Modelling 2 STATISTICAL DATA MODELLING

Chapter 10 Space

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #10 Space

- **High-dimensional space** & the curse of dimensionality
- Kernels: flat space extended
- Manifolds: curved space

The Curse of Dimensionality

Issues with high-dimensional data

- Structural anomalies too much space
 - Distance concentration
 - Naïve dimensionality reduction
 - The Johnson-Lindenstrauss Lemma
- Generalization problems too little data
 - Sampling requirements
 - Curved space
- Computational problems too much work
 - Searching
 - Integration

- too much space in high dimensions -Structural / Logical Anomalies

Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

- *d*-dimensional space:
 d independent neighboring directions to each point
- Volume-distance ratio explodes

Dart Throwing

Higher Dimensions are Weird

Concentration of distances

- "Dart-throwing anomaly"
 - Normal distributions
 - Gather probability-mass in thin shells

 $p(r) \sim r^{d-1} e^{-r^2}$ (maximum in the limit: \sqrt{d})

- Nearest neighbor \approx farthest neighbor
 - For unstructured points (e.g. iid-random)
 - Not true for if data is structured specifically

Heavy Corners

looks benign in 2D

all samples near corners in high-dim.

Why do we always sample Gaussians?

- Uniform random variables on a cube
- Corners have most of the volume (growth r^d)
- Need symmetric shapes
 - Gaussian is rotationally symmetric (and is separable)
 - Sphere would also work

Dimensionality Reduction

Can we reduce dimensions?

Assume point set

$$P = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subseteq \mathbb{R}^d$$

- Let's say, we only care about pairwise distances $|\mathbf{x}_i \mathbf{x}_j|, i, j \in \{1, ..., n\}$
- Example application: classifier
 - (general discriminative tasks)

Dimensionality Reduction

"Trivial" result

- Embedding *n* points in d = n 1 dimensions
- Only interesting if d > n
 - Just use differences $\mathbf{x}_i \mathbf{x}_1$ as coordinate vectors
 - Then run Gram-Schmidt-orthogonalization to get orthogonal coordinate frame

Johnsen-Lindenstrauss Lemma

- Good approximate embedding in $d \in O(\log n)$
 - Guaranteed quality for any point set
- A bit more surprising

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta & Gupta 2003]

- Point set $P = {\mathbf{x}_1, \dots, \mathbf{x}_n}$ in \mathbb{R}^d
- There exists $f: \mathbb{R}^d \to \mathbb{R}^k$ with $k \in \mathcal{O}(\epsilon^{-2} \ln n)$

 $(k \ge 4(\epsilon^2/2 - \epsilon^3/3)^{-1} \ln n)$

• ...that preserves all inter-point distances up to a factor of $(1 + \epsilon)$

Random orthogonal linear projection

• Works with probability $\geq (1 - 1/n)$

S. Dasgupta, A. Gupta: An Elementary Proof of a Theorem of Johnson and Lindenstrauss Random Structures and Algorithms, 22(1):60-65, 2003, https://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf

This means...

What Does the JL-Lemma Imply?

Pairwise distances in small point set P (sub-exponential in d)

can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points *themselves* are well-represented (just the pairwise distances)

Experiment

Proof Sketch

Difference Vectors

- Normalize (relative error)
- All n² pairs yield poles
- Pole yields bad approximation
 - n^2 poles d_{ij}
- Non-pole area much larger
 - High dimension
 - Volume grows with: $\sin^{d-1} \alpha$
- Covering sphere with poles
 - Need large number of poles
 - Exponential in d

- too little data for high dimensions - Generalization Problems

Sampling Requirements

Sampling costs grow exponentially with \boldsymbol{d}

- Sampling a unit cube in \mathbb{R}^d
- Spacing $\epsilon \to n = 1/\epsilon$ samples
- Costs $\mathcal{O}(n^d)$

Sampling theory

- Resolve frequencies $\omega = 1/\epsilon$
- Tensor-product Fourier basis Rect.: $\{e^{i(\omega_1 x_1 + \dots + \omega_d x_d)} | \omega_1, \dots, \omega_d = -n \dots n\}$ Isotropic: $\omega_1^2 + \dots + \omega_d^2 \le n^2$
- Exponential costs

Subspace Sampling

Sampled Hyperplane

- Space has dimension d
- Hyperplane has dimension k < d

Discriminative Task

- Neighborhood based classifier
- Blue sample r away from plane
- Nearest neighbor on plane should be closer than blue sample
- Need $\Omega(n^k)$, $n = r^{-1}$ samples exponential
- Need $\Omega(n^k \log n^k) = \Omega(kn^k \log n)$ random samples

Random Samples?

Coupon-Collectors Theorem

On expectation, we need

 $n \underbrace{H_n}_{=(\ln n) \pm 1}$

- random draws to hit *n* bins / coupons
- Thus, random i.i.d. uniform samples increase effort $O(n) \rightarrow O(n \ln n)$

n bins → n log n sample points (irregular)

Learning Manifolds

(Common) Assumption

- Data of a class forms a smooth k-dimensional surface ("k-manifold") in d-dimensional space
- Model: Local flat approximation
- Again, costs are exponential in k

Consequence

Hard to learn

- Data manifolds with intrinsically high dimension
- Common think of all the poses of a dog

Distance-based classifiers...

- ...will have exponential sampling cost
- I.e., need exponential amount of training data!

Smoothness is distance based [Bengio]

- Nearest-Neighbors, Histograms, Parzen Windows
- Gaussian-Kernel-SVM, Gaussian processes

DNNs Can Learn combinatorially

three network layers

Interpretation

Nested ReLU-layer = nested convex cells

Activation Patterns

Encode combinatorial decisions (which linear map to use)

Example: ReLU

Activations of a ReLU Neuron

- Binary weights work as "or"-operator
- Negative weights act as "not"-operator
- Can build "NOR"-gates

NOR-gates are universal

- Can encode arbitrary logically functions with a network of NOR-gates
- Depth make it efficient
 - Shallow circuits might have exponential disadvantage

Impossible with distance-based methods

- too much work in high dimensions - Computational Issues

- too much work in high dimensions - Computational Issues

SEARCH

Search

Given

- Point cloud $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$
- Query point $\mathbf{x} \in \mathbb{R}^d$

How to efficiently find

- (k-)nearest-neighbors of x
- Neighbors in fixed radius r from x

Example applications

- k-NN Classifier (old-school)
- Using Siamese Networks (new-school)

 \succ Dimension d is large

Data Structures

Search Data structures

- Bounding volume hierarchy
 - Hierarchical grouping of points
 - Bounding volumes (e.g. spheres)
 - Generic idea many variants
- BSP-tree ("binary space partition tree")
 - Split by planes
 - (Usually) binary tree
 - Complex, convex cells as bounding volumes
 - Half-space test per node

Variants

Variants

- k-D-tree (axis aligned BSP-tree)
 - Use axis parallel splitting planes
 - Cyclically alternate splitting dimension
 - Median cut

Quadtrees / Octrees

- Divide into 4 (8) congruent cubes
- Costs exponential with dimension
- Practically used only in \mathbb{R}^2 , \mathbb{R}^3

Range Query Algorithm

Recursively from root node

If range overlaps bounding box

- Collect points in node (if any) Keep those in range
- Recursion for child nodes
- If range does not overlap bounding box
 - Return empty

Examples

Nearest-Neighbor Query Algorithm

- **Algorithm:** *k* nearest neighbors
 - Data structure: queue sorted by distance
 - Initialization: Put root node in queue
 - While not yet k points found and queue non-empty:
 - Take closest object from queue
 - If this is a point:
 - output the point
 - Otherwise, if this is a node:
 - If leaf node: Insert all points into queue If inner node: Insert all child-boxes into queue

How to Search in High Dimensions

Nearest-Neighbor(s) / ϵ -Neighbors

- Linear-time brute-force search always work
- Tree-based algorithms
 - Reasonable space/ precomputation
 - Worst-case search time bounds exponential in dimension

In practice

- kD-Trees work up to dimension 10-20
- Approximate search to speed it up
- Libraries: ANN, FLANN

J-S-Lemma

- Reduce dimensionality to 10-20, then use ANN/FLANN
- Direct application: Locality-sensitive-hashing (LSH)

- too much work in high dimensions - Computational Issues

INTEGRATION

High Dimensional Integrals Classic application domain

- High-dimensional integration domains
- Let's say, Ω = [0,1]²⁰

Standard Integration

- Regular grid, k²⁰ samples
- No need to try this...

per axis

Higher Dimensions

Monte-Carlo Approach:

- Sample n points
- Compute average
- Multiply with domain volume

Property

- Works if variance is not too large
- Dimension irrelevant

n sample points (irregular)

Example

When is Monte-Carlo integration possible?

General observation

 Randomized algorithms are efficient if the crucial information is easy to find by random trials
Numerical Example

Averaging Samples:

- n = 100 samples
- Fraction q of the domain with value 0.5/q
- Showing multiple pixels

Example

Speed of convergence:

- Now growing n
- Pixel: 50% black / 50% white
- Growing sample size

Observation

 Large sample size required before noise vanishes <u>n</u> = 1

n = 100

n = 1000

n = 10000

Variance Reduction Two reasons for long compute times

Biggest Problem primary estimator variance

Possible solution: Importance Sampling

Importance Sampling

Importance Sampling

- Idea: More samples in important regions
 - Need to weight differently to avoid bias
- New estimator
 - Choose sampling density p on Ω

$$\int_{\Omega} f(x) dx \approx \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)} \ (p(x) > 0 \ \forall x \in \Omega)$$

- (Note: No $|\Omega|$ factor required here.)
- Sampling density p controls importance

Illustrative Example from Graphics

More Complex Sampling Problems

What if sampling itself is costly?

For example, from a MRF

$$p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \frac{1}{Z} \prod_i p(\mathbf{x}_i) \prod_{i,j} p(\mathbf{x}_i, \mathbf{x}_j)$$

Markov-Chain Monte-Carlo

- Gibbs sampler (for graphical models / MRFs)
- Metropolis sampler (for unnormalized densities)

Nonetheless...

 Many (e.g. Bayesian) integration problems remain intractable

Modelling 2 STATISTICAL DATA MODELLING

Chapter 10 Space

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #10 Space

- **High-dimensional space** & the curse of dimensionality
- Kernels: flat space extended
- Manifolds: curved space

Data Modeling with Kernels

Topics

- Inner products & kernel
 - Definitions
 - Networks as kernels
 - Understanding kernels via dual PCA

Gaussian Processes

Data analysis with GP

Application to DNN analysis

- Networks as GPs
- Neural tangent kernel
- Towards explaining "Double Descent"

Inner Products & Kernels

More on Kernel Methods

John Shawe-Taylor, Nello Cristianini:

Kernel Methods for Pattern Analysis. Cambridge University Press, 2004

Inner Products

Vector space V

- Inner product $\langle \mathbf{x}, \mathbf{y} \rangle$ of vectors $\mathbf{x}, \mathbf{y} \in V$
 - Symmetric (commutative)

 $\langle x,y\rangle = \langle y,x\rangle$

Bilinear

 $\langle \lambda \mathbf{x}_1 + \mathbf{x}_2, \mathbf{y} \rangle = \lambda \langle \mathbf{x}_1, \mathbf{y} \rangle + \langle \mathbf{x}_2, \mathbf{y} \rangle$

Positive definite

 $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = 0$

 $\langle \mathbf{x}, \mathbf{y} \rangle = (\mathbf{T}\mathbf{x})^T (\mathbf{T}\mathbf{y})$ for invertible matrices **T**

Cartoon Example

Example Goal: Linear classification

original space

"feature space" $\phi \colon \mathbb{R}^2 \to \mathbb{R}^3$ $(x, y) \mapsto (x^2, xy, y^2)$

Kernels

Feature spaces

- Data $\mathbf{x} \in V$ from vector space V
- Transform data by function $\phi: V \to W$
- Vector space W is called "feature space"

Kernels

Kernels: Inner products in feature space

- Kernel $\kappa(\mathbf{x}, \mathbf{y}) \coloneqq \langle \boldsymbol{\phi}(\mathbf{x}), \boldsymbol{\phi}(\mathbf{y}) \rangle$
 - Data $\mathbf{x}, \mathbf{y} \in V$
- Why *\phi*?
 - ϕ can emphasize / unveil structure
- Why kernels?
 - Sometimes easier to compute (as in "tractable")

"The Kernel Trick"

Why Kernels?

Expensive Kernels

"Polynomial kernel"

 $\kappa(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + c)^D$

computes implicitly all monomials up to degree D

- Attention: with non-uniform coefficients
- Direct mapping ϕ would be exponential in D
- Can analyze higher moments at moderate costs

Another Popular Kernel

Gaussian / RBF / squared-exponential kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp(-a\|\mathbf{x} - \mathbf{y}\|^2)$$

- Popular choice
- Ignores detail in data below length-scale $pprox\sigma$
- Go-to solution for kernel SVMs, GP regression

Fourier Analysis

Analysis

$$k(r) = \exp(-ar^2)$$
 with $r \coloneqq ||\mathbf{x} - \mathbf{y}||$

Fourier-Domain

Fourier-transformation

$$K(\omega) = \sqrt{\frac{\pi}{a}} \cdot e^{-\frac{(\pi\omega)^2}{a}}$$

- Low-pass filter on the distance function
 - Exponential frequency drop-off

Fourier Analysis

Multi-Dimensional FT

- Gaussian cross section along $\mathbf{x} \perp \mathbf{y}$
- Constant along x || y

Fourier Analysis

Numerical approximation

• Assume Data in $\mathbf{x} \in [0, 2\pi]^d$

$$k(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{w} \in \mathbb{Z}^d} z_{\mathbf{w}} e^{-i\langle \mathbf{w}, \mathbf{x} - \mathbf{y} \rangle} = \sum_{\mathbf{w} \in \mathbb{Z}^d} z_{\mathbf{w}} e^{-i\langle \mathbf{w}, \mathbf{x} \rangle} e^{i\langle \mathbf{w}, \mathbf{y} \rangle}$$

with non-zero Fourier coefficients $z_w \in \mathbb{R}$

Note Networks as Kernels

How does a deep network classifier work?

- Apply deep network $f^L \circ \cdots \circ f^1$ on inputs **x**
- Final layer f^L usually a (fully-connected) linear layer
- Followed by soft-max & x-entropy loss or hinge-loss

Kernel-machine

- Consider $f^{L-1} \circ \cdots \circ f^1$ a learned kernel
- Last layer: logistic/softmax regression or SVM
- Kernel LR / Kernel-SVM
 - But the kernel is rather "fancy"
 - Most traditional practice: "handcrafted" kernels

Simple Kernelization

How to Kernelize "any" Algorithm

Run Kernel-PCA (a.k.a. dual-PCA / MDS)

Data

$$\mathbf{X} = \begin{pmatrix} | & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & | \end{pmatrix}$$

Feature matrix (do not compute!)

$$\boldsymbol{\phi}(\mathbf{X}) = \begin{pmatrix} | & | \\ \boldsymbol{\phi}(\mathbf{x}_1) & \cdots & \boldsymbol{\phi}(\mathbf{x}_n) \\ | & | \end{pmatrix}$$

Its Gram matrix (kernel evaluations only)

$$\mathbf{G} = \begin{pmatrix} \ddots & & \ddots \\ & \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle & \\ \vdots & \ddots \end{pmatrix} = \boldsymbol{\phi}(\mathbf{X})^T \boldsymbol{\phi}(\mathbf{X}),$$

How to Kernelize "any" Algorithm

Run Kernel-PCA (dual-PCA / MDS)

Take a "square root" of G:

$$\sqrt{\mathbf{G}}^{"} = \boldsymbol{\phi}(\mathbf{X}) = \begin{pmatrix} | & | \\ \boldsymbol{\phi}(\mathbf{x}_{1}) & \cdots & \boldsymbol{\phi}(\mathbf{x}_{n}) \\ | & | \end{pmatrix}$$

• Obtained from eigenvalue decomposition $\mathbf{G} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} = (\mathbf{V} \sqrt{\mathbf{\Lambda}}) (\sqrt{\mathbf{\Lambda}}^{\mathrm{T}} \mathbf{V}^{\mathrm{T}})$

Recovering rotated feature space

 $\phi(\mathbf{X}) = \mathbf{R}(\sqrt{\mathbf{\Lambda}\mathbf{V}^{\mathrm{T}}})$ for some orthogonal **R**

• Because \sqrt{G} is not unique

$$\mathbf{G} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} = \left(\mathbf{V} \sqrt{\mathbf{\Lambda}}\right) \underbrace{\mathbf{R}^{\mathrm{T}} \mathbf{R}}_{\mathbf{I}} \left(\sqrt{\mathbf{\Lambda}} \mathbf{V}^{\mathrm{T}}\right)$$

Why is this good?

Kernel-algorithm recipe

- Compute kernel-matrix G
- Eigendecomposition $\sqrt{\mathbf{G}} = \sqrt{\mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}}$
- Embedding = columns of $\sqrt{\Lambda}V^{T}$
- Use embedded points in ML-algorithm

Complexity reduction

- n data points
- Embedding: at most n dimensions
- Potentially high-dim. feature space (before R)

Does this do the trick?

Invariance

• Kernel (Gram) matrix is rotation invariant $[\phi(\mathbf{X})]^T [\phi(\mathbf{X})] = [\phi(\mathbf{X})]^T \mathbf{R}^T \mathbf{R} [\phi(\mathbf{X})] = [\mathbf{R} \phi(\mathbf{X})]^T [\mathbf{R} \phi(\mathbf{X})]$

Embedding does not alter information

Costs

- Kernel matrix is always needed
 - $\mathcal{O}(n^2)$ costs
- Spectral decomposition is typically $\mathcal{O}(n^3)$
 - Might be suboptimal
 - But very easy to employ

Nyström Projection

• Embed new feature $\phi(\mathbf{x})$:

$$emb(\boldsymbol{\phi}(\mathbf{x})) = \mathbf{V}^T \mathbf{\Lambda}^{-1} \begin{pmatrix} \kappa(\mathbf{x}_1, \mathbf{x}) \\ \vdots \\ \kappa(\mathbf{x}_n, \mathbf{x}) \end{pmatrix}$$

Nyström Projection

- Reminder: $\phi(\mathbf{X}) = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$ $\mathbf{G} = \phi(\mathbf{X})^T \phi(\mathbf{X}) = \mathbf{V} \mathbf{\Lambda}^2 \mathbf{V}^T$ $emb_{PCA}(\phi(\mathbf{X})) = \mathbf{U}^T \phi(\mathbf{X})$ $emb_{dual}(\phi(\mathbf{X})) = \mathbf{\Lambda} \mathbf{V}^T$
- Project new feature $\phi(\mathbf{x})$ on principal axes $\mathbf{u}_1, \dots, \mathbf{u}_d$:

$$emb(\phi(\mathbf{x})) = \mathbf{U}^{T} \phi(\mathbf{x})$$

$$= (\mathbf{V}^{T} \mathbf{\Lambda}^{-1} \phi(\mathbf{X})^{T}) \phi(\mathbf{x})$$

$$= \begin{pmatrix} \sum_{i=1}^{n} \frac{1}{\lambda_{1}} v_{i,1} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle \\ \vdots \\ \sum_{i=1}^{n} \frac{1}{\lambda_{n}} v_{i,n} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle \end{pmatrix}$$

$$\Rightarrow \mathbf{U} = \phi(\mathbf{X}) \mathbf{V} \mathbf{\Lambda}^{-1}$$

$$\Rightarrow \mathbf{U}^{T} = \mathbf{V}^{T} \mathbf{\Lambda}^{-1} \phi(\mathbf{X})^{T}$$

Nyström Projection

- Reminder: $\phi(\mathbf{X}) = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^T$ $\mathbf{G} = \phi(\mathbf{X})^T\phi(\mathbf{X}) = \mathbf{V}\mathbf{\Lambda}^2\mathbf{V}^T$ $emb_{PCA}(\phi(\mathbf{X})) = \mathbf{U}^T\phi(\mathbf{X})$ $emb_{dual}(\phi(\mathbf{X})) = \mathbf{\Lambda}\mathbf{V}^T$
- Project new feature $\phi(\mathbf{x})$ on principal axes $\mathbf{u}_1, \dots, \mathbf{u}_d$:

$$emb(\boldsymbol{\phi}(\mathbf{x})) = \mathbf{U}^{T} \boldsymbol{\phi}(\mathbf{x})$$
$$= (\mathbf{V}^{T} \mathbf{\Lambda}^{-1} \boldsymbol{\phi}(\mathbf{X})^{T}) \boldsymbol{\phi}(\mathbf{x})$$
$$\begin{pmatrix} \sum_{i=1}^{n} \frac{1}{\lambda_{1}} v_{i,1} \kappa(\mathbf{x}_{i}, \mathbf{x}) \\ \vdots \\ \sum_{i=1}^{n} \frac{1}{\lambda_{n}} v_{i,n} \kappa(\mathbf{x}_{i}, \mathbf{x}) \end{pmatrix}$$

Nyström Projection

• Embed new feature $\phi(\mathbf{x})$:

$$emb(\boldsymbol{\phi}(\mathbf{x})) = \mathbf{V}^T \mathbf{\Lambda}^{-1} \begin{pmatrix} \kappa(\mathbf{x}_1, \mathbf{x}) \\ \vdots \\ \kappa(\mathbf{x}_n, \mathbf{x}) \end{pmatrix}$$

Training & Inference

- Determine factorization for training
- Use Nyström-Projection for inference
 - Input new data points into non-kernelized ML-algorithm
- Embedding varies with $\kappa(\mathbf{x}_i, \cdot)$
 - Gaussian: Smoothed proximity to $\mathbf{x}_1, \dots, \mathbf{x}_n$
 - Distance-based learning scheme

Note: MDS

We can convert

- Gram matrix → all pairwise distances
 - Losing global translation
- All pairwise distances \rightarrow Gram matrix
 - Up to a global translation

Consequences

- After feature-map, algorithms are distance-based
 - Johnsen-Lindenstrauss-Lemma
 - Can be approximated in rel. low dimensions
 - Much less information than full vectors
- Kernel design by distances-design
 - Often more intuitive

Gaussian Process Regression

Background Literature

Carl Edward Rasmussen, Christopher K. I. Williams Gaussian Processes for Machine Learning The MIT Press, 2006. http://www.gaussianprocess.org/gpml/

Linear Regression (w/linear basis)

Regression

Data points

$$(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n) \in \mathbb{R}^d \times \mathbb{R}$$

• Looking for approx. function $f(\mathbf{x}_i) \approx \mathbf{y}_i$

Linear Regression

Ansatz

$$f_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$$

Objective

$$\sum_{i=1}^{n} \left\| \mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} - \mathbf{y}_{i} \right\|^{2} = \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{w}^{\mathrm{T}} \mathbf{w} \mathbf{x}_{i} - 2 \mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} \mathbf{y}_{i} + \mathbf{y}_{i}^{2} \right) \rightarrow \min.$$

Linear Regression (w/linear basis)

Kernelized Linear Regression

Ansatz

$$f_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle$$

Objective

$$\sum_{i=1}^{n} \left\| \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{i}) - \boldsymbol{y}_{i} \right\|^{2}$$
$$= \sum_{i=1}^{n} \left(\mathbf{w}^{\mathrm{T}} [\boldsymbol{\phi}(\mathbf{x}_{i}) \boldsymbol{\phi}(\mathbf{x}_{i})^{\mathrm{T}}] \mathbf{w} - 2 \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{i}) \boldsymbol{y}_{i} + \boldsymbol{y}_{i}^{2} \right) \rightarrow \min.$$

Still: Quadratic optimization problem in w

- Gaussian probabilistic model
- Simply solve a linear system

How Interesting is This?

Moderately Interesting?

Ansatz

 $f_{\rm w}(\mathbf{x}) = \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle$

with

$$\boldsymbol{\phi}(\mathbf{x}) = \begin{pmatrix} \boldsymbol{b}_1(\mathbf{x}) \\ \vdots \\ \boldsymbol{b}_k(\mathbf{x}) \end{pmatrix}$$

is just approximation with a linear basis (Mod-1)

For example

$$\boldsymbol{\phi}(\boldsymbol{x}) = (1, \boldsymbol{x}, \boldsymbol{x}^2, \dots, \boldsymbol{x}^D)^T$$

yields polynomial fitting (Video 05d)

Non-Parametric GPs
Gaussian Processes

Main idea

- Consider function space
- Define Gaussian distribution in function space
 - Gaussian priors
 - Gaussian data terms
- Use this to solve various ML-problems

Technical challenge

Gaussians in infinite-dim. space

Gaussian Processes

Gaussian processes

- We would like to infer functions $f: \mathbb{R}^d \to \mathbb{R}$
- We assume a "Gaussian distribution"
 - For any finite sample $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ $f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)$ are normal distributed
 - ...with mean $\mu = 0$,

i.e. $\mu(\mathbf{x}_1), ..., \mu(\mathbf{x}_n) = 0$

...and covariance

$$\underbrace{\operatorname{cov}\left(f(\mathbf{x}_{i}), f(\mathbf{x}_{j})\right)}_{=\mathbb{E}\left[\left(f(\mathbf{x}_{i}) - \mathbb{E}\left[f(\mathbf{x}_{i})\right]\right) \cdot \left(f(\mathbf{x}_{j}) - \mathbb{E}\left[f(\mathbf{x}_{j})\right]\right)\right]}$$

The "kernel" κ is called the covariance function.

Nothing to see here, move on...

Comparison: vector case

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \qquad \mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}, \qquad \mathbf{\Sigma} = \begin{pmatrix} \ddots & \ddots & \ddots \\ & \operatorname{cov}(\mathbf{x}_1, \mathbf{x}_j) \\ \vdots & \ddots \end{pmatrix}$$

Functions / GPs

$$\boldsymbol{f} \to \begin{pmatrix} \boldsymbol{f}(\boldsymbol{x}_1) \\ \vdots \\ \boldsymbol{f}(\boldsymbol{x}_n) \end{pmatrix}, \qquad \boldsymbol{\mu} \to \begin{pmatrix} \boldsymbol{\mu}(\boldsymbol{x}_1) \\ \vdots \\ \boldsymbol{\mu}(\boldsymbol{x}_n) \end{pmatrix}, \qquad \mathbf{K} = \begin{pmatrix} \ddots & \ddots & \ddots \\ & \boldsymbol{\kappa}(\mathbf{x}_1, \mathbf{x}_j) & \\ \vdots & \ddots & \ddots \end{pmatrix}$$

Gaussian Process Regression

Regression

Data points

 $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n) \in \mathbb{R}^d \times \mathbb{R}$

• Looking for approx. function $f(\mathbf{x}_i) \approx \mathbf{y}_i$

Prior on function space

- Normal distribution on functions $f \sim \mathcal{N}_{0,\kappa}$
 - In the sense of the previous slide

Data term

• Noisy observations $f(\mathbf{x}_i) \sim \mathcal{N}_{\mathbf{y}_i,\sigma}(\mathbf{y})$

Bayes Rule

Combining Data + Prior $P(f|D) = \frac{P(D|f)P(f)}{P(D)} \sim P(D|f)P(f)$

Notation (next slide)

- Training data points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ with values $y_1, \dots, y_n \in \mathbb{R}$
- Query data points $\mathbf{x}_1^*, \dots, \mathbf{x}_m^* \in \mathbb{R}^d$
- Unknown function *f*:
 - Unknown function values $\mathbf{Y} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))^T$ - Not necessarily equal to (y_1, \dots, y_n)
 - Unknown query function values $\mathbf{Y}^* = (f(\mathbf{x}_1^*), \dots, f(\mathbf{x}_m^*))^T$

Bayes Rule

Data Term

•
$$P(\mathbf{Y}|D) = \prod_{i=1}^{n} \mathcal{N}_{\mathbf{y}_{i},\sigma}(\mathbf{Y})$$

•
$$P\left(\begin{bmatrix}\mathbf{Y}\\\mathbf{Y}^*\end{bmatrix}\right) = \prod_{i=1}^n \mathcal{N}_{\mathbf{0},\mathbf{\Sigma}}\left(\begin{bmatrix}\mathbf{Y}\\\mathbf{Y}^*\end{bmatrix}\right) \text{ with } \mathbf{\Sigma} = \begin{pmatrix}K(\mathbf{Y},\mathbf{Y}) & K(\mathbf{Y},\mathbf{Y}^*)\\K(\mathbf{Y}^*,\mathbf{Y}) & K(\mathbf{Y}^*,\mathbf{Y}^*)\end{pmatrix}$$

where $K(\mathbf{X},\mathbf{Y}) = \begin{pmatrix} \ddots & \ddots \\ & \kappa(\mathbf{x}_i,\mathbf{y}_j) \\ \vdots & \ddots \end{pmatrix}$

$$P(\boldsymbol{f}|\boldsymbol{D}) \sim P(\boldsymbol{D}|\boldsymbol{f})P(\boldsymbol{f})$$

(82)

Inference

Determine new function values

- Multiply Gaussians
 - Result is again a Gaussian
 - Mean and covariance matrix change (combination)
- Means for new variables yield interpolation
 - Variances are also available!

Corresponding linear system

 $\begin{bmatrix} \begin{pmatrix} K(\mathbf{Y},\mathbf{Y}) + \sigma^{-2}\mathbf{I} & K(\mathbf{Y},\mathbf{Y}^*) \\ K(\mathbf{Y}^*,\mathbf{Y}) & K(\mathbf{Y}^*,\mathbf{Y}^*) \end{bmatrix} \begin{pmatrix} \mathbf{Y} \\ \mathbf{Y}^* \end{pmatrix} = \begin{pmatrix} \sigma^{-2}\mathbf{y} \\ \mathbf{0} \end{pmatrix}$

Example 1: Image Reconstruction

Minimization Problem

Continuous

$$\sigma_D^{-2} \int_{\Omega} (f(\mathbf{x}) - d(\mathbf{x}))^2 d\mathbf{x} + \sigma_X^{-2} \int_{\Omega} \|\nabla f(\mathbf{x})\|^2 d\mathbf{x} \to \min.$$

Minimize

$$E(D|X) + E(X)$$

$$= \sum_{i=1}^{w} \sum_{j=1}^{h} \frac{(x_i - d_i)^2}{2\sigma_D^2} + \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{(x_{i+1,j} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2}{2\sigma_X^2}$$

Equivalent minimization objective

$$\sum_{i=1}^{w} \sum_{j=1}^{h} (x_i - d_i)^2 + \frac{\sigma_X^2}{\sigma_D^2} \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} (x_{i+1,j} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2$$

Euler-Lagrange Equation

Variational problem

 $E(f) \rightarrow min.$ with

$$E(f) = \int_{\Omega} F\left(x_1, \dots, x_d, \frac{f(\mathbf{x})}{f(\mathbf{x})}, \frac{\partial_{x_1} f(\mathbf{x})}{f(\mathbf{x})}, \dots, \frac{\partial_{x_d} f(\mathbf{x})}{f(\mathbf{x})}\right) d\mathbf{x}$$

Necessary condition

$$\frac{\partial F}{\partial \arg\{f(\mathbf{x})\}} = \sum_{i=1}^{d} \frac{\partial}{\partial x_i} \frac{\partial F}{\partial \arg\{\partial_{x_i}f(\mathbf{x})\}}$$

$$derivative of F$$

$$by corr. argument$$

Diffusion / Poisson Equation

Harmonic energy

$$E(f) = \int_{\Omega} \|\nabla f(\mathbf{x})\|^2 \, d\mathbf{x} \to \min.$$

Necessary condition

 $\Delta f(\mathbf{x}) = 0$

Proof

Euler-Lagrange-Equation (Mod-1)

Diffusion / Poisson Equation

Harmonic energy

$$E(f) = \int_{\Omega} \|\nabla f(\mathbf{x})\|^2 \, d\mathbf{x} = \int_{\Omega} \left(\partial_{x_1} f(\mathbf{x})\right)^2 + \dots + \left(\partial_{x_d} f(\mathbf{x})\right)^2 \, d\mathbf{x}$$

Necessary condition

$$0 = \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} \frac{\partial \left(\mathbf{x} \to \left(\partial_{x_{1}} f(\mathbf{x})\right)^{2} + \dots + \left(\partial_{x_{d}} f(\mathbf{x})\right)^{2}\right)}{\partial \arg\{\partial_{x_{i}} f(\mathbf{x})\}}$$
$$= \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} 2\partial_{x_{i}} f(\mathbf{x}) = 2\sum_{i=1}^{d} \frac{\partial^{2} f(\mathbf{x})}{\partial_{x_{i}}^{2}} \Rightarrow \Delta f(\mathbf{x}) = 0$$

Eigen Analysis

Eigenfunctions of the Laplacian

$$\Delta f = \partial_{x_1}^2 f + \dots + \partial_{x_d}^2 f$$

Eigenfunctions

- Square domain $\Omega = [0, 2\pi]^2$
- Eigenbasis: Fourier-Basis

$$b_{\omega_1,\omega_2}(x,y) = e^{-i(\omega_1 x + \omega_2 y)}, \ \omega_1,\omega_2 \in \mathbb{Z}$$

Eigenvalues

 $\lambda_{\omega_1,\omega_2} = \omega_1^2 + \omega_2^2$

All Just Gaussians...

So what does it do?

Optimization problem

likelihood (data)

Frequency response

Visualization (2D)

Eigenvalues grow with 2D frequencies

Visualization (2D)

Dampening of high frequencies (2D)

Insights

The following three things are identical

- Maximum a priori reconstruction with $\|\nabla f\|^2$ -prior
- Dampening of frequency spectrum with

 $\frac{1}{1 + \|\boldsymbol{\omega}\|^2}$
frequency response ($\boldsymbol{\omega} = \text{frequency}$)

Differential Regularization as GP

Kernel interpretation

Assume *f* is given as Fourier series

$$f(\mathbf{x}) = \sum_{\boldsymbol{\omega} \in \mathbb{Z}^2} \mathbf{z}_{\boldsymbol{\omega}} e^{-i\boldsymbol{\omega}\mathbf{x}}$$

■ Derivative ∇*f* has Fourier series

$$\nabla f(\mathbf{x}) = \sum_{\boldsymbol{\omega} \in \mathbb{Z}^2} -i\boldsymbol{\omega} \cdot \boldsymbol{z}_{\boldsymbol{\omega}} e^{-i\boldsymbol{\omega}\mathbf{x}}$$

Thus

$$\kappa(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2) = \boldsymbol{\omega}_1 \cdot \boldsymbol{\omega}_2$$

- Spatial kernel via inverse FT
 - See [Rasmussen & Williams 2004] for details

Better Inference

Go full Bayesian

- We usually have hyperparameters
 - Strength of the regularizer
 - Properties of the kernel
 - E.g. parameter a in RBF-kernel
 - Determines spectral properties / smoothing
- We can just marginalize over everything
 - Regularizer weight
 - Kernel parameters
- As everything is Gaussian, the marginal likelihood can be computed
 - Integration over "all models" can be done in closed-form
 - Averaging still exponential in number of parameters

Example 2: Fractal Brownian Motion

Brown Noise

Fractal noise

- Uniform i.i.d. noise rare in nature
- "Fractal Brownian Motion" (FBM): Noise with decaying Power-Spectrum

FBM Noise (1D)

Formal Definition

- Function $f: [0,2\pi]^d \to \mathbb{R}$
- Gaussian distribution on such functions
 - Gaussian process
- Fourier spectrum
 - Each Fourier-coefficient is i.i.d. Gaussian
 - Mean $\mu_{\omega} = 0$

• Variance is
$$\sigma_{\omega}^2 = \frac{1}{\omega^{2h}}$$
 for $h > 0$

white noise

FBM noise

"fractal landscape"

FBM Noise (1D)

Fourier synthesis

$$f(x) = \sum_{\omega=1}^{\infty} a_{\omega} \sin(\omega x + \varphi_k),$$
$$a_{\omega} \sim \mathcal{N}_{\mu=0, \sigma=\frac{1}{k^h}},$$
$$\varphi_{\omega} \sim \operatorname{rnd}[0, 2\pi]$$

h > 0 ("fractal exponent")

white noise

FBM noise

"fractal landscape"

[joint work with Martin Bokeloh, 2006]

[joint work with Martin Bokeloh, 2006]

Deep Networks

Sounds all nice, but how is this relevant to demystifying deep learning?

GPs & DNNs

Three Examples

- Wide network layers approach GPs
- The neural tangent kernel (NTK)
- A model for the "double-descent" phenomenon

Two Layers Network [Neal 1996]

Considering Preactivations (and next. Layer)

$$\mathbf{y}_{i}^{(l)} = \sum_{j=1}^{a_{l}} \mathbf{w}_{i,j}^{(l)} \cdot \mathbf{f}_{i}^{(l-1)}(\mathbf{x})$$
$$\mathbf{f}_{i}^{(l)} = \varphi\left(\mathbf{y}_{i}^{(l)}\right)$$

- Assuming that weights are initialized i.i.d.
 - Mean zero, typ. normal distributed (not important)
- Each $y_i^{(l)}$ is the sum of i.i.d. random variables
 - Converges to normal distribution (CLT)
 - Assuming distributions with mean and variance
 - Mean zero
 - Variance grows linearly with d_l
- **R.M. Neal:** Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

Layer Output

In the infinite-width-limit

Networks yield Gaussian processes at initialization

Speaking of initialization...

$$\mathbf{y}_{i}^{(l)} = \sum_{j=1}^{d_{l}} \frac{1}{\sqrt{d_{l}}} \mathbf{w}_{i,j}^{(l)} \cdot f_{i}^{(l-1)}(\mathbf{x})$$

- LeCun-Initialization
 - Normal distributed initialization
 - Normalize output to unit variance
- Our equation
 - We assume $\mathbf{w}_{i,j}^{(l)} \sim \mathcal{N}_{0,1}$ and normalize by $\frac{1}{\sqrt{d_l}}$ explicitly

The Neural Tangent Kernel

Something very simple

- Let *f*(x; W) the full multi-layer network
 - f is a function of inputs \mathbf{x} and weights \mathbf{W}
 - *f* is highly non-linear
 - Using LeCun-Initialization W_0
- Taylor-approximation

 $f(\mathbf{x}; \mathbf{W}) \approx f(\mathbf{x}; \mathbf{W}_0) + \nabla_{\mathbf{W}} f(\mathbf{x}_0; \mathbf{W}_0) \cdot (\mathbf{W} - \mathbf{W}_0)$

- Linearized version is a Gaussian process
 - Non-linear feature map in X
 - Linear in weights W
 - Training amounts to solving a linear system
 - Think of fitting non-linear basis functions w/linear weights

The Neural Tangent Kernel

First-order Taylor

NTK-Approximation

 $f(\mathbf{x}; \mathbf{W}) \approx f(\mathbf{x}; \mathbf{W}_0) + \nabla_{\mathbf{W}} f(\mathbf{x}_0; \mathbf{W}_0) \cdot (\mathbf{W} - \mathbf{W}_0)$

This can't be good, can it?

Linear approximation only valid close to W₀

Now: Infinite width limit

- Very wide networks: weights W change very little during training
 - Empirical finding (for now)
- Seems to converge

It Does Converge...

Proof sketch:

Measuring non-linearity as

 $\frac{\left\|H_{f}\right\|^{2}}{\|\nabla f\|^{2}}$

- Ratio of Hessian H_f to Gradient (Jacobian) ∇f
- Chain rule: replace $f(x) \to f(\alpha x)$ leads to $f'(x) \to \alpha f'(\alpha x) \quad f'(x) \to \alpha^2 f''(\alpha x)$
- Multi-variate

$$f(\mathbf{W}) \rightarrow f(\alpha \mathbf{W})$$
 leads to $\frac{\alpha}{\alpha}$

$$\frac{\alpha^2 \|H_f(\alpha \mathbf{W})\|^2}{\alpha \|\nabla f(\alpha \mathbf{W})\|^2}$$

Layer scaling

Deep Network Layer

$$y_i^{(l)} = \sum_{j=1}^{d_l} \frac{1}{\sqrt{d_l}} \mathbf{w}_{i,j}^{(l)} \cdot f_i^{(l-1)}(\mathbf{x})$$

Going wide...

- We take $d_l \to \infty$
- Thus, we take $\alpha = \frac{1}{\sqrt{d_1}} \rightarrow 0$
- Network becomes approximately linear
 - Converges to linear for infinite width
 - One can compute the limit kernel analytically!

So, All Linear Regression Then?

Practical findings

- Reasonably good performance
 - Better than standard kernels such as RBF
- But: still below finite-width DNNs
 - Fully-connected NTK networks quoted 7% below standard
 - Best convolutional NTK network I've seen performs at "AlexNet"-Level on CIFAR-10
- Finite width seems to be important

Strong theoretical tool

GPs are much easier to understand than DNNs
(Deep?) Double Descent

The Generalization Conundrum

Generalization behavior is weird

- Networks are able to fit random data
- Still generalize on "reasonable" data

[A. Achille, S. Soatto: Emergence of Invariance and Disentanglement in Deep Representations *Journal of Machine Learning Research 18 (2018) 1-34.* (Figure 1, CC-BY 4.0)**]**

The "Double-Descent"

Closer inspection: "Double-Descent" [Belkin 2019]

- Underparametrized regime: "Classical" Bias-Variance-Trade-Off
- Overparametrized regime: Error reduced again (maybe even lower)

Overparametrized Double-Descent

Let's assume, we just do function fitting

Searching function

$$\boldsymbol{f}:\mathbb{R}^d\to\mathbb{R}^m$$

Basis functions

$$\boldsymbol{b}_1, \dots, \boldsymbol{b}_k \colon \mathbb{R}^d \to \mathbb{R}^m$$

Ansatz

$$f(\mathbf{x}) = \sum_{i=1}^{k} \lambda_i b_i(\mathbf{x})$$

• With Gaussian prior $p(\lambda_i) = \mathcal{N}_{0,\sigma_i}$

Overparametrized Double-Descent

Example: Image reconstruction

Fourier basis functions

$$\boldsymbol{b}_{\omega_1,\omega_2} = \exp(i(\omega_1 x_1 + \omega_2 x_2))$$

Prior

$$p(\lambda_{\omega_1,\omega_2}) = \mathcal{N}_{0,\sigma_i = \omega_1^2 + \omega_2^2}$$

Overparametrized Double-Descent

Let's assume, we just do function fitting

Searching function

$$\boldsymbol{f}:\mathbb{R}^d\to\mathbb{R}^m$$

Basis functions

$$\boldsymbol{b}_1, \dots, \boldsymbol{b}_k \colon \mathbb{R}^d \to \mathbb{R}^m$$

Ansatz

$$f(\mathbf{x}) = \sum_{i=1}^{k} \lambda_i b_i(\mathbf{x})$$

• With Gaussian prior $p(\lambda_i) = \mathcal{N}_{0,\sigma_i}$

We Now Do Function Fitting

"Realistic" Numerics

We replace the prior by uniform prior

$$p(\lambda_i) = \mathcal{N}_{0,1}$$

Rescale basis functions accordingly

$$b_i' = \frac{1}{\sigma_i} b_i$$

- Yields same solution
 - That is also what a kernel feature map would do

We Now Do Function Fitting

Least-Squares-Fitting

- Given training data $\mathbf{x}_j, \mathbf{y}_j, j = 1, ..., n$
- We solve

$$\arg\min_{\lambda_1,\ldots,\lambda_k} \sum_{j=1}^n \left\| \sum_{i=1}^k \lambda_i b_i(\mathbf{x}_j) - \mathbf{y}_j \right\|^2$$

- And pick $\lambda_1, \dots, \lambda_k$ with minimal $\|\lambda\|^2$ in case of ambiguity
 - An SVD-solver (pseudo inverse) would do this
 - Most (mildly-regularized) numerical descent solvers would do this

What Do We Get?

Now, change parameters

We pick only a subset S of basis functions

 $S \subset B = \{b_1, \dots, b_k\}$

- Underparametrized
 - $\#S \ll n$: underfitting possible
- Interpolation
 - $\#S \approx n$: exact fit to the data with random S
 - Results might be rather bad
- Overparametrized
 - Convergence to regularized solution
 - Many solutions, picking with minimal $\|\lambda\|^2$
 - This leads to regularization!

"Classical" BV-Trade-Off Convergence to regularized (better) solution

Et Voilà!

Double Descent

Double-Descent in GPs with RFF

Conclusions

- Simple least-squares fitting can double-descent
 - Increase parameters
 - By adding more basis functions
 - Approximation first overfits, then gets better again
- Deep networks can be approximated by GPs
 - Belkin et al. discuss "Random Fourier Features" for approximating an RBF-kernel
 - NTK-view: Better approximation by increasing width
- Not a complete explanation
 - Only plausible hypothesis for effect structure

Sources on Double-Descent

C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals:

Understanding deep learning requires rethinking generalization. ICLR 2017. https://arxiv.org/pdf/1611.03530.pdf

A. Achille, S. Soatto:

Emergence of Invariance and Disentanglement in Deep Representations. Journal of Machine Learning Research 18 (2018) 1-34. https://arxiv.org/pdf/1706.01350.pdf

M. Belkin, D. Hsu, S. Ma, S. Mandal:

Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proc. of the National Academy of Sciences 116 (32), 15849-15854, 2019. https://arxiv.org/pdf/1812.11118.pdf

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak I. Sutskever: Deep Double Descent: Where Bigger Models and More Data Hurt. ICLR 2020. https://openreview.net/forum?id=B1g5sA4twr

Summary

Kernels – Virtual Euclidean Space

Feature maps w/kernels

- Map input into "deformed" feature space
- Kernels are the scalar product of the feature space
- Efficient handling of complex feature spaces

Gaussian processes

- Gaussian model on functions
- Covariance function could be interpreted as kernel

Analysis of DNNs

Kernel / GP approximation provide models

Modelling 2 STATISTICAL DATA MODELLING

Chapter 10 Space

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #10 Space

- **High-dimensional space** & the curse of dimensionality
- Kernels: flat space extended
- Manifolds: curved space

Overview

Curved Space

Brief intro to concepts from differential geometry

- Fundamental forms: Metric & Curvature
- 2D and 3D Curves & Surfaces
- Intrinsic geometry
- Applications to deep learning

Differential Geometry Intro

Embedded Geometry

d-dim. Manifold embedded in \mathbb{R}^n $(d \le n)$

Intrinsic Geometry

no ambient space ("general relativity")

Differential Geometry Intro

Embedded Geometry

d-dim. Manifold embedded in \mathbb{R}^n $(d \leq n)$

Intrinsic Geometry

no ambient space ("general relativity")

Manifolds

Elementary Topology

Homeomorphism

- $h: X \to Y$
- h is bijective
- h is continuous
- h⁻¹ exists and is continuous
- Basically, a continuous deformation

Topological equivalence

- Objects are topologically equivalent if there exists a homeomorphism that maps between them
- "Can be deformed into each other"

Surfaces of Volumes

Boundaries of volumes in 3D

- Topological equivalence classes
 - Sphere
 - Torus
 - n-fold Torus
- Genus = number of tunnels

Manifold

Definition: Manifold

• A *d*-manifold \mathcal{M} :

At every $\mathbf{x} \in \mathcal{M}$ there exists an ϵ -environment homeomorphic to a *d*-dimensional *disc*

• "With boundary": *disc* or *half-disc*

Parametric Functions

Parametric Patch

- Mapping $f: \mathbb{R}^d \supseteq \Omega \to \mathbb{R}^D$
 - Assumption: $f \in C^{\infty}$, Ω open
- Geometry $G = f(\Omega)$

Regular Parametrizations

Regular Parametrization

- "Does not stop anywhere"
- Formally: $\forall \mathbf{x} \in \Omega$: det $\nabla f (\nabla f)^T \neq 0$

Tangent Space

Tangent Space

- Assume regular parametrization
- Tangent space $T_{\mathcal{G}}(\mathbf{x}) = \operatorname{span}(\partial_1 f(\mathbf{x}), \dots, \partial_d f(\mathbf{x}))$
- Vector space as affine space: origin $f(\mathbf{x})$

Complex Geometry: Overlapping "Charts"

Examples (Curves & Surfaces)

Parametric Curves

Parametric Curves:

A differentiable function

 $f: (a, b) \rightarrow \mathbb{R}^n$

describes a *parametric curve* $C = f((a, b)), C \subseteq \mathbb{R}^{n}.$

- Parametrization regular: $f'(t) \neq 0$ for all t
- Unit-speed parametrization: $||f'(t)|| \equiv 1$

Tangents

Tangents / normals

• Any curve $C \subseteq \mathbb{R}^n$: *unit tangent vector*

$$tangent(t) = \frac{f'(t)}{\|f'(t)\|}$$

• For curves $C \subseteq \mathbb{R}^2$: unit normal vector

normal
$$(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \frac{f'(t)}{\|f'(t)\|}$$

Parametric Surfaces

• Normal: $\mathbf{n}(u,v) = \frac{\partial_u f(u,v) \times \partial_v f(u,v)}{\|\partial_u f(u,v) \times \partial_v f(u,v)\|}$

The Metric Tensor

First Fundamental Form

First fundamental form a.k.a. metric tensor

- Regular parametric patch $f: \mathbb{R}^d \supseteq \Omega \to \mathbb{R}^D$
- f will distort angles and distances
 - Visible in the scalar product.
- First order Taylor approximation measures effect

 $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$

First Fundamental Form

First Fundamental Form a.k.a. metric tensor

First order Taylor approximation:

 $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$

• Scalar product of vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$:

 $\langle f(\mathbf{x}_0 + \mathbf{a}) - f(\mathbf{x}_0), f(\mathbf{x}_0 + \mathbf{b}) - f(\mathbf{x}_0) \rangle$

 $\approx \langle \nabla f(\mathbf{x}_0) \cdot \mathbf{a}, \nabla f(\mathbf{x}_0) \cdot \mathbf{b} \rangle = \mathbf{a}^{\mathrm{T}} \underbrace{\left(\nabla f(\mathbf{x}_0)^{\mathrm{T}} \cdot \nabla f(\mathbf{x}_0) \right)}_{\text{first fundamental form}} \mathbf{b}$

 $I_f(\mathbf{x}_0)$

Surfaces (2-Manifolds)

First Fundamental Form

- Metric tensor is a $d \times d$ matrix
 - Symmetric, positive definite (regular parametrization)
 - Generalized scalar product
- Bilinear Form

$$\mathbf{I}_{f}(\mathbf{a},\mathbf{b}) \coloneqq \mathbf{a}^{\mathrm{T}} \cdot \left(\nabla f^{\mathrm{T}} \cdot \nabla f \right) \cdot \mathbf{b}$$

• For surfaces (d = 2)

$$(\nabla f^{\mathrm{T}} \cdot \nabla f) = \begin{pmatrix} \partial_{u} f \partial_{u} f & \partial_{u} f \partial_{v} f \\ \partial_{u} f \partial_{v} f & \partial_{v} f \partial_{v} f \end{pmatrix} =: \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

 $I_f(a, b) = Ea_1b_1 + F(a_1b_2 + a_2b_1) + Ga_2b_2$
Remark

First fundamental form

- Property of the parametrization
 - Does not characterize surface itself
 - Can always find parametrization with I_f = identity matrix

Local orthogonal tangent-frame

- Higher-order derivatives capture geometry
 - Derivative of first fundamental form

Examples (Curves & Surfaces)

Length of a Curve

The length of a curve

The length of a regular curve C is defined as:

$$length(C) = \int_{a}^{b} ||f'(t)|| dt$$
$$= \int_{a}^{b} \sqrt{\det I_{f}(t)} dt$$

- Independent of the parametrization
 - Proof: integral transformation theorem
- length(C) = |b a| for a unit-speed parametrization

Surface Area

Surface Area

Patch S

 $\mathbf{s}: \mathbb{R}^2 \supseteq \Omega \to \mathbb{R}^3$

• Integrate over constant function $\mathcal{S} \ni \mathbf{y} \mapsto 1$

over surface

Then apply integral transformation theorem:

area(S) =
$$\int_{\Omega} \sqrt{\det \mathbf{I}_{s}(t)} d\mathbf{x}$$

= $\int_{\Omega} ||\partial_{u} s(\mathbf{x}) \times \partial_{v} s(\mathbf{x})|| d\mathbf{x}$

Curvature (of curves)

Curvature

Curvature:

- First derivatives:
 - Curve direction / speed of movement
- Curvature:
 - Encoded in 2nd order information

Why not just use f''?

- Problem: Depends on parametrization
 - Different velocity yields different results
- Need to distinguish acceleration...
 - ...in tangential and
 - ...non-tangential directions.

Curvature & 2nd Derivatives

Definition of curvature

- Need non-tangential component of *f*^{''}
 - Project on normal
- Ignore accelerating/slowing down
 - Normalize speed

Space Curves

Curvature of a curve $\mathcal{C} \subseteq \mathbb{R}^3$

Curvature defined as

$$\kappa(t) = \frac{\|f'(t) \times f''(t)\|}{\|f'(t)\|^3}$$

- Assuming regular parametrization
 - f' does not vanish

Definition torsion of f at t

- Curve $C \subseteq \mathbb{R}^3$
- Regular parametrization
- Non-zero curvature

Theorem

Fundamental Theorem of Space Curves

- Two curves $\mathcal{C} \subseteq \mathbb{R}^3$
 - unit speed parameterized
 - identical, positive curvature ($\kappa > 0$)
 - and identical torsion
 - are identical up to a rigid motion.
- In the 2D case, torsion is not required
 - Would be zero everywhere

Curvature (of surfaces)

Second Fundamental Form

Again: Missing Information

- First fundamental form measures only length changes.
- Cylinder looks like a flat sheet

Complete (extrinsic) geometry

- Measure curvature of a surface as well.
- Requires second order information
 - Anything first order is inherently "flat"

Second Fundamental Form

Basic Idea

- Compute second derivative vectors
- Project in normal direction
 - Remove tangential acceleration

Second Fundamental Form

Definition

- Regular parametrization $s: \mathbb{R}^2 \supseteq \Omega \to \mathbb{R}^3$
- Second fundamental form of s:

$$\mathbf{II}_{s}(\mathbf{x}_{0}) = \begin{pmatrix} \partial_{uu} s(\mathbf{x}_{0}) \cdot \mathbf{n}(\mathbf{x}_{0}) & \partial_{uv} s(\mathbf{x}_{0}) \cdot \mathbf{n}(\mathbf{x}_{0}) \\ \partial_{uv} s(\mathbf{x}_{0}) \cdot \mathbf{n}(\mathbf{x}_{0}) & \partial_{vv} s(\mathbf{x}_{0}) \cdot \mathbf{n}(\mathbf{x}_{0}) \end{pmatrix} = \begin{pmatrix} e & f \\ f & g \end{pmatrix}$$

Notation as bilinear form

$$\mathbf{II}_{s}(\mathbf{a},\mathbf{b}) = \mathbf{a}^{\mathrm{T}} \begin{pmatrix} \partial_{uu} s \cdot \mathbf{n} & \partial_{uv} s \cdot \mathbf{n} \\ \partial_{uv} s \cdot \mathbf{n} & \partial_{vv} s \cdot \mathbf{n} \end{pmatrix} \mathbf{b}$$

Remark: Christoffel Symbols

Second fundamental form

$$\mathbf{I} = \begin{pmatrix} \partial_{uu} \mathbf{s} \cdot \mathbf{n} & \partial_{uv} \mathbf{s} \cdot \mathbf{n} \\ \partial_{uv} \mathbf{s} \cdot \mathbf{n} & \partial_{vv} \mathbf{s} \cdot \mathbf{n} \end{pmatrix}$$

- Extrinsic curvature
- Projection on normal measure only curvature away from tangent space

Full picture

- We can measure tangential curvature, too
- Useful for intrinsic view (non-embedded manifolds)
- "Christoffel Symbols"

Full Second-Order Expansion

Parametric surface

 $\mathbf{s}: \mathbb{R}^2 \supseteq \mathbf{\Omega} \to \mathbb{R}^3$

Second order representation

$$\partial_{uu} s = \Gamma_{11}^{1} \mathbf{u} + \Gamma_{11}^{2} \mathbf{v} + e\mathbf{n}$$

$$\partial_{uv} s = \Gamma_{12}^{1} \mathbf{u} + \Gamma_{12}^{2} \mathbf{v} + f\mathbf{n}$$

$$\partial_{vv} s = \Gamma_{22}^{1} \mathbf{u} + \Gamma_{22}^{2} \mathbf{v} + g\mathbf{n}$$

Christoffel Symbols Γ_{ij}^k

- Projections of second derivatives into tangent plane
- Intrinsic curvature properties

Shape Operator

Second fundamental form

$$\mathbf{II}(\mathbf{x}_0) = \begin{pmatrix} \partial_{uu} \mathbf{s} \cdot \mathbf{n} & \partial_{uv} \mathbf{s} \cdot \mathbf{n} \\ \partial_{uv} \mathbf{s} \cdot \mathbf{n} & \partial_{vv} \mathbf{s} \cdot \mathbf{n} \end{pmatrix} \Big|_{(\text{at } \mathbf{x}_0)}$$

2nd fundamental form is parametrization dependent!

Definition: The shape operator

- Orthogonal tangent vectors u, v yield the shape operator S(x₀) (a.k.a. curvature tensor)
 - Directional derivative of normal vector
 - Still depends on choice of coordinates (e.g., rotation of u,v).

Alternative Formulation (Gauss)

Orthogonal tangent frame

- Local height field parameterization s(x) = z(x, y)
 - Orthonormal x, y coordinates tangential to surface
 - Function values z in normal direction
 - Origin at zero
- Then: shape operator = second fundamental form
 = matrix of second derivatives

Alternative Formulation (Gauss)

Tangential height fields, orthogonal frame: $II(x) = S(x) = H_z(x)$

Local height field parameterization

2nd order Taylor approximation

$$z(\mathbf{x}) \approx \underbrace{\frac{1}{2} \mathbf{x}^{\mathrm{T}} \cdot \mathbf{H}_{Z}(\mathbf{x}) \cdot \mathbf{x}}_{=ex^{2}+2fxy+gy^{2}} + \underbrace{\mathbf{J}_{Z}(\mathbf{x}) \cdot \mathbf{x}}_{0} + \underbrace{\mathbf{z}(0)}_{0}$$
$$\underbrace{\begin{pmatrix} e & f \\ f & g \end{pmatrix}}_{0} = \begin{pmatrix} \partial_{uu} Z & \partial_{uv} Z \\ \partial_{uv} Z & \partial_{vv} Z \end{pmatrix}$$

In Practice

Cloud of data points

- k-nearest neighbors
- PCA for approx. tangent plane
- Least-squares fitting of height field

Example

Basic Idea

In other words:

- First fundamental form: I Linear part (squared) of local Taylor approximation.
- Second fundamental form: II Quadratic part of heightfield approximation

Next: eigenanalysis, of course...

Principal Curvature

Eigenanalysis

- Eigenvalues of shape operator are called *principal curvatures* κ₁, κ₂.
- Corresponding eigenvectors are called directions of principle curvature.

Examples

Stanford Bunny (dense point cloud)

[courtesy of Martin Bokeloh]

Normal Curvature

Definition

• Normal curvature $k(\mathbf{r})$ in direction \mathbf{r} at \mathbf{x}_0

$$k_{\mathbf{x}_0}(\mathbf{r}) \coloneqq \mathbf{r}^{\mathrm{T}} \cdot \mathbf{S}(\mathbf{x}_0) \cdot \mathbf{r}$$

(for $\|\mathbf{r}\| = 1$, $\mathbf{r} \in \mathbb{R}^2$)

Relation to curvature of plane curves

- Intersect the surface with plane spanned by $\mathbf{n}(\mathbf{x}_0)$ and $\begin{pmatrix} | & | \\ \mathbf{u}(\mathbf{x}_0) & \mathbf{v}(\mathbf{x}_0) \\ | & | \end{pmatrix} \cdot \mathbf{r}$ through $\mathbf{s}(\mathbf{x}_0)$.
- Identical curvatures (up to sign)

Normal & Principal Curvatures

Relation to principal curvature

- Maximum principal cuvature κ₁
 maximum of normal curvature
- Minimum principal cuvature κ_2 = minimum of normal curvature

Gaussian & Mean Curvature

More Definitions

- Gaussian curvature $K \coloneqq \kappa_1 \kappa_2$
 - Product of principal curvatures
- Mean curvature $H \coloneqq \frac{1}{2}(\kappa_1 + \kappa_2)$
 - Average of principle curvatures

Theorems

- $K(\mathbf{x}) = \det(\mathbf{S}(\mathbf{x}))$
- $H(\mathbf{x}) = \frac{1}{2} \operatorname{tr}(\mathbf{S}(\mathbf{x}))$

Gaussian & Mean Curvature

More Definitions

- Gaussian curvature $K \coloneqq \kappa_1 \kappa_2$
 - Product of principal curvatures
- Mean curvature $H \coloneqq \frac{1}{2}(\kappa_1 + \kappa_2)$

Average of principle curvatures

Theorems

• $K(\mathbf{x}) = \det(\mathbf{S}(\mathbf{x})) = \frac{\det \mathbf{II}}{\det \mathbf{I}} = \frac{eg - f^2}{EG - F^2}$ • $H(\mathbf{x}) = \frac{1}{2} \operatorname{tr}(\mathbf{S}(\mathbf{x})) = \frac{eG - 2fF + gE}{2(EG - F^2)}$

—shape operator only!

last part: holds for general

fundamental forms!

Global Properties

Definitions

- An *isometry* is a mapping between surfaces that preserves distances on the surface (*"geodesic distances"*)
- Developable surface: Gauss curvature zero everywhere
 - I.e. no curvature in at least one direction.
 - Examples: Cylinder, Cone, Plane

Developable surfaces

 Developable surfaces can be (locally) mapped to a plane isometrically (flattening out, unroll).

Theorema Egregium

Theorema egregium (Gauss, 1828)

- Surfaces (2-manifolds) in 3D
- Any isometric mapping preservers Gaussian curvature
 - Gaussian curvature is invariant under isometric maps
 - "Intrinsic surface property"

Consequence

- The earth (≈ sphere) cannot be mapped to a plane in a length preserving way.
- Maps / atlases distort distances

Gauss Bonnet Theorem

Gauss Bonnet Theorem

- Let S ⊂ ℝ³ be smooth, compact, orientable surface without boundary
- Then, the area integral of the Gauss curvature is related to the genus g of the surface:

$$\int_{\mathcal{S}} K(\mathbf{x}) d\mathbf{x} = 4\pi (1-g)$$

Fundamental Theorem of Surfaces

Theorem

- Given two parametric patches in $S_1, S_2 \subseteq \mathbb{R}^3$,
- defined on the same domain Ω :

 $S_i = s_i(\Omega).$

 Assume that first and second fundamental form are identical

 $\mathbf{I}_1 \equiv \mathbf{I}_2, \qquad \mathbf{II}_1 \equiv \mathbf{II}_2.$

 Then there exists a rigid motion that maps on surface to the other

 $S_2 = T(S_1)$, for some $T \in E(3)$.

Summary

Objects are the same up to a rigid motion, if...:

- Curves $\mathbb{R} \to \mathbb{R}^2$: Same speed, same curvature
- Curves $\mathbb{R} \to \mathbb{R}^3$: Same speed, same curvature, torsion
- Surfaces $\mathbb{R}^2 \to \mathbb{R}^3$: Same *first* & *second* fundamental form
- Volumetric objects $\mathbb{R}^3 \to \mathbb{R}^3$: Same *first* fundamental form

Intrinsic Differential Geometry

Differential Geometry Intro

Embedded Geometry

d-dim. Manifold embedded in \mathbb{R}^n $(d \le n)$

Intrinsic Geometry

no ambient space ("general relativity")

Differential Geometry Intro

Embedded Geometry

d-dim. Manifold embedded in \mathbb{R}^n $(d \le n)$

Intrinsic Geometry

no ambient space ("general relativity")
Illustration

Metric Distortion $(g_{ij})_{ij} = [\nabla s^T \nabla s]$

(Extrinsic Counterpart: $[\nabla s \nabla s^T]$)

Illustration

Metric Tensor $(g_{ij})_{ij} = [\nabla s^T \nabla s]$

Illustration

Metric Tensor $(g_{ij})_{ij} = [\nabla s^T \nabla s]$

Curvature

Given

- Abstract parameter domain $\Omega \subset \mathbb{R}^d$
- Metric $g: \Omega \to \mathbb{R}^{d \times d}$

Higher-order properties

- (1) Define derivative of g
 - "Covariant derivative" or "connection"
 - Canonical choice: Levi-Cevita-connection
 - Behaves like projection into tangent plane
 - No torsion

(2) Riemann Curvature Tensor

Invariants are the analog to "Gaussian curvature"

Space(-Time) is not Euclidean

http://en.wikipedia.org/wiki/Gravity_Probe_B

Geodesics

Geodesics

Definition

 A geodesic is a curve with no intrinsic curvature

Embedded case

 After projection into the tangent space, we have no curvature

$$\kappa \left[\begin{pmatrix} -\mathbf{u} \\ -\mathbf{v} \end{pmatrix} \mathbf{f}(t) \right] = \mathbf{0}$$

 $(\mathbf{u}, \mathbf{v}, \mathbf{n})$

Shortest path

Shortest paths on smooth manifolds are geodesics

Geodesic Distances

Shortest distance between two points

- "Geodesic distance"
- Path itself:

Often also called "Geodesic"

Intuition

- If there was still intrinsic curvature
 - Path could be straightened
 - Shortens path

Computing Shortest Paths

Approximate Global Optimum

Discretize

- Graph representation
- Sample points on surface
- Mesh or Point-Cloud with k-nearest-neighbor-Graph
- Connect nearby points with edges
 - Local Euclidean distance as weights
 - First-order approximation of intrinsic metric
 - First-order consistent error
- Dijkstra graph shortest path
 - Not consistent metrification errors
 - Discrete directions lead to overestimation

Neighborhood Graphs

original

mesh

resampled point cloud with 20-nearest-neighbors graph

Discrete Geodesics

"Dijkstra" geodesics

- Advantages
 - Easy to implement
 - Global optimum
- Disadvantages
 - O(n log n) cost for n points, one-to-all paths (one-to-one not faster!)
 - Approximate substantial errors (overestimation)

shortest path with point-cloud NN-graph [Image: Art Tevs]

Continuous Geodesics

Continuous geodesics

- Smoothing
 - Start with coarse path
 - Minimize path length
 - $\int_a^b \left\| \frac{d}{dt} c(t) \right\|^2 dt \to min.$
 - Constrained least-squares
- Disadvantages
 - Expensive
 - Global optimum not guaranteed (theoretical issue, works in practice)

[Image: Art Tevs]

Applications

Differential Geometry in ML

Example Applications

- Isomap
 - Approximate intrinsic geometry
- The Fisher information matrix
 - A natural metric for distributions
- Intrinsic views of deep networks
 - Networks in input space

ISOMAP

Isomap

Mapping Manifolds to Euclidean Space

- Approximation
- Assuming disc topology

Algorithm: "ISOMAP"

- Compute all pairwise intrinsic distances
 - Typically: k-NN graph, Dijkstra's Algorithm

Run MDS on pairwise distances

- Another kernel-PCA variant
- Intrinsic metric for embedding

The Fisher Information Matrix

References

James Martens: New Insights and Perspectives on the Natural Gradient Method Journal of Machine Learning Research 21 (2020) 1-76 https://jmlr.org/papers/volume21/17-678/17-678.pdf

Agustinus Kristiadi: Fisher Information Matrix / Natural Gradient Descent https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Fisher Information

Big picture

We often use parametric distributions

 $p_{\theta}(\mathbf{x}), \quad \theta \in \mathbb{R}^d$

• Natural metric on parameter space $\Omega(\theta)$

Information theory

Use KL-divergence to measure distance

Differential geometry

- Derive metric tensor for changes in distribution
 - Not distance in parameter space

Note: Notation

Gradient operator

$$\nabla_{\mathbf{x}} = \begin{bmatrix} \partial_{x_1} \\ \vdots \\ \partial_{x_d} \end{bmatrix}, \qquad \nabla_{\mathbf{x}}^T = \begin{bmatrix} \partial_{x_1} \cdots \partial_{x_d} \end{bmatrix}$$

Hessian operator / matrix

$$\nabla_{\mathbf{x}}^{T} \nabla_{\mathbf{x}} = \begin{bmatrix} \partial_{x_{1}} \partial_{x_{1}} & \cdots & \partial_{x_{d}} \partial_{x_{1}} \\ \vdots & & \vdots \\ \partial_{x_{1}} \partial_{x_{d}} & \cdots & \partial_{x_{d}} \partial_{x_{d}} \end{bmatrix}$$

Consider

- $KL(p_{\theta} \| p_{\theta+\epsilon})$ for $\epsilon \to 0$
- $\theta, \epsilon \in \mathbb{R}^d$
- *p*_θ smooth in θ

Let's see

$$KL(p_{\theta} \| p_{\theta+\epsilon}) = \sum_{x \in \Omega(X)} p_{\theta}(x) (\log_2 p_{\theta}(x_i) - \log_2 p_{\theta+\epsilon}(x_i))$$

• Note: for small $\|\epsilon\|$, the *KL*-divergence is symmetric

Gradients

$$\nabla_{\boldsymbol{\epsilon}} KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \sum_{\mathbf{x}\in\Omega(X)} [\nabla_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta}}(\mathbf{x})](\log_2 p_{\boldsymbol{\theta}}(\mathbf{x}) - \log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))$$
$$- \sum_{\mathbf{x}\in\Omega(X)} p_{\boldsymbol{\theta}}(\mathbf{x})(\nabla_{\boldsymbol{\epsilon}} \log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))$$

Gradients

$$\nabla_{\boldsymbol{\epsilon}} KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \sum_{\mathbf{x}\in\Omega(X)} [\nabla_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta}}(\mathbf{x})](\log_2 p_{\boldsymbol{\theta}}(\mathbf{x}) - \log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))$$
$$- \sum_{\mathbf{x}\in\Omega(X)} p_{\boldsymbol{\theta}}(\mathbf{x})(\nabla_{\boldsymbol{\epsilon}} \log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))$$

$$= -\sum_{\mathbf{x}\in\Omega(X)} p_{\boldsymbol{\theta}}(\mathbf{x}) (\nabla_{\boldsymbol{\epsilon}} \log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))$$

$$= \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} [\nabla_{\epsilon} (-\log_2 p_{\theta+\epsilon}(\mathbf{x}))]$$
$$= 0 (!)$$

Expected "Score Function"

Expected gradients of log-likelihoods are zero

$$\mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} [\nabla_{\theta} (\log_2 p_{\theta}(\mathbf{x}))] = \sum_{\mathbf{x} \in \Omega(X)} p_{\theta}(\mathbf{x}) (\nabla_{\theta} (\log_2 p_{\theta}(\mathbf{x})))$$
$$\nabla \log f(\mathbf{x}) = \frac{\nabla f(\mathbf{x})}{f(\mathbf{x})}$$

Expected "Score Function"

Expected gradients of log-likelihoods are zero

$$\mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} [\nabla_{\theta}(\log_{2} p_{\theta}(\mathbf{x}))] = \sum_{\mathbf{x} \in \Omega(X)} p_{\theta}(\mathbf{x}) (\nabla_{\theta}(\log_{2} p_{\theta}(\mathbf{x})))$$

$$\nabla \log f(\mathbf{x}) = \frac{\nabla f(\mathbf{x})}{f(\mathbf{x})} = \sum_{\mathbf{x} \in \Omega(X)} p_{\theta}(\mathbf{x}) \left(\frac{\nabla_{\theta} p_{\theta}(\mathbf{x})}{p_{\theta}(\mathbf{x})}\right)$$

$$= \sum_{\mathbf{x} \in \Omega(X)} \nabla_{\theta} p_{\theta}(\mathbf{x})$$

$$= \nabla_{\theta} \sum_{\mathbf{x} \in \Omega(X)} p_{\theta}(\mathbf{x}) = \nabla_{\theta} \mathbf{1} = \mathbf{0}$$
(215)

Gradients

 $\nabla_{\boldsymbol{\epsilon}} KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))] = 0$

Hessian

 $[\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}}] KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}}^{T} [\nabla_{\boldsymbol{\epsilon}} (-\log_{2} p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))]]$

Gradients

$$\nabla_{\mathbf{\epsilon}} KL(p_{\mathbf{\theta}} \| p_{\mathbf{\theta}+\mathbf{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{\theta}}(\mathbf{x})} [\nabla_{\mathbf{\epsilon}} (-\log_2 p_{\mathbf{\theta}+\mathbf{\epsilon}}(\mathbf{x}))] = 0$$

Hessian

 $[\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}}] KL(p_{\boldsymbol{\theta}} || p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}}^{T} [\nabla_{\boldsymbol{\epsilon}} (\log_{2} p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))]]$

Note (probably not stressed enough in the video):

- The gradient only vanishes, because θ are the true parameters
- We take $\mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})}[\cdots]$ of $\nabla_{\epsilon}(-\log_2 p_{\theta+\epsilon}(\mathbf{x}))$ true distribution comparison
- In the proof sketch (Slide 214/215), θ is at the "true" value
- In general, gradients of log-likelihoods do not vanish!
 - Optimization in DL is all about gradient descent neg-log-likelihoods!

Gradients

 $\nabla_{\boldsymbol{\epsilon}} KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))] = 0$

Hessian

 $[\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}}] KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} \Big[\nabla_{\boldsymbol{\epsilon}}^{T} [\nabla_{\boldsymbol{\epsilon}} (-\log_{2} p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))] \Big]$

Gradients

 $\nabla_{\boldsymbol{\epsilon}} KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))] = 0$

Hessian

 $[\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}}] KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}}^{T} [\nabla_{\boldsymbol{\epsilon}} (-\log_{2} p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))]]$

$$= \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} \left[-\nabla_{\boldsymbol{\epsilon}}^{T} \frac{\nabla_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})}{p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})} \right]$$

$$= \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} \left[-\frac{\left(\left[\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}} \right] p_{\theta + \boldsymbol{\epsilon}}(\mathbf{x}) \right) p_{\theta + \boldsymbol{\epsilon}}(\mathbf{x}) - \nabla_{\boldsymbol{\epsilon}} p_{\theta + \boldsymbol{\epsilon}}(\mathbf{x}) \cdot \nabla_{\boldsymbol{\epsilon}}^{T} p_{\theta + \boldsymbol{\epsilon}}(\mathbf{x}) }{p_{\theta + \boldsymbol{\epsilon}}(\mathbf{x})^{2}} \right]$$

$$\nabla_{\boldsymbol{g}(\mathbf{x})}^{f(\mathbf{x})} = \frac{\nabla f(\mathbf{x}) \boldsymbol{g}(\mathbf{x}) - f(\mathbf{x}) \nabla \boldsymbol{g}(\mathbf{x})}{\boldsymbol{g}(\mathbf{x})^{2}}$$
(219)

Hessian

 $[\nabla_{\boldsymbol{\epsilon}}^T \nabla_{\boldsymbol{\epsilon}}] KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}})$

$$= \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} \left[-\frac{\left([\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}}] p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}) \right) p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}) - \nabla_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}) \cdot \nabla_{\boldsymbol{\epsilon}}^{T} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})}{p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})^{2}} \right]$$

Hessian

 $[\nabla_{\epsilon}^{T}\nabla_{\epsilon}]KL(p_{\theta}||p_{\theta+\epsilon})$

$$= \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} \left[-\frac{\left([\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}}] p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}) \right) p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}) - \nabla_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}) \cdot \nabla_{\boldsymbol{\epsilon}}^{T} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})}{p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})^{2}} \right]$$

$$= -\sum_{\mathbf{x}\in\Omega(X)} \left[\nabla_{\boldsymbol{\epsilon}}^T \nabla_{\boldsymbol{\epsilon}} \right] p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}) + \mathbb{E}_{\mathbf{x}\sim p_{\boldsymbol{\theta}}(\mathbf{x})} \left[\left(\frac{\mathbf{v}_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x})}{p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x})} \right) \left(\frac{\mathbf{v}_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x})}{p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x})} \right) \right]$$

$$= \left[\nabla_{\boldsymbol{\epsilon}}^{T} \nabla_{\boldsymbol{\epsilon}}\right] \sum_{\mathbf{x} \in \Omega(X)} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}) + \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} \left[\left(\frac{\nabla_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})}{p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})} \right) \left(\frac{\nabla_{\boldsymbol{\epsilon}} p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})}{p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})} \right)^{\mathrm{T}} \right]$$

 $= \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\theta+\boldsymbol{\epsilon}}(\mathbf{x})) \cdot \nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\theta+\boldsymbol{\epsilon}}(\mathbf{x}))^{\mathrm{T}}]$

Summary

"Score Function": Derivative of neg-log-likelihood $\nabla_{\epsilon}(-\log_2 p_{\theta+\epsilon}(\mathbf{x}))$

Gradient: Vanishes

 $\nabla_{\boldsymbol{\epsilon}} KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}) = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\boldsymbol{\theta}+\boldsymbol{\epsilon}}(\mathbf{x}))] = 0$

Hessian: Covariance Matrix

 $\begin{bmatrix} \nabla_{\boldsymbol{\epsilon}}^T \nabla_{\boldsymbol{\epsilon}} \end{bmatrix} KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}) \\ = \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} \begin{bmatrix} \nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x})) \cdot \nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}(\mathbf{x}))^T \end{bmatrix}$

Summary

Hessian is the Fischer information matrix

- $\mathbf{F} \coloneqq [\nabla_{\boldsymbol{\epsilon}}^T \nabla_{\boldsymbol{\epsilon}}] KL(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta} + \boldsymbol{\epsilon}})$
 - $= \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} [\nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\theta+\boldsymbol{\epsilon}}(\mathbf{x})) \cdot \nabla_{\boldsymbol{\epsilon}} (-\log_2 p_{\theta+\boldsymbol{\epsilon}}(\mathbf{x}))^{\mathrm{T}}]$

Usage as metric tensor

$$\langle d\boldsymbol{\theta}_{a}, d\boldsymbol{\theta}_{b} \rangle_{F} = (d\boldsymbol{\theta}_{a})^{T} \cdot \mathbf{F} \cdot d\boldsymbol{\theta}_{b}$$

Applications

"Natural Gradient Descent"

- Standard Gradient Descent
 - Deep network $f: \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$
 - Loss function: Neg-log-likelihood $L(f_{\theta})$
 - Parameters
 θ
 (weights)
 - Learning rate λ
 - Gradient descent

$$\boldsymbol{\theta}_{i+1} \leftarrow \boldsymbol{\theta}_i - \lambda \nabla_{\boldsymbol{\theta}} L(\boldsymbol{f}_{\boldsymbol{\theta}})$$

Applications

"Natural Gradient Descent"

Standard Gradient Descent

$$\boldsymbol{\theta}_{i+1} \leftarrow \boldsymbol{\theta}_i - \lambda \nabla_{\boldsymbol{\theta}} L(\boldsymbol{f}_{\boldsymbol{\theta}})$$

"Natural" Gradient Descent

$$\mathbf{\theta}_{i+1} \leftarrow \mathbf{\theta}_i - \lambda \mathbf{F}^{-1} \nabla_{\mathbf{\theta}} L(f_{\mathbf{\theta}})$$

Discussion

- Problem: Inverting the F-Matrix
 - Too expensive for deep networks
- Approximations possible
 - ADAM uses diagonal F

Application

Jeffreys Prior

- Inferring parameters via $p(\theta|D) \sim p(D|\theta)P(\theta)$
- We have a likelihood $p(\mathbf{D}|\boldsymbol{\theta})$
- What prior $P(\theta)$ should we use?

Approach

- We want "uninformative" prior
- Independent of parametrization

$$P_{\text{Jeffreys}}(\theta) \coloneqq \sqrt{\det \mathbf{F}_{p(\boldsymbol{D}|\theta)}}$$

volume element

 reparameterization scales quadratically

(226)

Jeffreys Prior

Discussion

- Often used as "objective" Bayesian prior
- It does not solve the problem of infinite domains
 - E.g., improper prior for mean of a Gaussian
- Results invariant under change of domain parametrization
 - However, not invariant under transformations of the ouput
- Computation might be costly
Intrinsic View of Deep Networks

Credits: David Hartmann

ReLU Networks Subdivide Input Space

Take this one step further

- Feedforward network with ReLU nonlinearity
- Map outputs into input space
- Input $\mathbf{x} \in \mathbb{R}^{d_0} \rightarrow \text{Outputs } \mathbf{f}(\mathbf{x}) \in \mathbb{R}^{d_L} \text{ in } d_0 \text{-manifold}$
- Embed outputs in \mathbb{R}^{d_0}

ReLU Networks

Fully-connected ReLU network $f^{(L)}(\mathbf{x}, \mathbf{W})$

$$= \varphi \left(\mathbf{W}^{(L)} \varphi \left(\mathbf{W}^{(L-1)} \varphi \left(\cdots \mathbf{W}^{(0)} \mathbf{x} \right) \cdots \right) \right)$$

In matrix notation

$f^{(L)}(\mathbf{x}, \mathbf{W})$ = $\mathbf{R}^{(L)}\mathbf{W}^{(L)}\mathbf{R}^{(L-1)}\mathbf{W}^{(L-1)}\cdots\mathbf{R}^{(1)}\mathbf{W}^{(0)}\mathbf{x}$

- Diagonal 0/1 ReLU matrices R^(l)
- Attention! R^(l) depends on preactivation
 - Non-linear, non-constant function of x

ReLU Networks

Embedding into input space

$$\mathbf{x}_{f} \coloneqq \left(\mathbf{R}^{(1)}\mathbf{W}^{(1)}\right)^{\dagger} \dots \left(\mathbf{R}^{(L)}\mathbf{W}^{(L)}\right)^{\dagger} f^{(L)}(\mathbf{x}, \mathbf{W})$$

where M^{\dagger} is the Moore-Penrose pseudo-inverse of M (data dependent, different P.-I. for each x)

What does it show?

- Visualizes network *f* as deformation of the input
- Visualization uses additional PCA-dimensionality reduction

Results after PCA [David Hartmann]

targets

classification task

optimization process

Summary

Space might not be flat...

Differential geometry

- Studying geometry independent of parametrization
 - Useful to abstract from "implementation details"
- Length/volumes, curvature, higher-order moments

Intrinsic (differential) geometry

- View from inside the manifold
 - Ignore outer space
 - Useful if this does not matter for the application
- Starts with the metric
 - Specify metric tensor
 - Intrinsic curvature can be derived (under assumptions)

Intrinsic View of Curved Space

