \frac{\partial\left(\mathrm{x} \rightarrow\left(\partial_{x_{1}} f(\mathrm{x})\right)^{2}+\cdots+\left(\partial_{x_{d}} f(\mathrm{x})\right)^{2}\right)}{\partial \arg \left\{\partial_{x_{i}} f(\mathrm{x})\right\}} \\
& =\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} 2 \partial_{x_{i}} f(\mathrm{x})=2 \sum_{i=1}^{d} \frac{\partial^{2} f(\mathrm{x})}{\partial_{x_{i}}^{2}} \Rightarrow \Delta f(\mathrm{x})=0
\end{aligned}
$$

Eigen Analysis

Eigenfunctions of the Laplacian

$$
\Delta f=\partial_{x_{1}}^{2} f+\cdots+\partial_{x_{d}}^{2} f
$$

Eigenfunctions

- Square domain $\Omega=[0,2 \pi]^{2}$
- Eigenbasis: Fourier-Basis

$$
b_{\omega_{1}, \omega_{2}}(x, y)=e^{-i\left(\omega_{1} x+\omega_{2} y\right)}, \omega_{1}, \omega_{2} \in \mathbb{Z}
$$

- Eigenvalues

$$
\lambda_{\omega_{1}, \omega_{2}}=\omega_{1}^{2}+\omega_{2}^{2}
$$

All Just Gaussians...

So what does it do?

Optimization problem

$$
E(f)=\underbrace{\int_{0}^{2 \pi}(f(x)-d(x))^{2} d x}_{\text {likelihood (data) }}+c \cdot \underbrace{\int_{0}^{2 \pi}(\nabla f(x))^{2} d x}_{\text {prior }}
$$

Frequency response

Visualization (2D)

Eigenvalues grow with 2D frequencies

Visualization (2D)

Dampening of high frequencies (2D)

Insights

The following three things are identical

- Maximum a priori reconstruction with $\|\nabla f\|^{2}$-prior
- Dampening of frequency spectrum with

$$
\frac{1}{1+\|\omega\|^{2}}
$$

frequency response ($\boldsymbol{\omega}=$ frequency)

Differential Regularization as GP

Kernel interpretation

- Assume f is given as Fourier series

$$
f(\mathbf{x})=\sum_{\omega \in \mathbb{Z}^{2}} z_{\omega} e^{-i \omega \mathrm{x}}
$$

- Derivative ∇f has Fourier series

$$
\nabla f(\mathrm{x})=\sum_{\omega \in \mathbb{Z}^{2}}-i \omega \cdot z_{\omega} e^{-i \omega \mathrm{x}}
$$

- Thus

$$
\kappa\left(\omega_{1}, \omega_{2}\right)=\omega_{1} \cdot \omega_{2}
$$

- Spatial kernel via inverse FT
- See [Rasmussen \& Williams 2004] for details

Better Inference

Go full Bayesian

- We usually have hyperparameters
- Strength of the regularizer
- Properties of the kernel
- E.g. parameter a in RBF-kernel
- Determines spectral properties / smoothing
- We can just marginalize over everything
- Regularizer weight
- Kernel parameters
- As everything is Gaussian, the marginal likelihood can be computed
- Integration over "all models" can be done in closed-form
- Averaging still exponential in number of parameters

Example 2: Fractal Brownian Motion

Brown Noise

Fractal noise

- Uniform i.i.d. noise rare in nature
- „Fractal Brownian Motion" (FBM): Noise with decaying PowerSpectrum

FBM Noise (1D)

Formal Definition

- Function

$$
f:[0,2 \pi]^{d} \rightarrow \mathbb{R}
$$

- Gaussian distribution on such functions
- Gaussian process
- Fourier spectrum
- Each Fourier-coefficient is i.i.d. Gaussian
- Mean $\mu_{\omega}=0$
- Variance is $\sigma_{\omega}^{2}=\frac{1}{\omega^{2 h}}$ for $h>0$

FBM Noise (1D)

Fourier synthesis

$$
\begin{aligned}
& f(x)=\sum_{\omega=1}^{\infty} a_{\omega} \sin \left(\omega x+\varphi_{k}\right) \\
& a_{\omega} \sim \mathcal{N}_{\mu=0, \sigma=\frac{1}{k^{h}}} \\
& \varphi_{\omega} \sim \operatorname{rnd}[0,2 \pi]
\end{aligned}
$$

$h>0$ („fractal exponent")
white noise

FBM noise

"fractal landscape"

[joint work with Martin Bokeloh, 2006]

[joint work with Martin Bokeloh, 2006]

Deep Networks

Sounds all nice, but how is this relevant to demystifying deep learning?

GPs \& DNNs

Three Examples

- Wide network layers approach GPs
- The neural tangent kernel (NTK)
" A model for the "double-descent" phenomenon

Two Layers Network [Neal 1996]

Considering Preactivations (and next. Layer)

$$
\begin{aligned}
& y_{i}^{(l)}=\sum_{j=1}^{d_{l}} \mathbf{w}_{i, j}^{(l)} \cdot f_{i}^{(l-1)}(\mathbf{x}) \\
& f_{i}^{(l)}=\varphi\left(y_{i}^{(l)}\right)
\end{aligned}
$$

- Assuming that weights are initialized i.i.d.
- Mean zero, typ. normal distributed (not important)
- Each $y_{i}^{(l)}$ is the sum of i.i.d. random variables
- Converges to normal distribution (CLT)
- Assuming distributions with mean and variance
- Mean zero
- Variance grows linearly with d_{l}

Layer Output

In the infinite-width-limit

- Networks yield Gaussian processes at initialization

Speaking of initialization...

$$
y_{i}^{(l)}=\sum_{j=1}^{d_{l}} \frac{1}{\sqrt{d_{l}}} \mathbf{w}_{i, j}^{(l)} \cdot f_{i}^{(l-1)}(\mathbf{x})
$$

- LeCun-Initialization
- Normal distributed initialization
- Normalize output to unit variance
- Our equation
- We assume $\mathbf{w}_{i, j}^{(l)} \sim \mathcal{N}_{0,1}$ and normalize by $\frac{1}{\sqrt{d_{l}}}$ explicitly

The Neural Tangent Kernel

Something very simple

- Let $f(\mathbf{x} ; \mathbf{W})$ the full multi-layer network
- f is a function of inputs \mathbf{x} and weights \mathbf{W}
- f is highly non-linear
- Using LeCun-Initialization \mathbf{W}_{0}
- Taylor-approximation
$f(\mathbf{x} ; \mathbf{W}) \dot{\approx} f\left(\mathbf{x} ; \mathbf{W}_{0}\right)+\nabla_{\mathbf{W}} f\left(\mathbf{x}_{0} ; \mathbf{W}_{0}\right) \cdot\left(\mathbf{W}-\mathbf{W}_{0}\right)$
- Linearized version is a Gaussian process
- Non-linear feature map in \mathbf{X}
- Linear in weights \mathbf{W}
- Training amounts to solving a linear system
- Think of fitting non-linear basis functions w/linear weights

The Neural Tangent Kernel

First-order Taylor

- NTK-Approximation

$$
f(\mathbf{x} ; \mathbf{W}) \dot{\approx} f\left(\mathbf{x} ; \mathbf{W}_{0}\right)+\nabla_{\mathbf{W}} f\left(\mathbf{x}_{0} ; \mathbf{W}_{0}\right) \cdot\left(\mathbf{W}-\mathbf{W}_{0}\right)
$$

This can't be good, can it?

- Linear approximation only valid close to \mathbf{W}_{0}

Now: Infinite width limit

- Very wide networks: weights \mathbf{W} change very little during training
- Empirical finding (for now)
- Seems to converge

It Does Converge...

Proof sketch:

- Measuring non-linearity as

$$
\frac{\left\|H_{f}\right\|^{2}}{\|\nabla f\|^{2}}
$$

- Ratio of Hessian H_{f} to Gradient (Jacobian) ∇f
- Chain rule: replace $f(x) \rightarrow f(\alpha x)$ leads to

$$
f^{\prime}(x) \rightarrow \alpha f^{\prime}(\alpha x) \quad f^{\prime}(x) \rightarrow \alpha^{2} f^{\prime \prime}(\alpha x)
$$

- Multi-variate

$$
f(\mathbf{W}) \rightarrow f(\alpha \mathbf{W}) \text { leads to } \frac{\alpha^{2}\left\|H_{f}(\alpha \mathbf{W})\right\|^{2}}{\alpha\|\nabla f(\alpha \mathbf{W})\|^{2}}
$$

Layer scaling

Deep Network Layer

$$
y_{i}^{(l)}=\sum_{j=1}^{d_{l}} \frac{1}{\sqrt{d_{l}}} \mathbf{w}_{i, j}^{(l)} \cdot f_{i}^{(l-1)}(\mathrm{x})
$$

Going wide...

- We take $d_{l} \rightarrow \infty$
- Thus, we take $\alpha=\frac{1}{\sqrt{d_{l}}} \rightarrow 0$
- Network becomes approximately linear
- Converges to linear for infinite width
- One can compute the limit kernel analytically!

So, All Linear Regression Then?

Practical findings

- Reasonably good performance
- Better than standard kernels such as RBF
- But: still below finite-width DNNs
- Fully-connected NTK networks quoted 7\% below standard
- Best convolutional NTK network I've seen performs at "AlexNet"-Level on CIFAR-10
- Finite width seems to be important

Strong theoretical tool

- GPs are much easier to understand than DNNs

(Deep?) Double Descent

The Generalization Conundrum

Generalization behavior is weird

- Networks are able to fit random data
- Still generalize on "reasonable" data
[A. Achille, S. Soatto: Emergence of Invariance and Disentanglement in Deep Representations Journal of Machine Learning Research 18 (2018) 1-34. (Figure 1, CC-BY 4.0)]

The "Double-Descent"

Closer inspection: "Double-Descent" [Belkin 2019]

- Underparametrized regime: "Classical" Bias-Variance-Trade-Off
- Overparametrized regime: Error reduced again (maybe even lower)

Overparametrized Double-Descent

Let's assume, we just do function fitting

- Searching function

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}
$$

- Basis functions

$$
b_{1}, \ldots, b_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}
$$

- Ansatz

$$
f(\mathrm{x})=\sum_{i=1}^{k} \lambda_{i} b_{i}(\mathrm{x})
$$

- With Gaussian prior $p\left(\lambda_{i}\right)=\mathcal{N}_{0, \sigma_{i}}$

Overparametrized Double-Descent

Example: Image reconstruction

- Fourier basis functions

$$
b_{\omega_{1}, \omega_{2}}=\exp \left(i\left(\omega_{1} x_{1}+\omega_{2} x_{2}\right)\right)
$$

- Prior

$$
p\left(\lambda_{\omega_{1}, \omega_{2}}\right)=\mathcal{N}_{0, \sigma_{i}=\omega_{1}^{2}+\omega_{2}^{2}}
$$

Overparametrized Double-Descent

Let's assume, we just do function fitting

- Searching function

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}
$$

- Basis functions

$$
b_{1}, \ldots, b_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}
$$

- Ansatz

$$
f(\mathrm{x})=\sum_{i=1}^{k} \lambda_{i} b_{i}(\mathrm{x})
$$

- With Gaussian prior $p\left(\lambda_{i}\right)=\mathcal{N}_{0, \sigma_{i}}$

We Now Do Function Fitting

"Realistic" Numerics

- We replace the prior by uniform prior

$$
p\left(\lambda_{i}\right)=\mathcal{N}_{0,1}
$$

- Rescale basis functions accordingly

$$
b_{i}^{\prime}=\frac{1}{\sigma_{i}} b_{i}
$$

- Yields same solution
- That is also what a kernel feature map would do

We Now Do Function Fitting

Least-Squares-Fitting

- Given training data $\mathbf{x}_{j}, \mathbf{y}_{j}, j=1, \ldots, n$
- We solve

$$
\underset{\lambda_{1}, \ldots, \lambda_{k}}{\arg \min } \sum_{j=1}^{n}\left\|\sum_{i=1}^{k} \lambda_{i} b_{i}\left(\mathbf{x}_{j}\right)-\mathbf{y}_{j}\right\|^{2}
$$

- And pick $\lambda_{1}, \ldots, \lambda_{k}$ with minimal $\|\lambda\|^{2}$ in case of ambiguity
- An SVD-solver (pseudo inverse) would do this
- Most (mildly-regularized) numerical descent solvers would do this

What Do We Get?

Now, change parameters

- We pick only a subset S of basis functions

$$
S \subset B=\left\{b_{1}, \ldots, b_{k}\right\}
$$

- Underparametrized
- \#S << n: underfitting possible
- Interpolation
- \#S \approx n: exact fit to the data with random S
- Results might be rather bad
- Overparametrized
- Convergence to regularized solution
- Many solutions, picking with minimal $\|\lambda\|^{2}$
- This leads to regularization!
"Classical"
BV-Trade-Off

Convergence
to regularized
(better) solution

Et Voilà!

Double Descent

Double-Descent in GPs with RFF

Conclusions

- Simple least-squares fitting can double-descent
- Increase parameters
- By adding more basis functions
- Approximation first overfits, then gets better again
- Deep networks can be approximated by GPs
- Belkin et al. discuss "Random Fourier Features" for approximating an RBF-kernel
- NTK-view: Better approximation by increasing width
- Not a complete explanation
- Only plausible hypothesis for effect structure

Sources on Double-Descent

C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals:

Understanding deep learning requires rethinking generalization. ICLR 2017.
https://arxiv.org/pdf/1611.03530.pdf

A. Achille, S. Soatto:

Emergence of Invariance and Disentanglement in Deep Representations.
Journal of Machine Learning Research 18 (2018) 1-34.
https://arxiv.org/pdf/1706.01350.pdf
M. Belkin, D. Hsu, S. Ma, S. Mandal:

Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proc. of the National Academy of Sciences 116 (32), 15849-15854, 2019. https://arxiv.org/pdf/1812.11118.pdf
P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak I. Sutskever:

Deep Double Descent: Where Bigger Models and More Data Hurt. ICLR 2020.
https://openreview.net/forum?id=B1g5sA4twr

Summary

Kernels - Virtual Euclidean Space

Feature maps w/kernels

- Map input into "deformed" feature space
- Kernels are the scalar product of the feature space
- Efficient handling of complex feature spaces

Gaussian processes

- Gaussian model on functions
- Covariance function could be interpreted as kernel

Analysis of DNNs

- Kernel / GP approximation provide models

Modelling 2 STATISTICAL DATA MODELLING

Informatik

Chapter 10
 Space

Michael Wand • Institut für Informatik, JGU Mainz • michael.wand@uni-mainz.de

Video \#10 Space

- High-dimensional space \& the curse of dimensionality
- Kernels: flat space extended
- Manifolds: curved space

Overview

Curved Space

- Brief intro to concepts from differential geometry
- Fundamental forms: Metric \& Curvature
- 2D and 3D Curves \& Surfaces
- Intrinsic geometry
- Applications to deep learning

Differential Geometry Intro

Embedded Geometry
d-dim. Manifold embedded in \mathbb{R}^{n}

$$
(d \leq n)
$$

Intrinsic Geometry
no ambient space ("general relativity")

Differential Geometry Intro

Embedded Geometry
d-dim. Manifold embedded in \mathbb{R}^{n}

$$
(d \leq n)
$$

Intrinsic Geometry

no ambient space
("general relativity")

Elementary Topology

Homeomorphism

- $h: X \rightarrow Y$
- h is bijective
- h is continuous
- h^{-1} exists and is continuous
- Basically, a continuous deformation

Topological equivalence

- Objects are topologically equivalent if there exists a homeomorphism that maps between them
- "Can be deformed into each other"

Surfaces of Volumes

Boundaries of volumes in 3D

- Topological equivalence classes
- Sphere
- Torus
- n-fold Torus
- Genus = number of tunnels

Manifold

Definition: Manifold

- A d-manifold \mathcal{M} :

At every $\mathrm{x} \in \mathcal{M}$ there exists an ϵ-environment homeomorphic to a d-dimensional disc

- "With boundary": disc or half-disc

Parametric Functions

Parametric Patches

Parametric Patch

- Mapping $f: \mathbb{R}^{d} \supseteq \Omega \rightarrow \mathbb{R}^{D}$
- Assumption: $f \in C^{\infty}, \Omega$ open
- Geometry $\mathcal{G}=f(\Omega)$

Regular Parametrizations

Regular Parametrization

- "Does not stop anywhere"
- Formally: $\forall \mathbf{x} \in \Omega: \operatorname{det} \nabla f(\nabla f)^{T} \neq 0$

Tangent Space

Tangent Space

- Assume regular parametrization
- Tangent space $T_{\mathcal{G}}(\mathrm{x})=\operatorname{span}\left(\partial_{1} f(\mathrm{x}), \ldots, \partial_{d} f(\mathrm{x})\right)$
- Vector space - as affine space: origin $f(\mathrm{x})$

Complex Geometry: Overlapping "Charts"

Examples (Curves \& Surfaces)

Parametric Curves

Parametric Curves:

- A differentiable function

$$
f:(a, b) \rightarrow \mathbb{R}^{n}
$$

describes a parametric curve

$$
C=f((a, b)), C \subseteq \mathbb{R}^{n}
$$

- Parametrization regular: $f^{\prime}(t) \neq 0$ for all t
- Unit-speed parametrization: $\left\|f^{\prime}(t)\right\| \equiv 1$

Tangents

Tangents / normals

- Any curve $C \subseteq \mathbb{R}^{n}$: unit tangent vector

$$
\operatorname{tangent}(t)=\frac{f^{\prime}(t)}{\left\|f^{\prime}(t)\right\|}
$$

- For curves $C \subseteq \mathbb{R}^{2}$: unit normal vector

$$
\operatorname{normal}(t)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \frac{f^{\prime}(t)}{\left\|f^{\prime}(t)\right\|}
$$

Parametric Surfaces

Function $f(\mathbf{x})=f(u, v) \rightarrow \mathbb{R}^{3}$

- Tangents:

$$
\begin{aligned}
& \mathbf{u}(u, v)=\partial_{u} f(u, v), \\
& \mathbf{v}(u, v)=\partial_{v} f(u, v)
\end{aligned}
$$

- Normal:

$$
\mathbf{n}(u, v)=\frac{\partial_{u} f(u, v) \times \partial_{v} f(u, v)}{\left\|\partial_{u} f(u, v) \times \partial_{v} f(u, v)\right\|}
$$

The Metric Tensor

First Fundamental Form

First fundamental form a.k.a. metric tensor

- Regular parametric patch

$$
f: \mathbb{R}^{d} \supseteq \Omega \rightarrow \mathbb{R}^{D}
$$

- f will distort angles and distances
- Visible in the scalar product.
- First order Taylor approximation measures effect

$$
f(\mathrm{x}) \approx f\left(\mathrm{x}_{0}\right)+\nabla f\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{0}\right)
$$

First Fundamental Form

First Fundamental Form a.k.a. metric tensor

- First order Taylor approximation:

$$
f(\mathrm{x}) \approx f\left(\mathrm{x}_{0}\right)+\nabla f\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{0}\right)
$$

- Scalar product of vectors $\mathrm{a}, \mathrm{b} \in \mathbb{R}^{2}$:

$$
\begin{gathered}
\left\langle f\left(\mathbf{x}_{0}+\mathrm{a}\right)-f\left(\mathrm{x}_{0}\right), f\left(\mathbf{x}_{0}+\mathrm{b}\right)-f\left(\mathbf{x}_{0}\right)\right\rangle \\
\approx\left\langle\nabla f\left(\mathrm{x}_{0}\right) \cdot \mathrm{a}, \nabla f\left(\mathrm{x}_{0}\right) \cdot \mathrm{b}\right\rangle=\underbrace{\mathrm{a}^{\mathrm{T}} \underbrace{\left(\nabla f \left(\mathrm{x}^{\prime}\left(\mathrm{x}_{0}\right)\right.\right.}_{\text {first fundamental form }} \mathrm{T} \cdot \nabla f\left(\mathrm{x}_{0}\right)) \mathrm{b}}
\end{gathered}
$$

Surfaces (2-Manifolds)

First Fundamental Form

- Metric tensor is a $d \times d$ matrix
- Symmetric, positive definite (regular parametrization)
- Generalized scalar product
- Bilinear Form

$$
\mathbb{I}_{f}(\mathrm{a}, \mathrm{~b}):=\mathrm{a}^{\mathrm{T}} \cdot\left(\nabla f^{\mathrm{T}} \cdot \nabla f\right) \cdot \mathrm{b}
$$

- For surfaces $(d=2)$

$$
\begin{aligned}
& \left(\nabla f^{\mathrm{T}} \cdot \nabla f\right)=\left(\begin{array}{ll}
\partial_{u} f \partial_{u} f & \partial_{u} f \partial_{v} f \\
\partial_{u} f \partial_{v} f & \partial_{v} f \partial_{v} f
\end{array}\right)=:\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \\
& \mathbb{I}_{f}(\mathrm{a}, \mathrm{~b})=E a_{1} b_{1}+F\left(a_{1} b_{2}+a_{2} b_{1}\right)+G a_{2} b_{2}
\end{aligned}
$$

Remark

First fundamental form

- Property of the parametrization
- Does not characterize surface itself
- Can always find parametrization with $\mathbb{I}_{f}=$ identity matrix
- Local orthogonal tangent-frame
- Higher-order derivatives capture geometry
- Derivative of first fundamental form

Examples (Curves \& Surfaces)

Length of a Curve

The length of a curve

- The length of a regular curve C is defined as:

$$
\begin{aligned}
\operatorname{length}(C) & =\int_{a}^{b}\left\|f^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} \sqrt{\operatorname{det} \mathbb{I}_{f}(t)} d t
\end{aligned}
$$

- Independent of the parametrization
- Proof: integral transformation theorem
- length $(C)=|b-a|$ for a unit-speed parametrization

Surface Area

Surface Area

- Patch \mathcal{S}

$$
s: \mathbb{R}^{2} \supseteq \Omega \rightarrow \mathbb{R}^{3}
$$

- Integrate over constant function

$$
\mathcal{S} \ni \mathrm{y} \mapsto 1
$$

over surface

- Then apply integral transformation theorem:

$$
\begin{aligned}
\operatorname{area}(\mathcal{S}) & =\int_{\Omega} \sqrt{\operatorname{det} \mathbb{I}_{S}(t)} d \mathbf{x} \\
& =\int_{\Omega}\left\|\partial_{u} s(\mathbf{x}) \times \partial_{v} s(\mathbf{x})\right\| d \mathbf{x}
\end{aligned}
$$

Curvature (of curves)

Curvature

Curvature:

- First derivatives:
- Curve direction / speed of movement
- Curvature:
- Encoded in 2nd order information

Why not just use $f^{\prime \prime}$?

- Problem: Depends on parametrization
- Different velocity yields different results
- Need to distinguish acceleration...
- ...in tangential and
- ...non-tangential directions.

Curvature \& 2nd Derivatives

Definition of curvature

- Need non-tangential component of $f^{\prime \prime}$
- Project on normal
- Ignore accelerating/slowing down
- Normalize speed

Space Curves

Curvature of a curve $C \subseteq \mathbb{R}^{3}$

- Curvature defined as

$$
\kappa(t)=\frac{\left\|f^{\prime}(t) \times f^{\prime \prime}(t)\right\|}{\left\|f^{\prime}(t)\right\|^{3}}
$$

- Assuming regular parametrization
- f^{\prime} does not vanish

Torsion

Definition torsion of f at t

- Curve $C \subseteq \mathbb{R}^{3}$
- Regular parametrization
- Non-zero curvature

Theorem

Fundamental Theorem of Space Curves

- Two curves $C \subseteq \mathbb{R}^{3}$
- unit speed parameterized
- identical, positive curvature ($\kappa>0$)
- and identical torsion
are identical up to a rigid motion.
- In the 2D case, torsion is not required
- Would be zero everywhere

Curvature (of surfaces)

Second Fundamental Form

Again: Missing Information

- First fundamental form measures only length changes.
- Cylinder looks like a flat sheet

Complete (extrinsic) geometry

- Measure curvature of a surface as well.
- Requires second order information
- Anything first order is inherently "flat"

Second Fundamental Form

Basic Idea

- Compute second derivative vectors
- Project in normal direction
- Remove tangential acceleration

Second Fundamental Form

Definition

- Regular parametrization $s: \mathbb{R}^{2} \supseteq \Omega \rightarrow \mathbb{R}^{3}$
- Second fundamental form of s :

$$
\mathrm{II}_{s}\left(\mathrm{x}_{0}\right)=\left(\begin{array}{ll}
\partial_{u u} s\left(\mathbf{x}_{0}\right) \cdot \mathbf{n}\left(\mathbf{x}_{0}\right) & \partial_{u v} s\left(\mathbf{x}_{0}\right) \cdot \mathbf{n}\left(\mathbf{x}_{0}\right) \\
\partial_{u v} s\left(\mathbf{x}_{0}\right) \cdot \mathbf{n}\left(\mathbf{x}_{0}\right) & \partial_{v v} s\left(\mathbf{x}_{0}\right) \cdot \mathbf{n}\left(\mathbf{x}_{0}\right)
\end{array}\right)=\left(\begin{array}{cc}
e & f \\
f & g
\end{array}\right)
$$

Notation as bilinear form

$$
\mathrm{II}_{S}(\mathrm{a}, \mathrm{~b})=\mathbf{a}^{\mathrm{T}}\left(\begin{array}{ll}
\partial_{u u} S \cdot \mathbf{n} & \partial_{u v} S \cdot \mathbf{n} \\
\partial_{u v} S \cdot \mathbf{n} & \partial_{v v} S \cdot \mathbf{n}
\end{array}\right) \mathbf{b}
$$

Remark: Christoffel Symbols

Second fundamental form

$$
\mathrm{II}=\left(\begin{array}{cc}
\partial_{u u} S \cdot \mathbf{n} & \partial_{u v} S \cdot \mathbf{n} \\
\partial_{u v} S \cdot \mathbf{n} & \partial_{v v} S \cdot \mathbf{n}
\end{array}\right)
$$

- Extrinsic curvature
- Projection on normal - measure only curvature away from tangent space

Full picture

- We can measure tangential curvature, too
- Useful for intrinsic view (non-embedded manifolds)
- "Christoffel Symbols"

Full Second-Order Expansion

Parametric surface

$$
s: \mathbb{R}^{2} \supseteq \Omega \rightarrow \mathbb{R}^{3}
$$

Second order representation

$$
\begin{aligned}
& \partial_{u u} S=\Gamma_{11}^{1} \mathbf{u}+\Gamma_{11}^{2} \mathbf{v}+e \mathbf{n} \\
& \partial_{u v} S=\Gamma_{12}^{1} \mathbf{u}+\Gamma_{12}^{2} \mathbf{v}+f \mathbf{n} \\
& \partial_{v v} S=\Gamma_{22}^{1} \mathbf{u}+\Gamma_{22}^{2} \mathbf{v}+g \mathbf{n}
\end{aligned}
$$

Christoffel Symbols $\Gamma_{i j}^{k}$

- Projections of second derivatives into tangent plane
- Intrinsic curvature properties

Shape Operator

Second fundamental form

$$
\operatorname{II}\left(\mathbf{x}_{0}\right)=\left.\left(\begin{array}{cc}
\partial_{u u} S \cdot \mathbf{n} & \partial_{u v} S \cdot \mathbf{n} \\
\partial_{u v} S \cdot \mathbf{n} & \partial_{v v} S \cdot \mathbf{n}
\end{array}\right)\right|_{\left(\mathrm{at}_{0}\right)}
$$

- $2^{\text {nd }}$ fundamental form is parametrization dependent!

Definition: The shape operator

- Orthogonal tangent vectors u, v yield the shape operator $\mathbf{S}\left(\mathbf{x}_{0}\right)$ (a.k.a. curvature tensor)
- Directional derivative of normal vector
- Still depends on choice of coordinates (e.g., rotation of u,v).

Alternative Formulation (Gauss)

Orthogonal tangent frame

- Local height field parameterization $s(\mathrm{x})=z(x, y)$
- Orthonormal x, y coordinates tangential to surface
- Function values z in normal direction
- Origin at zero
- Then: shape operator = second fundamental form
= matrix of second derivatives

Alternative Formulation (Gauss)

Tangential height fields, orthogonal frame:

$$
\mathrm{II}(\mathrm{x})=\mathbf{S}(\mathrm{x})=\mathrm{H}_{\mathrm{Z}}(\mathrm{x})
$$

Local height field parameterization

- 2nd order Taylor approximation

$$
\begin{gathered}
z(\mathrm{x}) \approx \underbrace{\frac{1}{2} \mathbf{x}^{\mathrm{T}} \cdot \mathbf{H}_{z}(\mathbf{x}) \cdot \mathbf{x}}_{=e x^{2}+2 f x y+g y^{2}}+\underbrace{\mathbf{J}_{z}(\mathbf{x}) \cdot \mathbf{x}}_{0}+\underbrace{z(0)}_{0} \\
\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\left(\begin{array}{ll}
\partial_{u u} Z & \partial_{u v} Z \\
\partial_{u v} Z & \partial_{v v} Z
\end{array}\right)
\end{gathered}
$$

In Practice

Cloud of data points

- k-nearest neighbors
- PCA for approx. tangent plane
- Least-squares fitting of height field

Example

Basic Idea

In other words:

- First fundamental form: I Linear part (squared) of local Taylor approximation.
- Second fundamental form: II Quadratic part of heightfield
 approximation
- Both matrices are symmetric.
- Next: eigenanalysis, of course...

Principal Curvature

Eigenanalysis

- Eigenvalues of shape operator are called principal curvatures κ_{1}, κ_{2}.
- Corresponding eigenvectors are called directions of principle curvature.

$\kappa_{0}>0, \kappa_{1}<0$
$\kappa_{0}=0, \kappa_{1}>0$
$\kappa_{0}=0, \kappa_{1}=0$

Examples

Stanford Bunny (dense point cloud)

[courtesy of Martin Bokeloh]

Normal Curvature

Definition

- Normal curvature $k(r)$ in direction r at \mathbf{x}_{0}

$$
k_{\mathrm{x}_{0}}(\mathrm{r}):=\mathrm{r}^{\mathrm{T}} \cdot \mathrm{~S}\left(\mathrm{x}_{0}\right) \cdot \mathrm{r}
$$

(for $\|r\|=1, r \in \mathbb{R}^{2}$)

Relation to curvature of plane curves

- Intersect the surface with plane spanned by
$\mathbf{n}\left(\mathbf{x}_{0}\right)$ and $\left(\begin{array}{cc}\mid & \mid \\ \mathbf{u}\left(\mathbf{x}_{0}\right) & \mathbf{v}\left(\mathbf{x}_{0}\right) \\ \text { | } & \mid\end{array}\right) \cdot \mathbf{r}$ through $s\left(\mathbf{x}_{0}\right)$.
- Identical curvatures (up to sign)

Normal \& Principal Curvatures

Relation to principal curvature

- Maximum principal cuvature κ_{1}
= maximum of normal curvature
- Minimum principal cuvature κ_{2}
= minimum of normal curvature

Gaussian \& Mean Curvature

More Definitions

- Gaussian curvature $K:=\kappa_{1} \kappa_{2}$
- Product of principal curvatures
- Mean curvature $H:=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)$
- Average of principle curvatures

Theorems

- $K(\mathbf{x})=\operatorname{det}(\mathbf{S}(\mathbf{x}))$
- $H(\mathbf{x})=\frac{1}{2} \operatorname{tr}(\mathbf{S}(\mathbf{x}))$

Gaussian \& Mean Curvature

More Definitions

- Gaussian curvature $K:=\kappa_{1} \kappa_{2}$
- Product of principal curvatures
- Mean curvature $H:=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)$
- Average of principle curvatures
last part:
Theorems
- $K(\mathrm{x})=\operatorname{det}(\mathbf{S}(\mathrm{x}))=\frac{\operatorname{det} \mathrm{II}}{\operatorname{det} \mathrm{I}}=\frac{e g-f^{2}}{E G-F^{2}}$
- $H(\mathbf{x})=\frac{1}{2} \operatorname{tr}(\mathbf{S}(\mathrm{x}))=\frac{e G-2 f F+g E}{2\left(E G-F^{2}\right)}$

Global Properties

Definitions

- An isometry is a mapping between surfaces that preserves distances on the surface ("geodesic distances")
- Developable surface: Gauss curvature zero everywhere
- I.e. no curvature in at least one direction.
- Examples: Cylinder, Cone, Plane

Developable surfaces

- Developable surfaces can be (locally) mapped to a plane isometrically (flattening out, unroll).

Theorema Egregium

Theorema egregium (Gauss, 1828)

- Surfaces (2-manifolds) in 3D
- Any isometric mapping preservers Gaussian curvature
- Gaussian curvature is invariant under isometric maps
- "Intrinsic surface property"

Consequence

- The earth (\approx sphere) cannot be mapped to a plane in a length preserving way.
- Maps / atlases distort distances

Gauss Bonnet Theorem

Gauss Bonnet Theorem

- Let $\mathcal{S} \subset \mathbb{R}^{3}$ be smooth, compact, orientable surface without boundary
- Then, the area integral of the Gauss curvature is related to the genus g of the surface:

$$
\int_{S} K(\mathrm{x}) d \mathrm{x}=4 \pi(1-g)
$$

Fundamental Theorem of Surfaces

Theorem

- Given two parametric patches in $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{R}^{3}$,
- defined on the same domain Ω :

$$
\delta_{i}=s_{i}(\Omega) .
$$

- Assume that first and second fundamental form are identical

$$
\mathbf{I}_{1} \equiv \mathbf{I}_{2}, \quad \mathbf{I I}_{1} \equiv \mathbf{I I}_{2}
$$

- Then there exists a rigid motion that maps on surface to the other

$$
\mathcal{S}_{2}=\mathrm{T}\left(\mathcal{S}_{1}\right), \text { for some } \mathrm{T} \in E(3) .
$$

Summary

Objects are the same up to a rigid motion, if...:

- Curves $\mathbb{R} \rightarrow \mathbb{R}^{2}$: Same speed, same curvature
- Curves $\mathbb{R} \rightarrow \mathbb{R}^{3}$: Same speed, same curvature, torsion
- Surfaces $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$: Same first \& second fundamental form
- Volumetric objects $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$: Same first fundamental form

$$
\begin{aligned}
& \text { Intrinsic Differential } \\
& \text { Geometry }
\end{aligned}
$$

Differential Geometry Intro

Embedded Geometry
d-dim. Manifold embedded in \mathbb{R}^{n}

$$
(d \leq n)
$$

Intrinsic Geometry
no ambient space ("general relativity")

Differential Geometry Intro

Embedded Geometry
d-dim. Manifold embedded in \mathbb{R}^{n} $(d \leq n)$

Intrinsic Geometry
no ambient space ("general relativity")

Illustration

Metric Distortion
(Extrinsic Counterpart: [$\left.\bar{S} \boldsymbol{\nabla} s^{T}\right]$)
$\left(g_{i j}\right)_{i j}=\left[\nabla s^{T} \nabla s\right]$

Illustration

Riemannian Metric

(on a Riemannian Manifold)

Illustration

Example:

We alter the standard metric

Metric Tensor
$\left(g_{i j}\right)_{i j}=\left[\nabla s^{T} \nabla s\right]$

Curvature

Given

- Abstract parameter domain $\Omega \subset \mathbb{R}^{d}$
- Metric $g: \Omega \rightarrow \mathbb{R}^{d \times d}$

Higher-order properties

(1) Define derivative of g

- "Covariant derivative" or "connection"
- Canonical choice: Levi-Cevita-connection
- Behaves like projection into tangent plane
- No torsion
(2) Riemann Curvature Tensor
- Invariants are the analog to "Gaussian curvature"

Space(-Time) is not Euclidean

http://en.wikipedia.org/wiki/Gravity_Probe_B

Geodesics

Geodesics

Definition

- A geodesic is a curve with no intrinsic curvature

Embedded case

- After projection into the tangent space, we have no curvature

$$
\kappa\left[\binom{-\mathbf{u}-}{-\mathbf{v}-} f(t)\right]=\mathbf{0}
$$

Shortest path

- Shortest paths on smooth manifolds are geodesics

Geodesic Distances

Shortest distance between two points

- "Geodesic distance"
- Path itself: Often also called "Geodesic"

Intuition

- If there was still intrinsic curvature
- Path could be straightened
- Shortens path

Computing Shortest Paths

Approximate Global Optimum

- Discretize
- Graph representation
- Sample points on surface
- Mesh or Point-Cloud with k-nearest-neighbor-Graph
- Connect nearby points with edges
- Local Euclidean distance as weights
- First-order approximation of intrinsic metric
- First-order consistent error
- Dijkstra graph shortest path
- Not consistent - metrification errors
- Discrete directions lead to overestimation

Neighborhood Graphs

resampled point cloud with 20-nearest-neighbors graph
original
mesh

Discrete Geodesics

"Dijkstra" geodesics

- Advantages
- Easy to implement
- Global optimum
- Disadvantages
- $O(n \log n)$ cost for n points, one-to-all paths (one-to-one not faster!)
- Approximate - substantial errors (overestimation)
green: smoothed red: Dijkstra
shortest path with point-cloud NN-graph
[Image: Art Tevs]

Continuous Geodesics

Continuous geodesics

- Smoothing
- Start with coarse path
- Minimize path length
- $\int_{a}^{b}\left\|\frac{d}{d t} c(t)\right\|^{2} d t \rightarrow$ min.
- Constrained least-squares
- Disadvantages
- Expensive
green: smoothed red: Dijkstra
- Global optimum not guaranteed (theoretical issue, works in practice)

Applications

Differential Geometry in ML

Example Applications

- Isomap
- Approximate intrinsic geometry
- The Fisher information matrix
- A natural metric for distributions
- Intrinsic views of deep networks
- Networks in input space

ISOMAP

Isomap

Mapping Manifolds to Euclidean Space
 - Approximation
 - Assuming disc topology

Algorithm: "ISOMAP"

- Compute all pairwise intrinsic distances
- Typically: k-NN graph, Dijkstra's Algorithm
- Run MDS on pairwise distances
- Another kernel-PCA variant
- Intrinsic metric for embedding

The Fisher Information Matrix

References

James Martens: New Insights and Perspectives on the Natural Gradient Method Journal of Machine Learning Research 21 (2020) 1-76
https://jmlr.org/papers/volume21/17-678/17-678.pdf
Agustinus Kristiadi: Fisher Information Matrix / Natural Gradient Descent
https://wiseodd. github.io/techblog/2018/03/14/natural-gradient/

Fisher Information

Big picture

- We often use parametric distributions

$$
p_{\theta}(\mathrm{x}), \quad \theta \in \mathbb{R}^{d}
$$

- Natural metric on parameter space $\Omega(\theta)$

Information theory

- Use KL-divergence to measure distance

Differential geometry

- Derive metric tensor for changes in distribution
- Not distance in parameter space

Note: Notation

Gradient operator

$$
\nabla_{\mathrm{x}}=\left[\begin{array}{c}
\partial_{x_{1}} \\
\vdots \\
\partial_{x_{d}}
\end{array}\right], \quad \nabla_{\mathrm{x}}^{T}=\left[\partial_{x_{1}} \cdots \partial_{x_{d}}\right]
$$

Hessian operator / matrix

$$
\nabla_{\mathrm{x}}^{T} \nabla_{\mathrm{x}}=\left[\begin{array}{ccc}
\partial_{x_{1}} \partial_{x_{1}} & \cdots & \partial_{x_{d}} \partial_{x_{1}} \\
\vdots & & \vdots \\
\partial_{x_{1}} \partial_{x_{d}} & \cdots & \partial_{x_{d}} \partial_{x_{d}}
\end{array}\right]
$$

KL-Divergence

Consider

- $K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)$ for $\epsilon \rightarrow 0$
- $\boldsymbol{\theta}, \boldsymbol{\in} \in \mathbb{R}^{d}$
- p_{θ} smooth in θ

Let's see

$$
K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\sum_{x \in \Omega(X)} p_{\theta}(x)\left(\log _{2} p_{\theta}\left(x_{i}\right)-\log _{2} p_{\theta+\epsilon}\left(x_{i}\right)\right)
$$

- Note: for small $\|\epsilon\|$, the $K L$-divergence is symmetric

KL-Divergence

Gradients

$$
\begin{aligned}
\nabla_{\epsilon} K L\left(p_{\theta} \| p_{\theta+\epsilon}\right) & =\sum_{\mathrm{x} \in \Omega(X)}\left[\nabla_{\epsilon} p_{\theta}(\mathrm{x})\right]\left(\log _{2} p_{\theta}(\mathrm{x})-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right) \\
& -\sum_{\mathrm{x} \in \Omega(X)} p_{\theta}(\mathrm{x})\left(\nabla_{\epsilon} \log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)
\end{aligned}
$$

KL-Divergence

Gradients

$$
\begin{aligned}
\nabla_{\epsilon} K L\left(p_{\theta} \| p_{\theta+\epsilon}\right) & =\sum_{\mathrm{x} \in \Omega(X)}\left[\nabla_{\epsilon} p_{\theta}(\mathrm{x})\right]\left(\log _{2} p_{\theta}(\mathrm{x})-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right) \\
& -\sum_{\mathrm{x} \in \Omega(X)} p_{\theta}(\mathrm{x})\left(\nabla_{\epsilon} \log _{2} p_{\theta+\epsilon}(\mathrm{x})\right) \\
& =-\sum_{\mathrm{x} \in \Omega(X)} p_{\theta}(\mathrm{x})\left(\nabla_{\epsilon} \log _{2} p_{\theta+\epsilon}(\mathrm{x})\right) \\
& =\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right] \\
& =0(!)
\end{aligned}
$$

Expected "Score Function"

Expected gradients of log-likelihoods are zero

$$
\begin{aligned}
& \mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\theta}\left(\log _{2} p_{\theta}(\mathrm{x})\right)\right]=\sum_{\mathrm{x} \in \Omega(X)} p_{\theta}(\mathrm{x})\left(\nabla_{\theta}\left(\log _{2} p_{\theta}(\mathrm{x})\right)\right) \\
& \left.\nabla \log f(\mathrm{x})=\frac{\nabla f(\mathrm{x})}{f(\mathrm{x})}\right\}
\end{aligned}
$$

Expected "Score Function"

Expected gradients of log-likelihoods are zero

$$
\begin{align*}
\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\theta}\left(\log _{2} p_{\theta}(\mathrm{x})\right)\right] & =\sum_{\mathrm{x} \in \Omega(X)} p_{\theta}(\mathrm{x})\left(\nabla_{\theta}\left(\log _{2} p_{\theta}(\mathrm{x})\right)\right) \\
\left.\nabla \log f(\mathrm{x})=\frac{\nabla f(\mathrm{x})}{f(\mathrm{x})}\right\} & =\sum_{\mathrm{x} \in \Omega(X)} p_{\theta}(\mathrm{x}) \overbrace{\left(\frac{\nabla_{\theta} p_{\theta}(\mathrm{x})}{p_{\theta}(\mathrm{x})}\right)} \\
& =\sum_{\mathrm{x} \in \Omega(X)} \nabla_{\theta} p_{\theta}(\mathrm{x}) \\
& =\nabla_{\theta} \sum_{\mathrm{x} \in \Omega(X)} p_{\theta}(\mathrm{x})=\nabla_{\theta} 1=0 \tag{215}
\end{align*}
$$

KL-Divergence

Gradients

$$
\nabla_{\epsilon} K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]=0
$$

Hessian

$\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}^{T}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]\right]$

KL-Divergence

Gradients

$$
\nabla_{\epsilon} K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]=0
$$

Hessian

$\left.\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}^{T}\left[\nabla / \log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]\right]$
Note (probably not stressed enough in the video):

- The gradient only vanishes, because θ are the true parameters
- We take $\mathbb{E}_{\mathbf{x} \sim p_{\theta}\left(\underset{x}{(x)}[\cdots] \text { of } \nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right.}^{\text {true distribution }}$ comparison
- In the proof sketch (Slide 214/215), $\boldsymbol{\theta}$ is at the "true" value
- In general, gradients of log-likelihoods do not vanish!
- Optimization in DL is all about gradient descent neg-log-likelihoods!

KL-Divergence

Gradients

$$
\nabla_{\epsilon} K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]=0
$$

Hessian

$\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}^{T}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]\right]$

KL-Divergence

Gradients

$$
\nabla_{\epsilon} K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]=0
$$

Hessian

$$
\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}^{T}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]\right]
$$

$$
=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[-\nabla_{\epsilon}^{T} \frac{\nabla_{\epsilon} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})}\right]
$$

$$
=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[-\frac{\left(\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] p_{\theta+\epsilon}(\mathrm{x})\right) p_{\theta+\epsilon}(\mathrm{x})-\nabla_{\epsilon} p_{\theta+\epsilon}(\mathrm{x}) \cdot \nabla_{\epsilon}^{T} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})^{2}}\right]
$$

$$
\begin{equation*}
\nabla \frac{f(\mathrm{x})}{g(\mathrm{x})}=\frac{\nabla f(\mathrm{x}) g(\mathrm{x})-f(\mathrm{x}) \nabla g(\mathrm{x})}{g(\mathrm{x})^{2}} \tag{219}
\end{equation*}
$$

KL-Divergence

Hessian

$\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)$
$=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[-\frac{\left(\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] p_{\theta+\epsilon}(\mathrm{x})\right) p_{\theta+\epsilon}(\mathrm{x})-\nabla_{\epsilon} p_{\theta+\epsilon}(\mathrm{x}) \cdot \nabla_{\epsilon}^{T} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})^{2}}\right]$

KL-Divergence

Hessian

$\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)$

$$
=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[-\frac{\left(\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] p_{\theta+\epsilon}(\mathrm{x})\right) p_{\theta+\epsilon}(\mathrm{x})-\nabla_{\epsilon} p_{\theta+\epsilon}(\mathrm{x}) \cdot \nabla_{\epsilon}^{T} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})^{2}}\right]
$$

$$
=-\sum_{\mathrm{x} \in \Omega(X)}\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] p_{\theta+\epsilon}(\mathrm{x})+\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\left(\frac{\nabla_{\epsilon} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})}\right)\left(\frac{\nabla_{\epsilon}^{T} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})}\right)\right]
$$

$$
=\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] \sum_{\mathrm{x} \in \Omega(X)} p_{\theta+\epsilon}(\mathrm{x})+\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\left(\frac{\nabla_{\epsilon} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})}\right)\left(\frac{\nabla_{\epsilon} p_{\theta+\epsilon}(\mathrm{x})}{p_{\theta+\epsilon}(\mathrm{x})}\right)^{\mathrm{T}}\right]
$$

$$
\begin{equation*}
=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right) \cdot \nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)^{\mathrm{T}}\right] \tag{221}
\end{equation*}
$$

Summary

"Score Function": Derivative of neg-log-likelihood

$$
\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)
$$

Gradient: Vanishes

$$
\nabla_{\epsilon} K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)\right]=0
$$

Hessian: Covariance Matrix

$$
\begin{aligned}
& {\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right)} \\
& \quad=\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right) \cdot \nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)^{\mathrm{T}}\right]
\end{aligned}
$$

Summary

Hessian is the Fischer information matrix

$$
\begin{aligned}
\mathrm{F} & :=\left[\nabla_{\epsilon}^{T} \nabla_{\epsilon}\right] K L\left(p_{\theta} \| p_{\theta+\epsilon}\right) \\
& =\mathbb{E}_{\mathrm{x} \sim p_{\theta}(\mathrm{x})}\left[\nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right) \cdot \nabla_{\epsilon}\left(-\log _{2} p_{\theta+\epsilon}(\mathrm{x})\right)^{\mathrm{T}}\right]
\end{aligned}
$$

Usage as metric tensor

$$
\left\langle d \theta_{a}, d \theta_{b}\right\rangle_{F}=\left(d \theta_{a}\right)^{T} \cdot \mathrm{~F} \cdot d \theta_{b}
$$

Applications

"Natural Gradient Descent"

- Standard Gradient Descent
- Deep network $f: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{L}}$
- Loss function: Neg-log-likelihood $L\left(f_{\theta}\right)$
- Parameters $\boldsymbol{\theta}$ (weights)
- Learning rate λ
- Gradient descent

$$
\boldsymbol{\theta}_{i+1} \leftarrow \boldsymbol{\theta}_{i}-\lambda \nabla_{\theta} L\left(f_{\theta}\right)
$$

Applications

"Natural Gradient Descent"

- Standard Gradient Descent

$$
\boldsymbol{\theta}_{i+1} \leftarrow \boldsymbol{\theta}_{i}-\lambda \nabla_{\boldsymbol{\theta}} L\left(f_{\theta}\right)
$$

- "Natural" Gradient Descent

$$
\boldsymbol{\theta}_{i+1} \leftarrow \boldsymbol{\theta}_{i}-\lambda \mathbf{F}^{-1} \nabla_{\boldsymbol{\theta}} L\left(f_{\boldsymbol{\theta}}\right)
$$

Discussion

- Problem: Inverting the F-Matrix
- Too expensive for deep networks
- Approximations possible
- ADAM uses diagonal F

Application

Jeffreys Prior

- Inferring parameters via

$$
p(\theta \mid D) \sim p(D \mid \theta) P(\theta)
$$

- We have a likelihood $p(D \mid \theta)$
- What prior $P(\theta)$ should we use?

Approach

- We want "uninformative" prior
- Independent of parametrization

$$
P_{\text {Jeffreys }}(\theta):=\sqrt{\underbrace{\operatorname{det~F}_{p(D \mid \theta)}}_{\begin{array}{c}
\text { volume element } \\
\text { in F-metric }
\end{array}}}
$$

Jeffreys Prior

Discussion

- Often used as "objective" Bayesian prior
- It does not solve the problem of infinite domains
- E.g., improper prior for mean of a Gaussian
- Results invariant under change of domain parametrization
- However, not invariant under transformations of the ouput
- Computation might be costly

$$
\begin{aligned}
& \text { Intrinsic View } \\
& \text { of Deep Networks }
\end{aligned}
$$

Credits: David Hartmann

ReLU Networks Subdivide Input Space

Take this one step further

- Feedforward network with ReLU nonlinearity
- Map outputs into input space
- Input $\mathrm{x} \in \mathbb{R}^{d_{0}} \rightarrow$ Outputs $f(\mathrm{x}) \in \mathbb{R}^{d_{L}}$ in d_{0}-manifold
- Embed outputs in $\mathbb{R}^{d_{0}}$

ReLU Networks

Fully-connected ReLU network

$f^{(L)}(\mathrm{x}, \mathrm{W})$

$$
=\varphi\left(\mathbf{W}^{(L)} \varphi\left(\mathbf{W}^{(L-1)} \varphi\left(\cdots \mathbf{W}^{(0)} \mathbf{x}\right) \cdots\right)\right)
$$

In matrix notation

$$
\begin{aligned}
& f^{(L)}(\mathbf{x}, \mathbf{W}) \\
& \quad=\mathbf{R}^{(L)} \mathbf{W}^{(L)} \mathbf{R}^{(L-1)} \mathbf{W}^{(L-1)} \cdots \mathbf{R}^{(1)} \mathbf{W}^{(0)} \mathbf{X}
\end{aligned}
$$

- Diagonal 0/1 ReLU matrices $\mathbf{R}^{(l)}$
- Attention! $\mathbf{R}^{(l)}$ depends on preactivation
- Non-linear, non-constant function of \mathbf{x}

ReLU Networks

Embedding into input space

$$
\mathbf{x}_{f}:=\left(\mathbf{R}^{(1)} \mathbf{W}^{(1)}\right)^{\dagger} \ldots\left(\mathbf{R}^{(L)} \mathbf{W}^{(L)}\right)^{\dagger} f^{(L)}(\mathbf{x}, \mathbf{W})
$$

where \mathbf{M}^{\dagger} is the Moore-Penrose pseudo-inverse of \mathbf{M} (data dependent, different P.-I. for each \mathbf{x})

What does it show?

- Visualizes network f as deformation of the input
- Visualization uses additional PCA-dimensionality reduction

Results after PCA [David Hartmann]

classification task

optimization process
layer-wise result

Summary

Space might not be flat...

Differential geometry

- Studying geometry independent of parametrization
- Useful to abstract from "implementation details"
- Length/volumes, curvature, higher-order moments

Intrinsic (differential) geometry

- View from inside the manifold
- Ignore outer space
- Useful if this does not matter for the application
- Starts with the metric
- Specify metric tensor
- Intrinsic curvature can be derived (under assumptions)

Intrinsic View of Curved Space

