
Modelling 2
STATISTICAL DATA MODELLING

Chapter 10

Space

Informatik

Institut

für

Michael Wand · Institut für Informatik, JGU Mainz ·

d
im

-1

dim-2

Space

• High-dimensional space
& the curse of dimensionality

• Kernels: flat space extended

• Manifolds: curved space

(4)

Video #10

The Curse of Dimensionality

Issues with high-dimensional data

▪ Structural anomalies – too much space
▪ Distance concentration

▪ Naïve dimensionality reduction

▪ The Johnson-Lindenstrauss Lemma

▪ Generalization problems – too little data
▪ Sampling requirements

▪ Curved space

▪ Computational problems – too much work
▪ Searching

▪ Integration

(5)

– too much space in high dimensions –

Structural / Logical
Anomalies

Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

▪ d-dimensional space:
d independent neighboring
directions to each point

▪ Volume-distance ratio explodes

d = 1 d = 2 d = 3 d →

vol(r) (r d)

Dart Throwing

𝑦

𝑥𝑝 𝑥, 𝑦

𝑟

𝑝 𝑟

normal distribution by radius: bulls-eye unlikely

Concentration of distances

▪ “Dart-throwing anomaly”
▪ Normal distributions

▪ Gather probability-mass in thin shells

𝑝 𝑟 ~𝑟𝑑−1𝑒−𝑟
2

(maximum in the limit: 𝑑)

▪ Nearest neighbor ≈ farthest neighbor
▪ For unstructured points (e.g. iid-random)

▪ Not true for if data is structured specifically

Higher Dimensions are Weird
d = 1..200 d = 1..200

𝑟 →

𝑝
𝑟
→

𝑟/ 𝑑 →

𝑝
𝑟
→

Heavy Corners

Why do we always sample Gaussians?

▪ Uniform random variables on a cube

▪ Corners have most of the volume (growth 𝑟𝑑)

▪ Need symmetric shapes
▪ Gaussian is rotationally symmetric (and is separable)

▪ Sphere would also work

(10)

looks benign in 2D all samples near corners
in high-dim.

Dimensionality Reduction

Can we reduce dimensions?

▪ Assume point set

𝑃 = {𝐱1, … , 𝐱𝑛} ⊆ ℝ𝑑

▪ Let’s say, we only care about pairwise distances

𝐱𝑖 − 𝐱𝑗 , . . 𝑖, 𝑗 ∈ 1,… , 𝑛

▪ Example application: classifier
▪ (general discriminative tasks)

(11)

Dimensionality Reduction

“Trivial” result

▪ Embedding 𝑛 points in 𝑑 = 𝑛 − 1 dimensions

▪ Only interesting if 𝑑 > 𝑛
▪ Just use differences 𝐱𝑖 − 𝐱1 as coordinate vectors

▪ Then run Gram-Schmidt-orthogonalization
to get orthogonal coordinate frame

Johnsen-Lindenstrauss Lemma

▪ Good approximate embedding in 𝑑 ∈ 𝑂 log 𝑛
▪ Guaranteed quality for any point set

▪ A bit more surprising

(12)

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta & Gupta 2003]

▪ Point set 𝑃 = {𝐱1, … , 𝐱𝑛} in ℝ𝑑

▪ There exists 𝑓:ℝ𝑑 → ℝ𝑘 with 𝑘 ∈ 𝒪 𝜖−2 ln 𝑛

(𝑘 ≥ 4 Τ𝜖2 2 − Τ𝜖3 3 −1 ln 𝑛)

▪ …that preserves all inter-point distances

up to a factor of (1 + 𝜖)

Random orthogonal linear projection

▪ Works with probability ≥ (1 − 1/𝑛)

S. Dasgupta, A. Gupta: An Elementary Proof of a Theorem of Johnson and Lindenstrauss
Random Structures and Algorithms, 22(1):60-65, 2003, https://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf

This means…

What Does the JL-Lemma Imply?

Pairwise distances in small point set 𝑃
(sub-exponential in 𝑑)
can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points themselves are well-
represented (just the pairwise distances)

Experiment

Proof Sketch

Difference Vectors
▪ Normalize (relative error)

▪ All 𝑛2 pairs yield poles

▪ Pole yields bad approximation

▪ 𝑛2 poles 𝑑𝑖𝑗

▪ Non-pole area much larger
▪ High dimension

▪ Volume grows with:

sin𝑑−1 𝛼

▪ Covering sphere with poles
▪ Need large number of poles

▪ Exponential in 𝑑

𝑑𝑖𝑗 =
𝐱𝑖

𝐱𝑖
−

𝐱𝑗
𝐱𝑗

𝐱𝑖
𝐱𝑗

di j

good prj. bad prj.

no-go area

good prj.
dij

(poles)

angle 𝛼
circle mass
sin𝑑−1 𝛼

– too little data for high dimensions –

Generalization Problems

Sampling Requirements

Sampling costs grow exponentially with 𝑑

▪ Sampling a unit cube in ℝ𝑑

▪ Spacing 𝜖 → 𝑛 = Τ1 𝜖 samples

▪ Costs 𝒪 𝑛𝑑

Sampling theory

▪ Resolve frequencies 𝜔 = 1/𝜖

▪ Tensor-product Fourier basis

Rect.: 𝑒𝑖 𝜔1𝑥1+⋯+𝜔𝑑𝑥𝑑 𝜔1, … , 𝜔𝑑 = −𝑛. . 𝑛

Isotropic: 𝜔1
2 +⋯+𝜔𝑑

2 ≤ 𝑛2

▪ Exponential costs
(18)

d
im

-1

dim-2

Subspace Sampling

Sampled Hyperplane

▪ Space has dimension 𝑑

▪ Hyperplane has dimension 𝑘 < 𝑑

Discriminative Task

▪ Neighborhood based classifier

▪ Blue sample 𝑟 away from plane

▪ Nearest neighbor on plane should
be closer than blue sample

▪ Need Ω(𝑛𝑘), 𝑛 = 𝑟−1 samples – exponential

▪ Need Ω 𝑛𝑘 log 𝑛𝑘 = Ω 𝑘𝑛𝑘 log 𝑛 random samples

(19)

n sample points
(irregular)

𝑟

unit cube

Random Samples?

Coupon-Collectors Theorem

▪ On expectation, we need

𝑛ดH𝑛
=(ln 𝑛)±1

random draws to hit 𝑛 bins /
coupons

▪ Thus, random i.i.d. uniform
samples increase effort

𝑂(𝑛) → 𝑂 𝑛 ln𝑛

(20)

n bins → n log n
sample points

(irregular)

Learning Manifolds

(Common) Assumption

▪ Data of a class forms a smooth 𝑘-dimensional
surface (“𝑘-manifold”) in 𝑑-dimensional space

▪ Model: Local flat approximation

▪ Again, costs are exponential in 𝑘

(21)

Consequence

Hard to learn

▪ Data manifolds with
intrinsically high dimension

▪ Common – think of all the poses of a dog

Distance-based classifiers…

▪ …will have exponential sampling cost

▪ I.e., need exponential amount of training data!

Smoothness is distance based [Bengio]

▪ Nearest-Neighbors, Histograms, Parzen Windows

▪ Gaussian-Kernel-SVM, Gaussian processes
(22)

DNNs Can Learn combinatorially

three network layers Interpretation
Nested ReLU-layer = nested convex cells

Activation Patterns
Encode combinatorial decisions

(which linear map to use)

𝐖1

𝐖2

𝐖3

Example: ReLU

Activations of a ReLU Neuron

▪ Binary weights - work as “or”-operator

▪ Negative weights act as “not”-operator

▪ Can build “NOR”-gates

NOR-gates are universal

▪ Can encode arbitrary logically functions with a
network of NOR-gates

▪ Depth make it efficient
▪ Shallow circuits might have exponential disadvantage

Impossible with distance-based methods
(24)

– too much work in high dimensions –

Computational Issues

– too much work in high dimensions –

Computational Issues

SEARCH

Search

Given

▪ Point cloud 𝐱1, … , 𝐱𝑛 ∈ ℝ
𝑑

▪ Query point 𝐱 ∈ ℝ𝑑

How to efficiently find

▪ (𝑘-)nearest-neighbors of 𝐱

▪ Neighbors in fixed radius 𝑟 from 𝐱

Example applications

▪ k-NN Classifier (old-school)

▪ Using Siamese Networks (new-school)

(27)

Dimension 𝑑 is large

Data Structures

Search Data structures

▪ Bounding volume hierarchy
▪ Hierarchical grouping of points

▪ Bounding volumes (e.g. spheres)

▪ Generic idea – many variants

▪ BSP-tree (“binary space partition tree”)
▪ Split by planes

▪ (Usually) binary tree

▪ Complex, convex cells as bounding
volumes

▪ Half-space test per node

Variants

Variants

▪ k-D-tree (axis aligned BSP-tree)
▪ Use axis parallel splitting planes

▪ Cyclically alternate splitting dimension

▪ Median cut

▪ Quadtrees / Octrees
▪ Divide into 4 (8) congruent cubes

▪ Costs exponential with dimension

▪ Practically used only in ℝ2, ℝ3

Range Query Algorithm

Recursively from root node

▪ If range overlaps bounding box
▪ Collect points in node (if any)

Keep those in range

▪ Recursion for child nodes

▪ If range does not overlap bounding box
▪ Return empty

Nodes overlapping
the geometric range

Examples

RangeRange Range

Nodes overlapping
the geometric range

Nearest-Neighbor Query Algorithm

Algorithm: k nearest neighbors

Data structure: queue sorted by distance

Initialization: Put root node in queue

While not yet k points found and queue non-empty:

Take closest object from queue

If this is a point:

output the point

Otherwise, if this is a node:

If leaf node: Insert all points into queue

If inner node: Insert all child-boxes into queue

How to Search in High Dimensions

Nearest-Neighbor(s) / 𝝐-Neighbors

▪ Linear-time brute-force search always work

▪ Tree-based algorithms
▪ Reasonable space/ precomputation

▪ Worst-case search time bounds exponential in dimension

▪ In practice
▪ kD-Trees work up to dimension 10-20

▪ Approximate search to speed it up

▪ Libraries: ANN, FLANN

▪ J-S-Lemma
▪ Reduce dimensionality to 10-20, then use ANN/FLANN

▪ Direct application: Locality-sensitive-hashing (LSH)

(34)

– too much work in high dimensions –

Computational Issues

INTEGRATION

High Dimensional Integrals
Classic application domain

▪ High-dimensional integration
domains

▪ Let‘s say, Ω = [0,1]20

Standard Integration

▪ Regular grid, 𝑘20 samples

▪ No need to try this...

k subdivisions
per axis

Rieman-sum

Higher Dimensions

Monte-Carlo Approach:

▪ Sample n points

▪ Compute average

▪ Multiply with domain volume

Property

▪ Works if variance is not too large

▪ Dimension irrelevant

n sample points
(irregular)

Example

When is Monte-Carlo integration possible?

General observation

▪ Randomized algorithms are efficient if the
crucial information is easy to find by random trials

optimal –
no variance

moderate variance –
MC-int. possible

large variance –
not efficient

bright spot

intensity
5000 on

1

10000
of the area

Numerical Example

Averaging Samples:

▪ n = 100 samples

▪ Fraction q of the domain with value 0.5/q

▪ Showing multiple pixels

q = 1 q = 0.5 q = 0.1 q = 0.01 q = 0.001 q = 0.0001

Example

Speed of convergence:

▪ Now growing n

▪ Pixel: 50% black / 50% white

▪ Growing sample size

Observation

▪ Large sample size required
before noise vanishes

n = 1

n = 10

n = 100

n = 1000

n = 10000

𝜎 ∈ 𝒪
𝜎 𝑓

𝑛

Variance Reduction
Two reasons for long compute times

Possible solution: Importance Sampling

Biggest Problem
primary estimator

variance

Importance Sampling

Importance Sampling

▪ Idea: More samples in important regions
▪ Need to weight differently to avoid bias

▪ New estimator
▪ Choose sampling density 𝑝 on Ω

න
Ω

𝑓 𝑥 𝑑𝑥 ≈
1

𝑛

𝑖=1

𝑛
𝑓 𝑥𝑖
𝑝 𝑥𝑖

𝑝 𝑥 > 0 ∀𝑥 ∈ Ω

▪ (Note: No Ω factor required here.)

▪ Sampling density 𝑝 controls importance

Illustrative Example from Graphics

Mainz
New York

6000 km

1m

More Complex Sampling Problems

What if sampling itself is costly?

▪ For example, from a MRF

𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
ෑ

𝑖

𝑝 𝑥𝑖 ෑ

𝑖,𝑗

𝑝 𝑥𝑖 , 𝑥𝑗

Markov-Chain Monte-Carlo

▪ Gibbs sampler (for graphical models / MRFs)

▪ Metropolis sampler (for unnormalized densities)

Nonetheless…

▪ Many (e.g. Bayesian) integration problems remain
intractable

(44)

Modelling 2
STATISTICAL DATA MODELLING

Chapter 10

Space

Informatik

Institut

für

Michael Wand · Institut für Informatik, JGU Mainz ·

d
im

-1

dim-2

Space

• High-dimensional space
& the curse of dimensionality

• Kernels: flat space extended

• Manifolds: curved space

(48)

Video #10

Data Modeling with Kernels

Topics

▪ Inner products & kernel
▪ Definitions

▪ Networks as kernels

▪ Understanding kernels via dual PCA

▪ Gaussian Processes
▪ Data analysis with GP

▪ Application to DNN analysis
▪ Networks as GPs

▪ Neural tangent kernel

▪ Towards explaining “Double Descent”

(49)

Inner Products & Kernels

More on Kernel Methods

John Shawe-Taylor, Nello Cristianini:
Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004

Inner Products

Vector space 𝑉

▪ Inner product 𝐱, 𝐲 of vectors 𝐱, 𝐲 ∈ 𝑉
▪ Symmetric (commutative)

𝐱, 𝐲 = 𝐲, 𝐱
▪ Bilinear

𝜆𝐱1 + 𝐱2, 𝐲 = 𝜆 𝐱1, 𝐲 + 𝐱2, 𝐲

▪ Positive definite

𝐱, 𝐱 ≥ 0 and 𝐱, 𝐱 = 0 ⇔ 𝐱 = 0

▪ In finite dimensions, this are exactly functions

𝐱, 𝐲 = 𝐱𝑇𝐌𝐲 for SPD matrices 𝐌

or equivalently

𝐱, 𝐲 = 𝐓𝐱 𝑇 𝐓𝐲 for invertible matrices 𝐓
(51)

Cartoon Example

Example Goal: Linear classification

original space “feature space”

𝜙:ℝ2 → ℝ3

𝑥, 𝑦 ↦ (𝑥2, 𝑥𝑦, 𝑦2)

Kernels

Feature spaces

▪ Data 𝐱 ∈ 𝑉 from vector space 𝑉

▪ Transform data by function 𝜙:𝑉 → 𝑊

▪ Vector space 𝑊 is called “feature space”

(53)

𝜙

Kernels

Kernels: Inner products in feature space

▪ Kernel 𝜅 𝐱, 𝐲 ≔ ⟨𝜙 𝐱 , 𝜙 𝐲 ⟩
▪ Data 𝐱, 𝐲 ∈ 𝑉

▪ Why 𝜙?
▪ 𝜙 can emphasize / unveil structure

▪ Why kernels?
▪ Sometimes easier to compute (as in “tractable”)

(54)

𝜙

𝐱

𝐲𝑘 𝐱, 𝐲

“The Kernel Trick”

feature
space

original
space

tractable
dimensionality

(typ. 10D – 100D)

intractable
dimensionality

(typ. 1010D – infD)

𝜙 𝐱 , 𝜙 𝐲

𝜙 𝐱

𝜙 𝐲

Why Kernels?

Expensive Kernels

▪ „Polynomial kernel“

𝜅 𝐱, 𝐲 = 𝐱, 𝐲 + 𝑐 𝐷

computes implicitly all monomials up to degree 𝐷
▪ Attention: with non-uniform coefficients

▪ Direct mapping 𝜙 would be exponential in 𝐷

▪ Can analyze higher moments at moderate costs

(56)

Another Popular Kernel

Gaussian / RBF / squared-exponential kernel

𝑘 𝐱, 𝐲 = exp −𝑎 𝐱 − 𝐲 2

▪ Popular choice

▪ Ignores detail in data below length-scale ≈ 𝜎

▪ Go-to solution for kernel SVMs, GP regression

(57)

Fourier Analysis

Analysis

𝑘 𝑟 = exp −𝑎𝑟2 with 𝑟 ≔ 𝐱 − 𝐲

Fourier-Domain

▪ Fourier-transformation

𝐾 𝜔 =
𝜋

𝑎
⋅ 𝑒−

𝜋𝜔 2

𝑎

▪ Low-pass filter on the distance function
▪ Exponential frequency drop-off

(58)

Fourier Analysis

Multi-Dimensional FT

▪ Gaussian cross section along 𝐱 ⊥ 𝐲

▪ Constant along 𝐱 ‖ 𝐲

(59)

𝐱

𝐲

Fourier Analysis

Numerical approximation

▪ Assume Data in 𝐱 ∈ 0,2𝜋 𝑑

𝑘 𝐱, 𝐲 =

𝐰∈ℤ𝑑

𝑧𝐰𝑒
−𝑖⟨𝐰,𝐱−𝐲⟩ =

𝐰∈ℤ𝑑

𝑧𝐰𝑒
−𝑖⟨𝐰,𝐱⟩ 𝑒𝑖⟨𝐰,𝐲⟩

with non-zero Fourier coefficients 𝑧𝐰 ∈ ℝ
(60)

𝐱

𝐲

Note Networks as Kernels

How does a deep network classifier work?

▪ Apply deep network 𝑓𝐿 ∘ ⋯ ∘ 𝑓1 on inputs 𝐱

▪ Final layer 𝑓𝐿 usually a (fully-connected) linear layer

▪ Followed by soft-max & x-entropy loss or hinge-loss

Kernel-machine

▪ Consider 𝑓𝐿−1 ∘ ⋯ ∘ 𝑓1 a learned kernel

▪ Last layer: logistic/softmax regression or SVM

▪ Kernel LR / Kernel-SVM
▪ But the kernel is rather “fancy”

▪ Most traditional practice: “handcrafted” kernels

(61)

Simple
Kernelization

(62)

How to Kernelize “any” Algorithm

Run Kernel-PCA (a.k.a. dual-PCA / MDS)

▪ Data

𝐗 =
| |
𝐱1 ⋯ 𝐱𝑛
| |

▪ Feature matrix (do not compute!)

𝜙 𝐗 =

| |

𝜙 𝐱1 ⋯ 𝜙 𝐱𝑛
| |

▪ Its Gram matrix (kernel evaluations only)

𝐆 =
⋱ ⋰

𝜙 𝐱𝑖 , 𝜙 𝐱𝑗
⋰ ⋱

= 𝜙 𝐗 𝑇𝜙 𝐗 ,

(63)

How to Kernelize “any” Algorithm

Run Kernel-PCA (dual-PCA / MDS)

▪ Take a “square root” of 𝐆:

„ 𝐆“ = 𝜙 𝐗 =

| |

𝜙 𝐱1 ⋯ 𝜙 𝐱𝑛
| |

▪ Obtained from eigenvalue decomposition

𝐆 = 𝐕𝚲𝐕T = 𝐕 𝚲
|

𝚲
T
𝐕T

▪ Recovering rotated feature space

𝜙 𝐗 = 𝐑 𝚲𝐕T for some orthogonal 𝐑

▪ Because 𝐆 is not unique

𝐆 = 𝐕𝚲𝐕T = 𝐕 𝚲 ถ𝐑T𝐑
𝐈

𝚲𝐕T

(64)

Why is this good?

Kernel-algorithm recipe

▪ Compute kernel-matrix 𝐆

▪ Eigendecomposition 𝐆 = 𝚲𝐕T

▪ Embedding = columns of 𝚲𝐕T

▪ Use embedded points in ML-algorithm

Complexity reduction

▪ 𝑛 data points

▪ Embedding: at most 𝑛 dimensions

▪ Potentially high-dim. feature space (before 𝐑)

(65)

Does this do the trick?

Invariance

▪ Kernel (Gram) matrix is rotation invariant

𝜙 𝐗 𝑇 𝜙 𝐗 = 𝜙 𝐗 𝑇𝐑𝑇𝐑 𝜙 𝐗 = 𝐑𝜙 𝐗 𝑇 𝐑𝜙 𝐗

▪ Embedding does not alter information

Costs

▪ Kernel matrix is always needed
▪ 𝒪 𝑛2 costs

▪ Spectral decomposition is typically 𝒪 𝑛3

▪ Might be suboptimal

▪ But very easy to employ

(66)

Nyström Projection

Nyström Projection

▪ Embed new feature 𝜙 𝐱 :

𝑒𝑚𝑏 𝜙 𝐱 = 𝐕𝑇𝚲−1
𝜅 𝐱1, 𝐱

⋮
𝜅 𝐱𝑛, 𝐱

Nyström Projection

Nyström Projection

▪ Reminder:

▪ Project new feature 𝜙 𝐱 on principal axes 𝐮1, … , 𝐮𝑑:

𝜙 𝐗 = 𝐔𝚲𝐕𝑇 𝐆 = 𝜙 𝐗 𝑇𝜙 𝐗 = 𝐕𝚲2𝐕𝑇

𝑒𝑚𝑏𝑃𝐶𝐴 𝜙 𝐗 = 𝐔𝑇𝜙 𝐗 𝑒𝑚𝑏𝑑𝑢𝑎𝑙 𝜙 𝐗 = 𝚲𝐕𝑇

𝑒𝑚𝑏 𝜙 𝐱 = 𝐔𝑇𝜙 𝐱

= 𝐕𝑇𝚲−1𝜙 𝐗 𝑇 𝜙 𝐱

=

𝑖=1

𝑛
1

𝜆1
𝑣𝑖,1⟨𝜙 𝐱𝑖 , 𝜙 𝐱 ⟩

⋮

𝑖=1

𝑛
1

𝜆𝑛
𝑣𝑖,𝑛⟨𝜙 𝐱𝑖 , 𝜙 𝐱 ⟩

𝜙 𝐗 = 𝐔𝚲𝐕𝑇

⇒ 𝐔 = 𝜙 𝐗 𝐕𝚲−1

⇒ 𝐔𝑇 = 𝐕𝑇𝚲−1𝜙 𝐗 𝑇

Nyström Projection

Nyström Projection

▪ Reminder:

▪ Project new feature 𝜙 𝐱 on principal axes 𝐮1, … , 𝐮𝑑:

𝜙 𝐗 = 𝐔𝚲𝐕𝑇 𝐆 = 𝜙 𝐗 𝑇𝜙 𝐗 = 𝐕𝚲2𝐕𝑇

𝑒𝑚𝑏𝑃𝐶𝐴 𝜙 𝐗 = 𝐔𝑇𝜙 𝐗 𝑒𝑚𝑏𝑑𝑢𝑎𝑙 𝜙 𝐗 = 𝚲𝐕𝑇

𝑒𝑚𝑏 𝜙 𝐱 = 𝐔𝑇𝜙 𝐱

= 𝐕𝑇𝚲−1𝜙 𝐗 𝑇 𝜙 𝐱

=

𝑖=1

𝑛
1

𝜆1
𝑣𝑖,1𝜅 𝐱𝑖 , 𝐱

⋮

𝑖=1

𝑛
1

𝜆𝑛
𝑣𝑖,𝑛𝜅 𝐱𝑖 , 𝐱

Nyström Projection

Nyström Projection

▪ Embed new feature 𝜙 𝐱 :

Training & Inference

▪ Determine factorization for training

▪ Use Nyström-Projection for inference
▪ Input new data points into non-kernelized ML-algorithm

▪ Embedding varies with 𝜅(𝐱𝑖 , .⋅)
▪ Gaussian: Smoothed proximity to 𝐱1, … , 𝐱𝑛
▪ Distance-based learning scheme

𝑒𝑚𝑏 𝜙 𝐱 = 𝐕𝑇𝚲−1
𝜅 𝐱1, 𝐱

⋮
𝜅 𝐱𝑛, 𝐱

Note: MDS

We can convert

▪ Gram matrix → all pairwise distances
▪ Losing global translation

▪ All pairwise distances → Gram matrix
▪ Up to a global translation

Consequences

▪ After feature-map, algorithms are distance-based
▪ Johnsen-Lindenstrauss-Lemma

– Can be approximated in rel. low dimensions

– Much less information than full vectors

▪ Kernel design by distances-design
▪ Often more intuitive

(71)

Gaussian Process
Regression

Background Literature

Carl Edward Rasmussen, Christopher K. I. Williams
Gaussian Processes for Machine Learning
The MIT Press, 2006.
http://www.gaussianprocess.org/gpml/

Linear Regression (w/linear basis)

Regression

▪ Data points
𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛 ∈ ℝ𝑑 × ℝ

▪ Looking for approx. function
𝑓 𝐱𝑖 ≈ 𝑦𝑖

Linear Regression

▪ Ansatz
𝑓𝐰 𝐱 = 𝐰, 𝐱

▪ Objective

𝑖=1

𝑛

𝐰T𝐱𝑖 − 𝑦𝑖
2
=

𝑖=1

𝑛

𝐱𝑖
T𝐰T𝐰𝐱𝑖 − 2𝐰T𝐱𝑖𝑦𝑖 + 𝑦𝑖

2 → min.

(73)

Linear Regression (w/linear basis)

Kernelized Linear Regression

▪ Ansatz
𝑓𝐰 𝐱 = 𝐰,𝜙 𝐱

▪ Objective

𝑖=1

𝑛

𝐰T𝜙 𝐱𝑖 − 𝑦𝑖
2

=

𝑖=1

𝑛

𝐰T 𝜙 𝐱𝑖 𝜙 𝐱𝑖
T 𝐰− 2𝐰T𝜙 𝐱𝑖 𝑦𝑖 + 𝑦𝑖

2 → min.

▪ Still: Quadratic optimization problem in 𝐰
▪ Gaussian probabilistic model

▪ Simply solve a linear system

(74)

How Interesting is This?

Moderately Interesting?

▪ Ansatz
𝑓𝐰 𝐱 = 𝐰,𝜙 𝐱

with

𝜙 𝐱 =
𝑏1 𝐱
⋮

𝑏𝑘 𝐱

is just approximation with a linear basis (Mod-1)

▪ For example

𝜙 𝑥 = 1, 𝑥, 𝑥2, … , 𝑥𝐷 𝑇

yields polynomial fitting (Video 05d)

(75)

Non-Parametric GPs

Gaussian Processes

Main idea

▪ Consider function space

▪ Define Gaussian distribution in function space
▪ Gaussian priors

▪ Gaussian data terms

▪ Use this to solve various ML-problems

Technical challenge

▪ Gaussians in infinite-dim. space

(77)

Gaussian Processes

Gaussian processes

▪ We would like to infer functions
𝑓:ℝ𝑑 → ℝ

▪ We assume a “Gaussian distribution”

▪ For any finite sample 𝐱1, … , 𝐱𝑛 ∈ ℝ𝑑

𝑓 𝐱1 , … , 𝑓 𝐱𝑛 are normal distributed

▪ …with mean 𝜇 = 0,

i.e. 𝜇 𝐱1 , … , 𝜇 𝐱𝑛 = 0

▪ …and covariance

▪ The “kernel” 𝜅 is called the covariance function.
(78)

cov 𝑓 𝐱𝑖 , 𝑓 𝐱𝑗 = 𝜅 𝐱𝑖 , 𝐱𝑗

=𝔼 𝑓 𝐱𝑖 −𝔼 𝑓 𝐱𝑖 ⋅ 𝑓 𝐱𝑗 −𝔼 𝑓 𝐱𝑗

Nothing to see here, move on…

Comparison: vector case

𝐱 =

𝑥1
⋮
𝑥𝑛

, 𝛍 =

𝜇1
⋮
𝜇𝑛

, 𝚺 =
⋱ ⋰

cov(𝐱1, 𝐱𝑗)

⋰ ⋱

Functions / GPs

𝑓 →
𝑓 𝑥1
⋮

𝑓 𝑥𝑛

, 𝜇 →
𝜇 𝑥1
⋮

𝜇 𝑥𝑛

, 𝐊 =
⋱ ⋰

𝜅(𝐱1, 𝐱𝑗)

⋰ ⋱

(79)

Gaussian Process Regression

Regression

▪ Data points
𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛 ∈ ℝ𝑑 × ℝ

▪ Looking for approx. function
𝑓 𝐱𝑖 ≈ 𝑦𝑖

Prior on function space

▪ Normal distribution on functions 𝑓~𝒩0,𝜅

▪ In the sense of the previous slide

Data term

▪ Noisy observations 𝑓 𝐱𝑖 ~𝒩𝑦𝑖,𝜎 𝑦

(80)

Bayes Rule

Combining Data + Prior

𝑃 𝑓 𝐷 =
𝑃 𝐷 𝑓 𝑃 𝑓

𝑃 𝐷
~ 𝑃 𝐷 𝑓 𝑃 𝑓

Notation (next slide)

▪ Training data points 𝐱1, … , 𝐱𝑛 ∈ ℝ
𝑑

with values 𝑦1, … , 𝑦𝑛 ∈ ℝ

▪ Query data points 𝐱1
∗ , … , 𝐱𝑚

∗ ∈ ℝ𝑑

▪ Unknown function 𝑓:

▪ Unknown function values 𝐘 = 𝑓 𝐱1 , … , 𝑓 𝐱𝑛
T

– Not necessarily equal to (𝑦1, … , 𝑦𝑛)

▪ Unknown query function values 𝐘∗ = 𝑓 𝐱1
∗ , … , 𝑓 𝐱𝑚

∗ T

(81)

Bayes Rule

Data Term

▪

Prior

▪

(82)

𝑃 𝐘 𝐷 =ෑ

𝑖=1

𝑛

𝒩𝑦𝑖,𝜎 𝐘

𝑃
𝐘
𝐘∗

=ෑ

𝑖=1

𝑛

𝒩𝟎,𝚺
𝐘
𝐘∗

with 𝚺 =
𝐾 𝐘, 𝐘 𝐾 𝐘, 𝐘∗

𝐾 𝐘∗, 𝐘 𝐾 𝐘∗, 𝐘∗

𝑃 𝑓 𝐷 ~ 𝑃 𝐷 𝑓 𝑃 𝑓

where 𝐾 𝐗, 𝐘 =
⋱ ⋰

𝜅 𝐱𝑖 , 𝐲𝑗
⋰ ⋱

Inference

Determine new function values

▪ Multiply Gaussians
▪ Result is again a Gaussian

▪ Mean and covariance matrix change (combination)

▪ Means for new variables yield interpolation
▪ Variances are also available!

Corresponding linear system

𝐾 𝐘,𝐘 + 𝜎−2𝐈 𝐾 𝐘, 𝐘∗

𝐾 𝐘∗,𝐘 𝐾 𝐘∗,𝐘∗
𝐘

𝐘∗
= 𝜎−2𝐲

𝟎

(83)

Example 1:
Image Reconstruction

ground truth reconstruction (Gaussian prior)

input (noisy)
(85)

Minimization Problem

Continuous

𝜎𝐷
−2න

Ω

𝑓 𝐱 − 𝑑 𝐱
2
𝑑𝐱 + 𝜎𝑋

−2න
Ω

∇𝑓 𝐱 2𝑑𝐱 → min.

Minimize
𝐸 𝐷 𝑋 + E 𝑋

=

𝑖=1

𝑤

𝑗=1

ℎ
𝑥𝑖 − 𝑑𝑖

2

2𝜎𝐷
2 +

𝑖=1

𝑤−1

𝑗=1

ℎ−1
𝑥𝑖+1,𝑗 − 𝑥𝑖 ,𝑗

2
+ 𝑥𝑖,𝑗+1 − 𝑥𝑖 ,𝑗

2

2𝜎𝑋
2

Equivalent minimization objective

𝑖=1

𝑤

𝑗=1

ℎ

𝑥𝑖 − 𝑑𝑖
2 +

𝜎𝑋
2

𝜎𝐷
2

𝑖=1

𝑤−1

𝑗=1

ℎ−1

𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗
2
+ 𝑥𝑖 ,𝑗+1 − 𝑥𝑖,𝑗

2

(86)

Euler-Lagrange Equation

Variational problem
𝐸 𝑓 → 𝑚𝑖𝑛. with

𝐸 𝑓 = න
Ω

𝐹 𝑥1, … , 𝑥𝑑 , 𝑓 𝐱 , 𝜕𝑥1𝑓 𝐱 ,… , 𝜕𝑥𝑑𝑓 𝐱 𝑑𝐱

Necessary condition

𝜕𝐹

𝜕arg{𝑓 𝐱 }
=

𝑖=1

𝑑
𝜕

𝜕𝑥𝑖

𝜕𝐹

𝜕arg{𝜕𝑥𝑖𝑓 𝐱 }

derivative of F
by corr. argument

ordinary partial
derivative by xi

Diffusion / Poisson Equation

Harmonic energy

𝐸 𝑓 = න
Ω

𝛻𝑓 𝐱 2 𝑑𝐱 → min.

Necessary condition

Δ𝑓 𝐱 = 0

Proof

▪ Euler-Lagrange-Equation (Mod-1)

Diffusion / Poisson Equation

Harmonic energy

𝐸 𝑓 = න
Ω

𝛻𝑓 𝐱 2 𝑑𝐱 = න
Ω

𝜕𝑥1𝑓 𝐱
2
+⋯+ 𝜕𝑥𝑑𝑓 𝐱

2
𝑑𝐱

Necessary condition

0 =

𝑖=1

𝑑
𝜕

𝜕𝑥𝑖

𝜕 𝐱 → 𝜕𝑥1𝑓 𝐱
2
+⋯+ 𝜕𝑥𝑑𝑓 𝐱

2

𝜕arg{𝜕𝑥𝑖𝑓 𝐱 }

=

𝑖=1

𝑑
𝜕

𝜕𝑥𝑖
2𝜕𝑥𝑖𝑓 𝐱 = 2

𝑖=1

𝑑
𝜕2𝑓 𝐱

𝜕𝑥𝑖
2 ⇒ Δ𝑓(𝐱) = 0

Eigen Analysis

Eigenfunctions of the Laplacian

Δ𝑓 = 𝜕𝑥1
2 𝑓 +⋯+ 𝜕𝑥𝑑

2 𝑓

Eigenfunctions

▪ Square domain Ω = 0,2𝜋 2

▪ Eigenbasis: Fourier-Basis

𝑏𝜔1,𝜔2
𝑥, 𝑦 = 𝑒−𝑖 𝜔1𝑥+𝜔2𝑦 ,

▪ Eigenvalues
𝜆𝜔1,𝜔2

= 𝜔1
2 +𝜔2

2

𝜔1, 𝜔2 ∈ ℤ

All Just Gaussians…

data w/noise

posterior

Fourier basis

prior

So what does it do?

Optimization problem

𝐸 𝑓 = න
0

2𝜋

𝑓 𝑥 − 𝑑 𝑥
2
𝑑𝑥 + 𝑐 ⋅ න

0

2𝜋

∇𝑓 𝑥
2
𝑑𝑥

Frequency response

likelihood (data) prior

0

20

40

60

80

100

1 3 5 7 9

0%

20%

40%

60%

80%

100%

1 3 5 7 9

prior eigenvalue data: relative weight

frequency frequency

Visualization (2D)

Eigenvalues grow with 2D frequencies

𝜔1

𝜔2

𝜆 𝜔1, 𝜔2

Visualization (2D)

Dampening of high frequencies (2D)

𝜔1

𝜔2

𝜆−1 𝜔1, 𝜔2

Insights

The following three things are identical
▪ Maximum a priori reconstruction with ∇𝑓 2-prior

▪ Dampening of frequency spectrum with

1

1 + 𝛚 2

frequency response (𝛚 = frequency)

Differential Regularization as GP

Kernel interpretation

▪ Assume 𝑓 is given as Fourier series

𝑓(𝐱) = σ𝛚∈ℤ2 𝑧𝛚𝑒
−𝑖𝛚𝐱

▪ Derivative ∇𝑓 has Fourier series

∇𝑓 𝐱 =

𝛚∈ℤ2

−𝑖𝛚 ⋅ 𝑧𝛚𝑒
−𝑖𝛚𝐱

▪ Thus
𝜅 𝛚1, 𝛚2 = 𝛚1 ⋅ 𝛚2

▪ Spatial kernel via inverse FT
▪ See [Rasmussen & Williams 2004] for details

Better Inference

Go full Bayesian

▪ We usually have hyperparameters
▪ Strength of the regularizer

▪ Properties of the kernel

– E.g. parameter 𝑎 in RBF-kernel

– Determines spectral properties / smoothing

▪ We can just marginalize over everything
▪ Regularizer weight

▪ Kernel parameters

▪ As everything is Gaussian, the marginal likelihood
can be computed

▪ Integration over “all models” can be done in closed-form

▪ Averaging still exponential in number of parameters
(97)

Example 2: Fractal
Brownian Motion

Brown Noise

Fractal noise

▪ Uniform i.i.d. noise rare in nature

▪ „Fractal Brownian Motion“ (FBM):
Noise with decaying Power-
Spectrum

FBM Noise (1D)

Formal Definition

▪ Function
𝑓: 0,2𝜋 𝑑 → ℝ

▪ Gaussian distribution
on such functions

▪ Gaussian process

▪ Fourier spectrum
▪ Each Fourier-coefficient

is i.i.d. Gaussian

▪ Mean 𝜇𝜔 = 0

▪ Variance is 𝜎𝜔
2 =

1

𝜔2ℎ for ℎ > 0

white noise

FBM noise

“fractal landscape”

FBM Noise (1D)

Fourier synthesis

𝑓 𝑥 =

𝜔=1

∞

𝑎𝜔 sin(𝜔𝑥 + 𝜑𝑘) ,

𝑎𝜔 ∼ 𝒩
𝜇=0, 𝜎=

1

𝑘ℎ
,

𝜑𝜔 ∼ rnd 0,2𝜋

ℎ > 0 („fractal exponent“)

white noise

FBM noise

“fractal landscape”

[joint work with Martin Bokeloh, 2006]

[joint work with Martin Bokeloh, 2006]

Deep Networks

(105)

Sounds all nice, but how
is this relevant to demystifying deep learning?

GPs & DNNs

Three Examples

▪ Wide network layers approach GPs

▪ The neural tangent kernel (NTK)

▪ A model for the “double-descent” phenomenon

(106)

Two Layers Network [Neal 1996]

Considering Preactivations (and next. Layer)

𝑦𝑖
𝑙
=

𝑗=1

𝑑𝑙

𝐰𝑖,𝑗
𝑙
⋅ 𝑓𝑖

𝑙−1
𝐱

𝑓𝑖
𝑙
= 𝜑 𝑦𝑖

𝑙

▪ Assuming that weights are initialized i.i.d.
▪ Mean zero, typ. normal distributed (not important)

▪ Each 𝑦𝑖
𝑙

is the sum of i.i.d. random variables

▪ Converges to normal distribution (CLT)
– Assuming distributions with mean and variance

▪ Mean zero

▪ Variance grows linearly with 𝑑𝑙

(108)R.M. Neal: Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

Layer Output

In the infinite-width-limit

▪ Networks yield Gaussian processes at initialization

Speaking of initialization…

𝑦𝑖
𝑙
=

𝑗=1

𝑑𝑙
1

𝑑𝑙
𝐰𝑖,𝑗

𝑙
⋅ 𝑓𝑖

𝑙−1
𝐱

▪ LeCun-Initialization
▪ Normal distributed initialization

▪ Normalize output to unit variance

▪ Our equation

▪ We assume 𝐰𝑖,𝑗
𝑙
~𝒩0,1 and normalize by

1

𝑑𝑙
explicitly

(109)

The Neural Tangent Kernel

Something very simple

▪ Let 𝑓 𝐱;𝐖 the full multi-layer network
▪ 𝑓 is a function of inputs 𝐱 and weights 𝐖

▪ 𝑓 is highly non-linear

▪ Using LeCun-Initialization 𝐖0

▪ Taylor-approximation

𝑓 𝐱;𝐖 ሶ≈ 𝑓 𝐱;𝐖0 + ∇𝐖𝑓 𝐱0;𝐖0 ⋅ 𝐖 −𝐖0

▪ Linearized version is a Gaussian process
▪ Non-linear feature map in 𝐱
▪ Linear in weights 𝐖

▪ Training amounts to solving a linear system

▪ Think of fitting non-linear basis functions w/linear weights
(110)

The Neural Tangent Kernel

First-order Taylor

▪ NTK-Approximation

𝑓 𝐱;𝐖 ሶ≈ 𝑓 𝐱;𝐖0 + ∇𝐖𝑓 𝐱0;𝐖0 ⋅ 𝐖 −𝐖0

This can’t be good, can it?
▪ Linear approximation only valid close to 𝐖0

Now: Infinite width limit
▪ Very wide networks:

weights 𝐖 change very little during training
▪ Empirical finding (for now)

▪ Seems to converge

(111)

It Does Converge…

Proof sketch:

▪ Measuring non-linearity as

𝐻𝑓
2

∇𝑓 2

▪ Ratio of Hessian 𝐻𝑓 to Gradient (Jacobian) ∇𝑓

▪ Chain rule: replace 𝑓 𝑥 → 𝑓 𝛼𝑥 leads to

𝑓′ 𝑥 → 𝛼𝑓′ 𝛼𝑥 𝑓′ 𝑥 → 𝛼2𝑓′′ 𝛼𝑥

▪ Multi-variate

𝑓 𝐖 → 𝑓 𝛼𝐖 leads to
𝛼2 𝐻𝑓 𝛼𝐖

2

𝛼 ∇𝑓 𝛼𝐖 2

(112)

Layer scaling

Deep Network Layer

𝑦𝑖
𝑙
=

𝑗=1

𝑑𝑙
1

𝑑𝑙
𝐰𝑖,𝑗

𝑙
⋅ 𝑓𝑖

𝑙−1
𝐱

Going wide…

▪ We take 𝑑𝑙 → ∞

▪ Thus, we take 𝛼 =
1

𝑑𝑙
→ 0

▪ Network becomes approximately linear
▪ Converges to linear for infinite width

▪ One can compute the limit kernel analytically!

(113)

So, All Linear Regression Then?

Practical findings

▪ Reasonably good performance
▪ Better than standard kernels such as RBF

▪ But: still below finite-width DNNs
▪ Fully-connected NTK networks quoted 7% below standard

▪ Best convolutional NTK network I’ve seen performs at
“AlexNet”-Level on CIFAR-10

▪ Finite width seems to be important

Strong theoretical tool

▪ GPs are much easier to understand than DNNs

(114)

(Deep?) Double Descent

The Generalization Conundrum

Generalization behavior is weird

▪ Networks are able to fit random data

▪ Still generalize on “reasonable” data

[A. Achille, S. Soatto: Emergence of Invariance and Disentanglement in Deep Representations
Journal of Machine Learning Research 18 (2018) 1-34. (Figure 1, CC-BY 4.0)]

The “Double-Descent”

Closer inspection: “Double-Descent” [Belkin 2019]

▪ Underparametrized regime:
“Classical” Bias-Variance-Trade-Off

▪ Overparametrized regime:
Error reduced again (maybe even lower)

generalization
error

#parametersinterpolation

“classical”
BV-Trade-Off

“modern”
overparametrized

regime

Overparametrized Double-Descent

Let’s assume, we just do function fitting

▪ Searching function
𝑓:ℝ𝑑 → ℝ𝑚

▪ Basis functions
𝑏1, … , 𝑏𝑘: ℝ

𝑑 → ℝ𝑚

▪ Ansatz

𝑓 𝐱 =

𝑖=1

𝑘

𝜆𝑖𝑏𝑖 𝐱

▪ With Gaussian prior 𝑝 𝜆𝑖 = 𝒩0,𝜎𝑖

(118)

Overparametrized Double-Descent

Example: Image reconstruction

▪ Fourier basis functions

𝑏𝜔1,𝜔2
= exp 𝑖 𝜔1𝑥1 +𝜔2𝑥2

▪ Prior

𝑝 𝜆𝜔1,𝜔2
= 𝒩0,𝜎𝑖=𝜔1

2+𝜔2
2

(119)

Overparametrized Double-Descent

Let’s assume, we just do function fitting

▪ Searching function
𝑓:ℝ𝑑 → ℝ𝑚

▪ Basis functions
𝑏1, … , 𝑏𝑘: ℝ

𝑑 → ℝ𝑚

▪ Ansatz

𝑓 𝐱 =

𝑖=1

𝑘

𝜆𝑖𝑏𝑖 𝐱

▪ With Gaussian prior 𝑝 𝜆𝑖 = 𝒩0,𝜎𝑖

(120)

We Now Do Function Fitting

“Realistic” Numerics

▪ We replace the prior by uniform prior
𝑝 𝜆𝑖 = 𝒩0,1

▪ Rescale basis functions accordingly

𝑏𝑖
′ =

1

𝜎𝑖
𝑏𝑖

▪ Yields same solution
▪ That is also what a kernel feature map would do

(121)

We Now Do Function Fitting

Least-Squares-Fitting

▪ Given training data 𝐱𝑗 , 𝐲𝑗 , 𝑗 = 1,… , 𝑛

▪ We solve

arg min
𝜆1,…,𝜆𝑘

𝑗=1

𝑛

𝑖=1

𝑘

𝜆𝑖𝑏𝑖 𝐱𝑗 − 𝐲𝑗

2

▪ And pick 𝜆1, … , 𝜆𝑘 with minimal 𝛌 2

in case of ambiguity
▪ An SVD-solver (pseudo inverse) would do this

▪ Most (mildly-regularized) numerical descent solvers
would do this

(122)

What Do We Get?

Now, change parameters

▪ We pick only a subset 𝑆 of basis functions
𝑆 ⊂ 𝐵 = 𝑏1, … , 𝑏𝑘

▪ Underparametrized
▪ #𝑆 ≪ 𝑛: underfitting possible

▪ Interpolation
▪ #𝑆 ≈ 𝑛: exact fit to the data with random 𝑆

▪ Results might be rather bad

▪ Overparametrized
▪ Convergence to regularized solution

▪ Many solutions, picking with minimal 𝛌 2

▪ This leads to regularization!

(123)

“Classical”
BV-Trade-Off

Convergence
to regularized
(better) solution

Et Voilà!

Double Descent

generalization
error

#parametersinterpolation

“classical”
BV-Trade-Off

“modern”
overparametrized

regime

Double-Descent in GPs with RFF

Conclusions

▪ Simple least-squares fitting can double-descent
▪ Increase parameters

▪ By adding more basis functions

▪ Approximation first overfits, then gets better again

▪ Deep networks can be approximated by GPs
▪ Belkin et al. discuss “Random Fourier Features” for

approximating an RBF-kernel

▪ NTK-view: Better approximation by increasing width

▪ Not a complete explanation
▪ Only plausible hypothesis for effect structure

(125)

Sources on Double-Descent
C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals:

Understanding deep learning requires rethinking generalization. ICLR 2017.

https://arxiv.org/pdf/1611.03530.pdf

A. Achille, S. Soatto:
Emergence of Invariance and Disentanglement in Deep Representations.

Journal of Machine Learning Research 18 (2018) 1-34.

https://arxiv.org/pdf/1706.01350.pdf

M. Belkin, D. Hsu, S. Ma, S. Mandal:
Reconciling modern machine-learning practice and the classical bias–variance
trade-off. Proc. of the National Academy of Sciences 116 (32), 15849-15854, 2019.

https://arxiv.org/pdf/1812.11118.pdf

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak I. Sutskever:

Deep Double Descent: Where Bigger Models and More Data Hurt. ICLR 2020.

https://openreview.net/forum?id=B1g5sA4twr

(126)

Summary

Kernels – Virtual Euclidean Space

Feature maps w/kernels

▪ Map input into “deformed” feature space

▪ Kernels are the scalar product of the feature space

▪ Efficient handling of complex feature spaces

Gaussian processes

▪ Gaussian model on functions

▪ Covariance function could be interpreted as kernel

Analysis of DNNs

▪ Kernel / GP approximation provide models

(128)

Modelling 2
STATISTICAL DATA MODELLING

Chapter 10

Space

Informatik

Institut

für

Michael Wand · Institut für Informatik, JGU Mainz ·

d
im

-1

dim-2

Space

• High-dimensional space
& the curse of dimensionality

• Kernels: flat space extended

• Manifolds: curved space

Video #10

Overview

Curved Space

▪ Brief intro to concepts from differential geometry
▪ Fundamental forms: Metric & Curvature

▪ 2D and 3D Curves & Surfaces

▪ Intrinsic geometry

▪ Applications to deep learning

(135)

Differential Geometry Intro

*#$?!!

Embedded Geometry Intrinsic Geometry

𝑑-dim. Manifold embedded in ℝ𝑛

(𝑑 ≤ 𝑛)
no ambient space

(“general relativity”)

*#$?!!

*#$?!!

Differential Geometry Intro

Embedded Geometry Intrinsic Geometry

𝑑-dim. Manifold embedded in ℝ𝑛

(𝑑 ≤ 𝑛)
no ambient space

(“general relativity”)

*#$?!!

Manifolds

Elementary Topology

Homeomorphism

▪ ℎ: 𝑋 → 𝑌

▪ ℎ is bijective

▪ ℎ is continuous

▪ ℎ−1 exists and is continuous

▪ Basically, a continuous deformation

Topological equivalence

▪ Objects are topologically equivalent if there exists a
homeomorphism that maps between them

▪ “Can be deformed into each other”

Surfaces of Volumes

Boundaries of volumes in 3D

▪ Topological equivalence classes
▪ Sphere

▪ Torus

▪ n-fold Torus

▪ Genus = number of tunnels

g = 0 g = 1 g = 2

...

Manifold

Definition: Manifold

▪ A d-manifold ℳ:
At every 𝐱 ∈ ℳ there exists an 𝜖-environment
homeomorphic to a d-dimensional disc

▪ “With boundary”: disc or half-disc

𝑥1

homeomorphism

𝑥2

Parametric Functions

Parametric Patches

Parametric Patch

▪ Mapping 𝑓:ℝ𝑑 ⊇ Ω → ℝ𝐷

▪ Assumption: 𝑓 ∈ 𝐶∞, Ω open

▪ Geometry 𝒢 = 𝑓 Ω

u

v

(u, v)

f

Ω ⊆ ℝ𝑑

𝜕𝑥2𝑓 𝐱

𝜕𝑥1𝑓 𝐱

𝐧1 𝐱

𝒢 = 𝑓 Ω ⊂ ℝ𝐷

f (𝐱)
(up to)
𝑑 tangent
coordinates

(up to)
𝐷 − 𝑑 normal
coordinates

ℝ𝐷

Regular Parametrizations

Regular Parametrization

▪ “Does not stop anywhere”

▪ Formally: ∀𝐱 ∈ Ω: det ∇𝑓 ∇𝑓 𝑇 ≠ 0

(144)

u

v

(u, v)

f

Ω ⊆ ℝ𝑑

𝜕𝑥2𝑓 𝐱

𝜕𝑥1𝑓 𝐱

𝐧1 𝐱

𝒢 = 𝑓 Ω ⊂ ℝ𝐷

f (𝐱)

ℝ𝐷

det ∇𝑓

Tangent Space

Tangent Space

▪ Assume regular parametrization

▪ Tangent space 𝑇𝒢 𝐱 = span 𝜕1𝑓 𝐱 ,… , 𝜕𝑑𝑓 𝐱

▪ Vector space – as affine space: origin 𝑓 𝐱 (145)

u

v

(u, v)

f

Ω ⊆ ℝ𝑑

𝜕𝑥2𝑓 𝐱

𝜕𝑥1𝑓 𝐱

𝐧1 𝐱

𝒢 = 𝑓 Ω ⊂ ℝ𝐷

f (𝐱)

ℝ𝐷

𝑇𝒢 𝐱

Complex Geometry: Overlapping “Charts”

chart 1

chart 2

[more of them,
cover whole bunny]

Examples
(Curves & Surfaces)

Parametric Curves

Parametric Curves:

▪ A differentiable function

𝑓: 𝑎, 𝑏 → ℝ𝑛

describes a parametric curve

𝐶 = 𝑓 𝑎, 𝑏 , 𝐶 ⊆ ℝ𝑛.

▪ Parametrization regular: 𝑓′ 𝑡 ≠ 0 for all 𝑡

▪ Unit-speed parametrization: 𝑓′ 𝑡 ≡ 1

f

a

b C = f ((a, b))

f

Tangents

Tangents / normals

▪ Any curve 𝐶 ⊆ ℝ𝑛: unit tangent vector

▪ For curves 𝐶 ⊆ ℝ2: unit normal vector

tangent 𝑡 =
𝑓′ 𝑡

𝑓′ 𝑡

normal 𝑡 =
0 −1
1 0

𝑓′ 𝑡

𝑓′ 𝑡

Parametric Surfaces

Function 𝑓 𝐱 = 𝑓 𝑢, 𝑣 → ℝ3

▪ Tangents: 𝐮 𝑢, 𝑣 = 𝜕𝑢𝑓 𝑢, 𝑣 ,

𝐯 𝑢, 𝑣 = 𝜕𝑣𝑓 𝑢, 𝑣

▪ Normal: 𝐧 𝑢, 𝑣 =
𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓(𝑢,𝑣)

𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓(𝑢,𝑣)

u

v

(u, v)

f (u, v)f

Ω ⊆ ℝ2

v f(u,v)

u f(u,v)

n(u,v)

𝒢 = 𝑓 Ω ⊂ ℝ3

The Metric Tensor

First Fundamental Form

First fundamental form a.k.a. metric tensor

▪ Regular parametric patch
𝑓:ℝ𝑑 ⊇ Ω → ℝ𝐷

▪ 𝑓 will distort angles and distances
▪ Visible in the scalar product.

▪ First order Taylor approximation measures effect

𝑓 𝐱 ≈ 𝑓 𝐱0 + ∇𝑓 𝐱0 𝐱 − 𝐱0

x2

x1

x2 f (x0)

x1 f (x0)x0 f(x0)

First Fundamental Form

First Fundamental Form a.k.a. metric tensor

▪ First order Taylor approximation:

𝑓 𝐱 ≈ 𝑓 𝐱0 + ∇𝑓 𝐱0 𝐱 − 𝐱0

▪ Scalar product of vectors 𝐚, 𝐛 ∈ ℝ2:

≈. . ∇𝑓 𝐱0 ⋅ 𝐚, . ∇𝑓 𝐱0 ⋅ 𝐛 . . =. . 𝐚T ∇𝑓 𝐱0
T ⋅ ∇𝑓 𝐱0

first fundamental form
𝐈𝑓(𝐱0)

𝐛

. 𝑓 𝐱0 + 𝐚 − 𝑓 𝐱0 , . 𝑓 𝐱0 + 𝐛 − 𝑓 𝐱0 .

x2

x1

x2 f (x0)

x1 f (x0)x0 f(x0)

x2

x1

x2 f (x0)

x1 f (x0)

a f(a+x0)b
f(b+x0)

f(x0)x0

Surfaces (2-Manifolds)

First Fundamental Form

▪ Metric tensor is a 𝑑 × 𝑑 matrix

▪ Symmetric, positive definite (regular parametrization)

▪ Generalized scalar product

▪ Bilinear Form

𝐈𝑓 𝐚, 𝐛 ≔ 𝐚T ⋅ ∇𝑓T ⋅ ∇𝑓 ⋅ 𝐛

▪ For surfaces (𝑑 = 2)

∇𝑓T ⋅ ∇𝑓 =
𝜕𝑢𝑓𝜕𝑢𝑓 𝜕𝑢𝑓𝜕𝑣𝑓
𝜕𝑢𝑓𝜕𝑣𝑓 𝜕𝑣𝑓𝜕𝑣𝑓

=:
𝐸 𝐹
𝐹 𝐺

𝐈𝑓 𝐚, 𝐛 = 𝐸𝑎1𝑏1 + 𝐹 𝑎1𝑏2 + 𝑎2𝑏1 + 𝐺𝑎2𝑏2

Remark

First fundamental form

▪ Property of the parametrization
▪ Does not characterize surface itself

▪ Can always find parametrization with 𝐈𝑓 = identity matrix

– Local orthogonal tangent-frame

▪ Higher-order derivatives capture geometry
▪ Derivative of first fundamental form

u
v

n

𝑠 𝑢, 𝑣 ∈ ℝ3

n

u

converging
to “flat”𝒮

Examples
(Curves & Surfaces)

Length of a Curve

The length of a curve

▪ The length of a regular curve C is defined as:

▪ Independent of the parametrization

▪ Proof: integral transformation theorem

▪ length 𝐶 = |𝑏 – 𝑎| for a unit-speed parametrization

length 𝐶 = න
𝑎

𝑏

‖𝑓′ 𝑡 ‖𝑑𝑡

= න
𝑎

𝑏

det 𝐈𝑓(𝑡) 𝑑𝑡

Surface Area

Surface Area

▪ Patch 𝒮
𝑠:ℝ2 ⊇ Ω → ℝ3

▪ Integrate over constant function
𝒮 ∋ 𝐲 ↦ 1

over surface

▪ Then apply integral transformation theorem:

area 𝒮 = න
Ω

det 𝐈𝑠(𝑡) 𝑑𝐱

= න
Ω

𝜕𝑢𝑠 𝐱 × 𝜕𝑣𝑠(𝐱) 𝑑𝐱

Curvature
(of curves)

Curvature

Curvature:

▪ First derivatives:
▪ Curve direction / speed of movement

▪ Curvature:
▪ Encoded in 2nd order information

Why not just use 𝑓′′ ?

▪ Problem: Depends on parametrization
▪ Different velocity yields different results

▪ Need to distinguish acceleration…
▪ …in tangential and

▪ …non-tangential directions.

Curvature & 2nd Derivatives

Definition of curvature

▪ Need non-tangential component of 𝑓′′
▪ Project on normal

▪ Ignore accelerating/slowing down
▪ Normalize speed

𝐶 = 𝑓 ((𝑎, 𝑏))

tangent(t)

normal(t)

𝑓′′(𝑡)

Space Curves

Curvature of a curve 𝐶 ⊆ ℝ3

▪ Curvature defined as

𝜅 𝑡 =
𝑓′ 𝑡 × 𝑓′′ 𝑡

𝑓′ 𝑡 3

▪ Assuming regular parametrization
▪ 𝑓′ does not vanish

C

𝑓′(𝑡)

𝑓′′ 𝑡

Torsion

Definition torsion of 𝑓 at 𝑡

▪ Curve 𝐶 ⊆ ℝ3

▪ Regular parametrization

▪ Non-zero curvature

𝜏 𝑡 =
𝑓′ 𝑡 × 𝑓′′ 𝑡 ⋅ 𝑓′′′ 𝑡

𝑓′ 𝑡 × 𝑓′′ 𝑡 2
=
det 𝑓′ 𝑡 , 𝑓′′ 𝑡 , 𝑓′′′ 𝑡

𝑓′ 𝑡 × 𝑓′′ 𝑡 2

C

𝑓′(𝑡)𝑓′′(𝑡)

𝑓′′′(𝑡)

Theorem

Fundamental Theorem of Space Curves

▪ Two curves 𝐶 ⊆ ℝ3

▪ unit speed parameterized

▪ identical, positive curvature (𝜅 > 0)

▪ and identical torsion

are identical up to a rigid motion.

▪ In the 2D case, torsion is not required

▪ Would be zero everywhere

Curvature
(of surfaces)

Second Fundamental Form

Again: Missing Information

▪ First fundamental form
measures only length changes.

▪ Cylinder looks like a flat sheet

Complete (extrinsic) geometry

▪ Measure curvature of a surface as well.

▪ Requires second order information
▪ Anything first order is inherently “flat”

Second Fundamental Form

Basic Idea

▪ Compute second derivative vectors

▪ Project in normal direction
▪ Remove tangential acceleration

Second Fundamental Form
Definition

▪ Regular parametrization 𝑠: ℝ2 ⊇ Ω → ℝ3

▪ Second fundamental form of s :

Notation as bilinear form

𝐈𝐈𝑠 𝐱0 =
𝜕𝑢𝑢𝑠 𝐱0 ⋅ 𝐧 𝐱0 𝜕𝑢𝑣𝑠 𝐱0 ⋅ 𝐧 𝐱0
𝜕𝑢𝑣𝑠 𝐱0 ⋅ 𝐧 𝐱0 𝜕𝑣𝑣𝑠 𝐱0 ⋅ 𝐧 𝐱0

=
𝑒 𝑓
𝑓 𝑔

𝐈𝐈𝑠 𝐚, 𝐛 = 𝐚T
𝜕𝑢𝑢𝑠 ⋅ 𝐧 𝜕𝑢𝑣𝑠 ⋅ 𝐧
𝜕𝑢𝑣𝑠 ⋅ 𝐧 𝜕𝑣𝑣𝑠 ⋅ 𝐧

𝐛

Remark: Christoffel Symbols
Second fundamental form

𝐈𝐈 =
𝜕𝑢𝑢𝑠 ⋅ 𝐧 𝜕𝑢𝑣𝑠 ⋅ 𝐧
𝜕𝑢𝑣𝑠 ⋅ 𝐧 𝜕𝑣𝑣𝑠 ⋅ 𝐧

▪ Extrinsic curvature

▪ Projection on normal – measure only curvature away
from tangent space

Full picture

▪ We can measure tangential curvature, too

▪ Useful for intrinsic view (non-embedded manifolds)

▪ “Christoffel Symbols”

Full Second-Order Expansion

Parametric surface
𝑠:ℝ2 ⊇ Ω → ℝ3

Second order representation
𝜕𝑢𝑢𝑠 = Γ11

1 𝐮 + Γ11
2 𝐯 + 𝑒𝐧

𝜕𝑢𝑣𝑠 = Γ12
1 𝐮 + Γ12

2 𝐯 + 𝑓𝐧
𝜕𝑣𝑣𝑠 = Γ22

1 𝐮 + Γ22
2 𝐯 + 𝑔𝐧

Christoffel Symbols Γ𝑖𝑗
𝑘

▪ Projections of second derivatives into tangent plane

▪ Intrinsic curvature properties

Shape Operator
Second fundamental form

𝐈𝐈 𝐱0 =
𝜕𝑢𝑢𝑠 ⋅ 𝐧 𝜕𝑢𝑣𝑠 ⋅ 𝐧
𝜕𝑢𝑣𝑠 ⋅ 𝐧 𝜕𝑣𝑣𝑠 ⋅ 𝐧

ቚ
(at 𝐱0)

▪ 2nd fundamental form is parametrization dependent!

Definition: The shape operator

▪ Orthogonal tangent vectors 𝐮, 𝐯 yield
the shape operator 𝐒(𝐱0) (a.k.a. curvature tensor)

▪ Directional derivative of normal vector

▪ Still depends on choice of coordinates (e.g., rotation of u,v).

Alternative Formulation (Gauss)

Orthogonal tangent frame

▪ Local height field parameterization 𝑠 𝐱 = 𝑧(𝑥, 𝑦)
▪ Orthonormal 𝑥, 𝑦 coordinates tangential to surface

▪ Function values 𝑧 in normal direction

▪ Origin at zero

▪ Then: shape operator = second fundamental form

= matrix of second derivatives

x
y

z

Alternative Formulation (Gauss)

Local height field parameterization

▪ 2nd order Taylor approximation

𝑧 𝐱 ≈
1

2
𝐱T ⋅ 𝐇𝑧 𝐱 ⋅ 𝐱

1

2
=𝑒𝑥2+2𝑓𝑥𝑦+𝑔𝑦2

+
1

2
𝐉𝑧 𝐱 ⋅ 𝐱

1

2
0

+
1

2
𝑧(0)

1

2
0

𝑒 𝑓
𝑓 𝑔

=
𝜕𝑢𝑢𝑧 𝜕𝑢𝑣𝑧
𝜕𝑢𝑣𝑧 𝜕𝑣𝑣𝑧

x
y

z

Tangential height fields,
orthogonal frame:

𝐈𝐈 𝐱 = 𝐒 𝐱 = 𝐇𝑧(𝐱)

In Practice

Cloud of data points

▪ k-nearest neighbors

▪ PCA for approx. tangent plane

▪ Least-squares fitting of height field
(174)

Example

points normals

tangential frames elliptic splats
w/shading

Basic Idea

In other words:

▪ First fundamental form: I
Linear part (squared) of local
Taylor approximation.

▪ Second fundamental form: II
Quadratic part of heightfield
approximation

▪ Both matrices are symmetric.
▪ Next: eigenanalysis, of course...

i > 0 0 > 0, 1 < 0 0 = 0, 1 > 0

Principal Curvature

Eigenanalysis

▪ Eigenvalues of shape operator

are called principal curvatures 1, 2.

▪ Corresponding eigenvectors are called

directions of principle curvature.

0 = 0, 1 = 0

...

Examples

Stanford Bunny
(dense point cloud)

principal

curvature 1

principal

curvature 2

mean

curvature

Gaussian

curvature

[courtesy of Martin Bokeloh]

Normal Curvature

Definition

▪ Normal curvature 𝑘(𝐫) in direction 𝐫 at x0

𝑘𝐱0 𝐫 ≔ 𝐫T ⋅ 𝐒 𝐱0 ⋅ 𝐫

(for 𝐫 = 1, 𝐫 ∈ ℝ2)

Relation to curvature of plane curves
▪ Intersect the surface with plane spanned by

𝐧 𝐱0 and
| |

𝐮 𝐱0 𝐯 𝐱0
| |

⋅ 𝐫 through 𝑠 𝐱0 .

▪ Identical curvatures (up to sign)

u

T·r

v

n

Normal & Principal Curvatures

Relation to principal curvature

▪ Maximum principal cuvature 1

= maximum of normal curvature

▪ Minimum principal cuvature 2

= minimum of normal curvature

More Definitions

▪ Gaussian curvature 𝐾 ≔ 𝜅1𝜅2
▪ Product of principal curvatures

▪ Mean curvature 𝐻 ≔
1

2
𝜅1 + 𝜅2

▪ Average of principle curvatures

Theorems

▪ 𝐾 𝐱 = det 𝐒 𝐱 =
det 𝐈𝐈

det 𝐈
=

𝑒𝑔−𝑓2

𝐸𝐺−𝐹2

▪ 𝐻 𝐱 =
1

2
tr 𝐒 𝐱 =

𝑒𝐺−2𝑓𝐹+𝑔𝐸

2 𝐸𝐺−𝐹2

Gaussian & Mean Curvature

More Definitions

▪ Gaussian curvature 𝐾 ≔ 𝜅1𝜅2
▪ Product of principal curvatures

▪ Mean curvature 𝐻 ≔
1

2
𝜅1 + 𝜅2

▪ Average of principle curvatures

Theorems

▪ 𝐾 𝐱 = det 𝐒 𝐱 =
det 𝐈𝐈

det 𝐈
=

𝑒𝑔−𝑓2

𝐸𝐺−𝐹2

▪ 𝐻 𝐱 =
1

2
tr 𝐒 𝐱 =

𝑒𝐺−2𝑓𝐹+𝑔𝐸

2 𝐸𝐺−𝐹2

Gaussian & Mean Curvature

last part:
holds for general

fundamental forms!

shape operator only!

Global Properties

Definitions

▪ An isometry is a mapping between surfaces that
preserves distances on the surface
(“geodesic distances”)

▪ Developable surface: Gauss curvature zero
everywhere

▪ I.e. no curvature in at least one direction.

▪ Examples: Cylinder, Cone, Plane

Developable surfaces

▪ Developable surfaces can be (locally) mapped to a
plane isometrically (flattening out, unroll).

Theorema Egregium

Theorema egregium (Gauss, 1828)

▪ Surfaces (2-manifolds) in 3D

▪ Any isometric mapping preservers Gaussian
curvature

▪ Gaussian curvature is invariant under isometric maps

▪ “Intrinsic surface property”

Consequence

▪ The earth (sphere) cannot be mapped to a plane
in a length preserving way.

▪ Maps / atlases distort distances

Gauss Bonnet Theorem

Gauss Bonnet Theorem

▪ Let 𝒮 ⊂ ℝ3 be smooth, compact, orientable surface
without boundary

▪ Then, the area integral of the Gauss curvature is
related to the genus g of the surface:

න
𝒮

𝐾 𝐱 𝑑𝐱 = 4𝜋(1 − 𝑔)

g = 0 g = 1 g = 2

...

Fundamental Theorem of Surfaces

Theorem

▪ Given two parametric patches in 𝒮1, 𝒮2 ⊆ ℝ3,

▪ defined on the same domain Ω:

𝒮𝑖 = 𝑠𝑖 Ω .

▪ Assume that first and second fundamental form are
identical

𝐈1 ≡ 𝐈2, 𝐈𝐈1 ≡ 𝐈𝐈2.

▪ Then there exists a rigid motion that maps on
surface to the other

𝒮2 = 𝐓 𝒮1 , for some 𝐓 ∈ 𝐸 3 .

Summary

Objects are the same up to a rigid motion, if...:
▪ Curves ℝ→ ℝ2: Same speed, same curvature

▪ Curves ℝ→ ℝ3: Same speed, same curvature, torsion

▪ Surfaces ℝ2 → ℝ3: Same first & second fundamental form

▪ Volumetric objects ℝ3 → ℝ3: Same first fundamental form

plane curve space curve surface space warp

= = = =

Intrinsic Differential
Geometry

Differential Geometry Intro

Embedded Geometry Intrinsic Geometry

𝑑-dim. Manifold embedded in ℝ𝑛

(𝑑 ≤ 𝑛)
no ambient space

(“general relativity”)

*#$?!!

*#$?!!

Differential Geometry Intro

Embedded Geometry Intrinsic Geometry

𝑑-dim. Manifold embedded in ℝ𝑛

(𝑑 ≤ 𝑛)
no ambient space

(“general relativity”)

*#$?!!

*#$?!!

Illustration

u

v

(u, v)

s

Ω ⊆ ℝ𝑑1

𝒮 = 𝑠 Ω ⊂ ℝ𝑑2

s(u, v)

Metric Distortion

𝑔𝑖𝑗 𝑖𝑗
= [𝛻𝑠𝑇𝛻𝑠]

(Extrinsic Counterpart: [𝛻𝑠𝛻𝑠𝑇])

Illustration

u

v

(u, v)

Ω ⊆ ℝ𝑑1

Metric Tensor

𝑔𝑖𝑗 𝑖𝑗
= [𝛻𝑠𝑇𝛻𝑠]

Riemannian Metric
(on a Riemannian Manifold)

Illustration

u

v

(u, v)

Ω ⊆ ℝ𝑑1

Metric Tensor

𝑔𝑖𝑗 𝑖𝑗
= [𝛻𝑠𝑇𝛻𝑠]

standard
metric

non-standard
(SPD quadric
at each point)

Example:
We alter the standard metric

Curvature

Given

▪ Abstract parameter domain Ω ⊂ ℝ𝑑

▪ Metric 𝑔: Ω → ℝ𝑑×𝑑

Higher-order properties

(1) Define derivative of 𝑔
▪ “Covariant derivative” or “connection”

▪ Canonical choice: Levi-Cevita-connection

– Behaves like projection into tangent plane

– No torsion

(2) Riemann Curvature Tensor
▪ Invariants are the analog to “Gaussian curvature”

(195)

Space(-Time) is not Euclidean

http://en.wikipedia.org/wiki/Gravity_Probe_B

[NASA] [NASA]

Geodesics

Geodesics

Definition

▪ A geodesic is a curve with
no intrinsic curvature

Embedded case

▪ After projection into the tangent space,
we have no curvature

𝜅
−𝐮 −
−𝐯 −

𝑓 𝑡 = 𝟎

Shortest path

▪ Shortest paths on smooth manifolds are geodesics

𝐮, 𝐯, 𝐧

Geodesic Distances

Shortest distance between two points

▪ “Geodesic distance”

▪ Path itself:
Often also called “Geodesic”

Intuition

▪ If there was still intrinsic curvature
▪ Path could be straightened

▪ Shortens path

Computing Shortest Paths

Approximate Global Optimum

▪ Discretize
▪ Graph representation

▪ Sample points on surface

▪ Mesh or Point-Cloud with k-nearest-neighbor-Graph

▪ Connect nearby points with edges
▪ Local Euclidean distance as weights

▪ First-order approximation of intrinsic metric

▪ First-order consistent error

▪ Dijkstra graph shortest path
▪ Not consistent – metrification errors

▪ Discrete directions lead to overestimation

Neighborhood Graphs

resampled point cloud with
20-nearest-neighbors graph

original
mesh

Discrete Geodesics

“Dijkstra” geodesics

▪ Advantages
▪ Easy to implement

▪ Global optimum

▪ Disadvantages
▪ 𝑂(𝑛 log 𝑛) cost for

n points, one-to-all paths
(one-to-one not faster!)

▪ Approximate – substantial errors
(overestimation)

shortest path with
point-cloud NN-graph

[Image: Art Tevs]

green: smoothed
red: Dijkstra

Continuous Geodesics

Continuous geodesics

▪ Smoothing
▪ Start with coarse path

▪ Minimize path length

▪ 𝑎
𝑏 𝑑

𝑑𝑡
𝑐 𝑡

2
𝑑𝑡 → 𝑚𝑖𝑛.

▪ Constrained least-squares

▪ Disadvantages
▪ Expensive

▪ Global optimum not guaranteed
(theoretical issue, works in practice)

[Image: Art Tevs]

green: smoothed
red: Dijkstra

Applications

*#$?!!

*#$?!!

Differential Geometry in ML

Example Applications

▪ Isomap
▪ Approximate intrinsic geometry

▪ The Fisher information matrix
▪ A natural metric for distributions

▪ Intrinsic views of deep networks
▪ Networks in input space

(205)

ISOMAP

Isomap

Mapping Manifolds to Euclidean Space

▪ Approximation

▪ Assuming disc topology

Algorithm: “ISOMAP”

▪ Compute all pairwise
intrinsic distances

▪ Typically: k-NN graph,
Dijkstra’s Algorithm

▪ Run MDS on pairwise distances
▪ Another kernel-PCA variant

▪ Intrinsic metric for embedding

(207)

The Fisher
Information Matrix

References

James Martens: New Insights and Perspectives on the Natural Gradient Method
Journal of Machine Learning Research 21 (2020) 1-76
https://jmlr.org/papers/volume21/17-678/17-678.pdf

Agustinus Kristiadi: Fisher Information Matrix / Natural Gradient Descent
https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Fisher Information

Big picture

▪ We often use parametric distributions
𝑝𝜃 𝐱 , 𝜃 ∈ ℝ𝑑

▪ Natural metric on parameter space Ω 𝜃

Information theory

▪ Use KL-divergence to measure distance

Differential geometry

▪ Derive metric tensor for changes in distribution
▪ Not distance in parameter space

(209)

Note: Notation

Gradient operator

∇𝐱=

𝜕𝑥1
⋮
𝜕𝑥𝑑

, ∇𝐱
𝑇= 𝜕𝑥1 ⋯𝜕𝑥𝑑

Hessian operator / matrix

∇𝐱
𝑇∇𝐱=

𝜕𝑥1𝜕𝑥1 ⋯ 𝜕𝑥𝑑𝜕𝑥1
⋮ ⋮

𝜕𝑥1𝜕𝑥𝑑 ⋯ 𝜕𝑥𝑑𝜕𝑥𝑑

(210)

KL-Divergence

Consider

▪ 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 for 𝛜 → 0

▪ 𝛉, 𝛜 ∈ ℝ𝑑

▪ 𝑝𝛉 smooth in 𝛉

Let’s see

𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 =

𝑥∈Ω 𝑋

𝑝𝛉 𝑥 log2 𝑝𝛉 𝑥𝑖 − log2 𝑝𝛉+𝛜 𝑥𝑖

▪ Note: for small 𝛜 , the 𝐾𝐿-divergence is symmetric

(211)

KL-Divergence

Gradients

∇𝛜𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 =

𝐱∈Ω 𝑋

∇𝛜𝑝𝛉 𝐱 log2 𝑝𝛉 𝐱 − log2 𝑝𝛉+𝛜 𝐱

−

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 ∇𝛜 log2 𝑝𝛉+𝛜 𝐱

𝑝𝛉‖ = −

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 ∇𝛜 log2 𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

= 0 (!)
(212)

KL-Divergence

Gradients

∇𝛜𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 =

𝐱∈Ω 𝑋

∇𝛜𝑝𝛉 𝐱 log2 𝑝𝛉 𝐱 − log2 𝑝𝛉+𝛜 𝐱

−

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 ∇𝛜 log2 𝑝𝛉+𝛜 𝐱

𝑝𝛉‖ = −

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 ∇𝛜 log2 𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

= 0 (!)
(213)

Expected “Score Function”

Expected gradients of log-likelihoods are zero

𝔼𝐱~𝑝𝛉 𝐱 ∇𝛉 log2 𝑝𝛉 𝐱 =

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 ∇𝛉 log2 𝑝𝛉 𝐱

=

𝐱∈Ω 𝑋

𝑝𝛉 𝐱
∇𝛉𝑝𝛉 𝐱

𝑝𝛉 𝐱

=

𝐱∈Ω 𝑋

∇𝛉𝑝𝛉 𝐱

= ∇𝛉

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 = ∇𝛉1 = 0

∇ log 𝑓(𝐱)=
∇𝑓(𝐱)
𝑓(𝐱)

(214)

Expected “Score Function”

Expected gradients of log-likelihoods are zero

𝔼𝐱~𝑝𝛉 𝐱 ∇𝛉 log2 𝑝𝛉 𝐱 =

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 ∇𝛉 log2 𝑝𝛉 𝐱

=

𝐱∈Ω 𝑋

𝑝𝛉 𝐱
∇𝛉𝑝𝛉 𝐱

𝑝𝛉 𝐱

=

𝐱∈Ω 𝑋

∇𝛉𝑝𝛉 𝐱

= ∇𝛉

𝐱∈Ω 𝑋

𝑝𝛉 𝐱 = ∇𝛉1 = 0

(215)

∇ log 𝑓(𝐱)=
∇𝑓(𝐱)
𝑓(𝐱)

KL-Divergence

Gradients
∇𝛜𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 = 0

Hessian
∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜

𝑇 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −∇𝛜
𝑇
∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −
∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 𝑝𝛉+𝛜 𝐱 − ∇𝛜𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜

𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱
2

(216)

∇
𝑓 𝐱

𝑔 𝐱
=

∇𝑓 𝐱 𝑔 𝐱 −𝑓 𝐱 ∇𝑔 𝐱

𝑔 𝐱 2

KL-Divergence

Gradients
∇𝛜𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 = 0

Hessian
∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜

𝑇 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −∇𝛜
𝑇
∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −
∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 𝑝𝛉+𝛜 𝐱 − ∇𝛜𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜

𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱
2

(217)

∇
𝑓 𝐱

𝑔 𝐱
=

∇𝑓 𝐱 𝑔 𝐱 −𝑓 𝐱 ∇𝑔 𝐱

𝑔 𝐱 2

Note (probably not stressed enough in the video):

– The gradient only vanishes, because 𝜃 are the true parameters

– We take 𝔼𝐱~𝑝𝛉 𝐱 ⋯ of ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

– In the proof sketch (Slide 214/215), 𝛉 is at the “true” value

– In general, gradients of log-likelihoods do not vanish!

– Optimization in DL is all about gradient descent
neg-log-likelihoods!

true distribution comparison

KL-Divergence

Gradients
∇𝛜𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 = 0

Hessian
∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜

𝑇 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −∇𝛜
𝑇
∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −
∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 𝑝𝛉+𝛜 𝐱 − ∇𝛜𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜

𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱
2

(218)

∇
𝑓 𝐱

𝑔 𝐱
=

∇𝑓 𝐱 𝑔 𝐱 −𝑓 𝐱 ∇𝑔 𝐱

𝑔 𝐱 2

KL-Divergence

Gradients
∇𝛜𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 = 0

Hessian
∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜

𝑇 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −∇𝛜
𝑇
∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

= 𝔼𝐱~𝑝𝛉 𝐱 −
∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 𝑝𝛉+𝛜 𝐱 − ∇𝛜𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜

𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱
2

(219)

∇
𝑓 𝐱

𝑔 𝐱
=

∇𝑓 𝐱 𝑔 𝐱 −𝑓 𝐱 ∇𝑔 𝐱

𝑔 𝐱 2

KL-Divergence

Hessian
∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜

= 𝔼𝐱~𝑝𝛉 𝐱 −
∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 𝑝𝛉+𝛜 𝐱 − ∇𝛜𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜

𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱
2

= −

𝐱∈Ω 𝑋

∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 + 𝔼𝐱~𝑝𝛉 𝐱

∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

∇𝛜
𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

= ∇𝛜
𝑇∇𝛜

𝐱∈Ω 𝑋

𝑝𝛉+𝛜 𝐱 + 𝔼𝐱~𝑝𝛉 𝐱

∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

T

= 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱
T

(220)

KL-Divergence

Hessian
∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜

= 𝔼𝐱~𝑝𝛉 𝐱 −
∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 𝑝𝛉+𝛜 𝐱 − ∇𝛜𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜

𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱
2

= −

𝐱∈Ω 𝑋

∇𝛜
𝑇∇𝛜 𝑝𝛉+𝛜 𝐱 + 𝔼𝐱~𝑝𝛉 𝐱

∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

∇𝛜
𝑇𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

= ∇𝛜
𝑇∇𝛜

𝐱∈Ω 𝑋

𝑝𝛉+𝛜 𝐱 + 𝔼𝐱~𝑝𝛉 𝐱

∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

∇𝛜𝑝𝛉+𝛜 𝐱

𝑝𝛉+𝛜 𝐱

T

= 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱
T

(221)

Summary

“Score Function”: Derivative of neg-log-likelihood

∇𝛜 − log2 𝑝𝛉+𝛜 𝐱

Gradient: Vanishes

∇𝛜𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜 = 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 = 0

Hessian: Covariance Matrix

∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜

= 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱
T

(222)

Summary

Hessian is the Fischer information matrix

𝐅 ≔ ∇𝛜
𝑇∇𝛜 𝐾𝐿 𝑝𝛉‖𝑝𝛉+𝛜

= 𝔼𝐱~𝑝𝛉 𝐱 ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱 ⋅ ∇𝛜 − log2 𝑝𝛉+𝛜 𝐱
T

Usage as metric tensor

𝑑𝜽𝑎 , 𝑑𝜽𝑏 𝐹 = 𝑑𝜽𝑎
𝑇 ⋅ 𝐅 ⋅ 𝑑𝜽𝑏

(223)

Applications

“Natural Gradient Descent”

▪ Standard Gradient Descent
▪ Deep network 𝑓:ℝ𝑑0 → ℝ𝑑𝐿

▪ Loss function: Neg-log-likelihood 𝐿 𝑓𝛉
▪ Parameters 𝛉 (weights)

▪ Learning rate 𝜆

▪ Gradient descent

𝛉𝑖+1 ← 𝛉𝑖 − 𝜆∇𝛉𝐿 𝑓𝛉

(224)

Applications

“Natural Gradient Descent”

▪ Standard Gradient Descent

𝛉𝑖+1 ← 𝛉𝑖 − 𝜆∇𝛉𝐿 𝑓𝛉

▪ “Natural” Gradient Descent

𝛉𝑖+1 ← 𝛉𝑖 − 𝜆𝐅−1∇𝛉𝐿 𝑓𝛉

Discussion

▪ Problem: Inverting the F-Matrix
▪ Too expensive for deep networks

▪ Approximations possible
▪ ADAM uses diagonal 𝐅

(225)

Application

Jeffreys Prior

▪ Inferring parameters via
𝑝 𝜃 𝐷 ~ 𝑝 𝐷 𝜃 𝑃 𝜃

▪ We have a likelihood 𝑝 𝐷 𝜃

▪ What prior 𝑃 𝜃 should we use?

Approach

▪ We want “uninformative” prior

▪ Independent of parametrization

𝑃Jeffreys 𝜃 ≔ det 𝐅𝑝 𝐷 𝜃

(226)
volume element

in 𝐅-metric

reparameterization
scales quadratically

Jeffreys Prior

Discussion

▪ Often used as “objective” Bayesian prior

▪ It does not solve the problem of infinite domains
▪ E.g., improper prior for mean of a Gaussian

▪ Results invariant under change of domain
parametrization

▪ However, not invariant under transformations of the ouput

▪ Computation might be costly

(227)

Intrinsic View
of Deep Networks

Credits: David Hartmann

ReLU Networks Subdivide Input Space

Take this one step further

▪ Feedforward network with ReLU nonlinearity

▪ Map outputs into input space

▪ Input 𝐱 ∈ ℝ𝑑0 → Outputs 𝑓 𝐱 ∈ ℝ𝑑𝐿 in 𝑑0-manifold

▪ Embed outputs in ℝ𝑑0

ReLU Networks

Fully-connected ReLU network

𝑓 𝐿 𝐱,𝐖

= 𝜑 𝐖 𝐿 𝜑 𝐖 𝐿−1 𝜑 ⋯𝐖 0 𝐱 ⋯

In matrix notation

𝑓 𝐿 𝐱,𝐖

= 𝐑 𝐿 𝐖 𝐿 𝐑 𝐿−1 𝐖 𝐿−1 ⋯𝐑 1 𝐖 0 𝐱

▪ Diagonal 0/1 ReLU matrices 𝐑 𝑙

▪ Attention! 𝐑 𝑙 depends on preactivation
▪ Non-linear, non-constant function of 𝐱

(230)

ReLU Networks

Embedding into input space

𝐱𝑓 ≔ 𝐑 1 𝐖 1 †
… 𝐑 𝐿 𝐖 𝐿 †

𝑓 𝐿 𝐱,𝐖

where 𝐌† is the Moore-Penrose pseudo-inverse of 𝐌
(data dependent, different P.-I. for each 𝐱)

What does it show?

▪ Visualizes network 𝑓 as deformation of the input

▪ Visualization uses additional PCA-dimensionality
reduction

(231)

Results after PCA [David Hartmann]

(232)

classification task

layer-wise result

targets

optimization process

Summary

Space might not be flat…

Differential geometry

▪ Studying geometry independent of parametrization
▪ Useful to abstract from “implementation details”

▪ Length/volumes, curvature, higher-order moments

Intrinsic (differential) geometry

▪ View from inside the manifold
▪ Ignore outer space

▪ Useful if this does not matter for the application

▪ Starts with the metric
▪ Specify metric tensor

▪ Intrinsic curvature can be derived (under assumptions)

(234)

(236)

*#$?!!

