Modelling 2 Statistical data modelling

[Deep Dream Image: Daniel Strecker]

Chapter 9 Deep Neural Networks

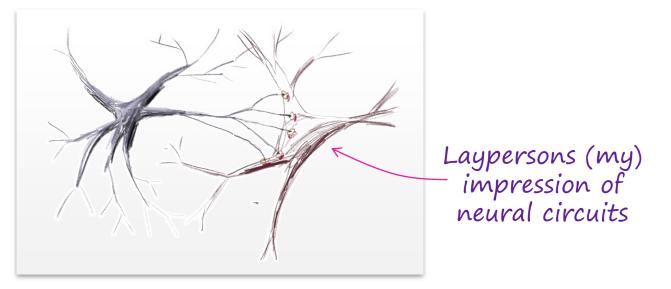
Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #09 Down the Deep End

- Back to the Future: Neural Networks
- Common Architectures
- Generative Models

Artificial Neural Networks

Crude Imitation of Nature



Motivation: Biological Neural Networks

- Networks of computations
- Graph structure
- Neurons accumulate inputs until threshold
- Then "fire" output signals

Crude Imitation of Nature

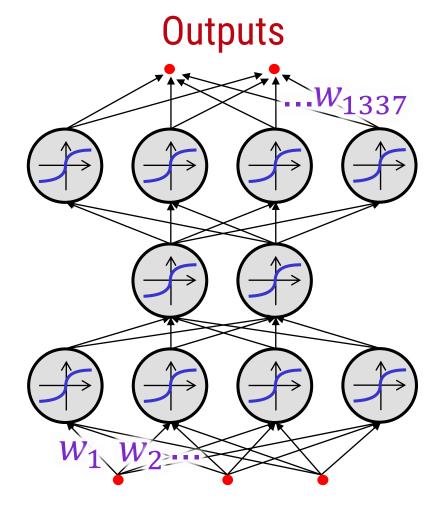
Dissimilar: Biological Neural Networks

- Complex computations
- Complex graph structure (including cycles)
- Sending, transmitting and gathering data non-trivial
- Spiking coding (not real numbers)

Artificial Neural Network

Simplified Model

- Connections
 - \rightarrow linear weights
- Neurons
 - \rightarrow Summation, activation
- Activation
 - \rightarrow simple non-linearity
- Graph structure
 - → Simple pattern, often "feed-forward"

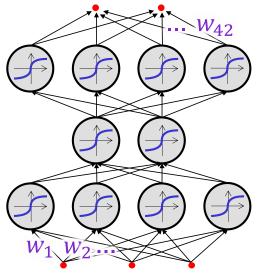


Inputs

(8)

Neural Networks vs. Neural Networks

Outputs

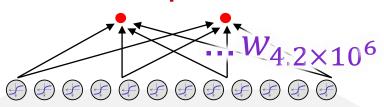


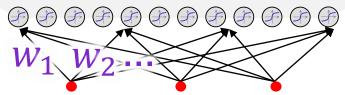
Inputs

<u>1980s / 1990s</u>

- typ. 100s of "neurons"
- Bottleneck architecture

Outputs





- Big data
- GPUs (TFlops)
- "Dirty tricks"
- 10⁵ 10⁷ weights
- Overcomplete

Problems with NNs

Hard to train

Local minima

- Overcomplete representations seem to find reasonable local minima
- We do not fully understand why

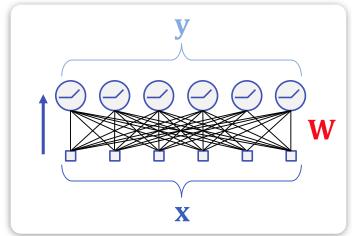
Numerical issues

- Determining some of the weights ill-posed
- "Dirty tricks" help a lot
- Ongoing research

Inductive bias (NFL, BVT, etc.)

Seems to work, no idea why

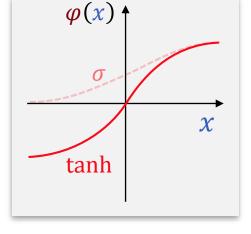
Deep Neural Networks

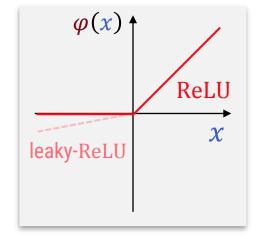


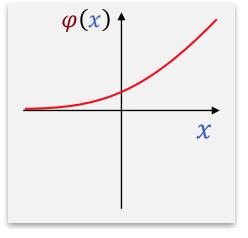
Fully connected network layer

 $layer: \mathbb{R}^{n} \to \mathbb{R}^{m}$ $\mathbf{y} = layer(\mathbf{x}) = nonLinearity(\mathbf{W}\mathbf{x})$ $y_{j} = nonLinearity\left(\sum_{i=1}^{n} w_{ij}x_{i}\right)$ $nonLinearity(\mathbf{y}) = \begin{cases} \max(y, 0) \text{ ("relu")} \\ \tanh(y) \\ \dots \end{cases}$

Non-Linearities







softplus

tangent hyperbolicus, sigmoid

$$\sigma(x) = \frac{e^x}{1 - e^x}$$

 $(\tanh(x) = 2\sigma(2x) - 1)$

rectified linear unit

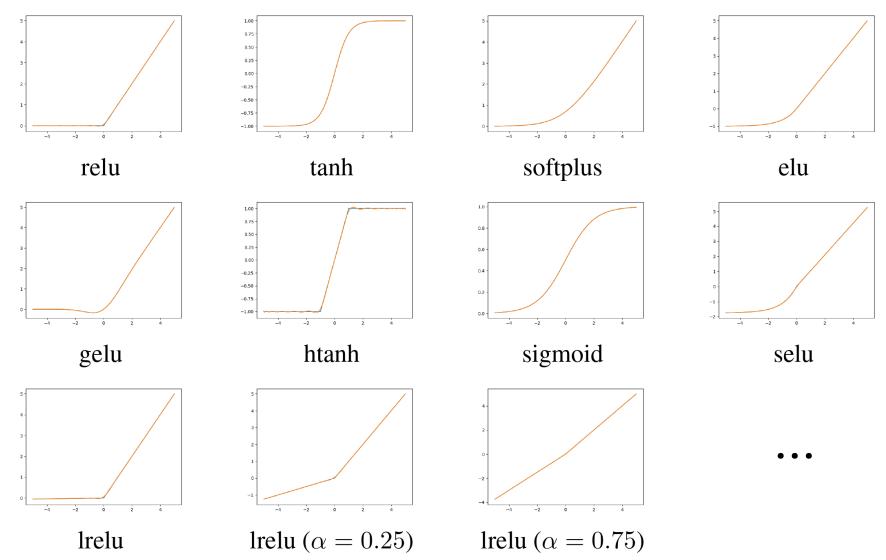
 $|eaky-ReLU(x) = max(x, \lambda x)$ $0 < \lambda < 1$

 $\operatorname{ReLU}(x) = \max(x, 0)$

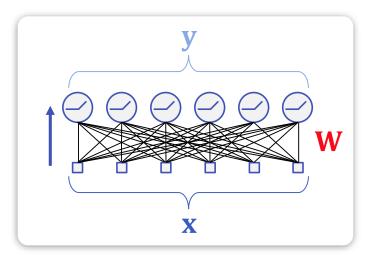
$$\operatorname{softplus}(x) = \ln(1 + e^x)$$

softplus_{$$\beta$$}(x) = $\frac{1}{\beta} \ln(1 + \beta e^x)$

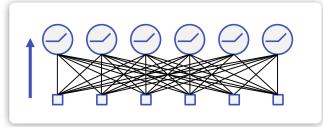
Millions more...



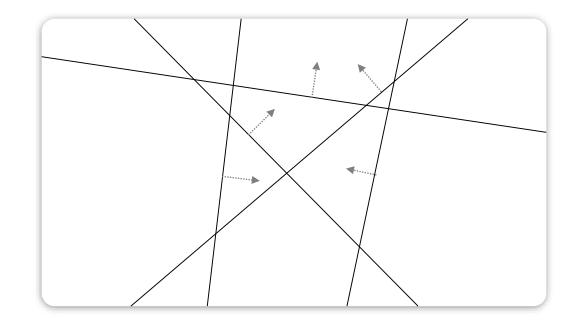
ReLU is Popular



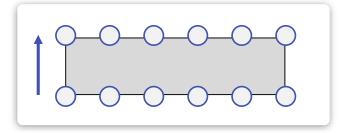
$$layer: \mathbb{R}^{n} \to \mathbb{R}^{m}$$
$$\mathbf{y} = layer(\mathbf{x}) = \varphi(\mathbf{W}\mathbf{x})$$
$$y_{j} = \max\left(0, \sum_{i=1}^{n} w_{ij}x_{i}\right)$$



(Fully connected) network layer

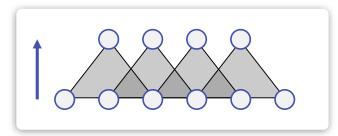


Interpretation: ReLu-Layer = Arrangement of Hyperplanes Different linear map in each region inactive halve has zero output in corr. coordiate



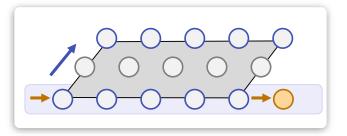
Fully connected network layer

global connection / global dependencies e.g: feature classification



Convolutional neural network

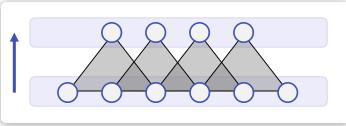
local connection / local correlations e.g.: image/audio/text data



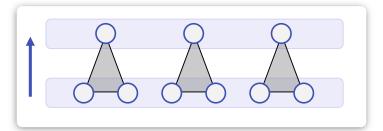
Recurrent neural networks

Markov-chain models with memory

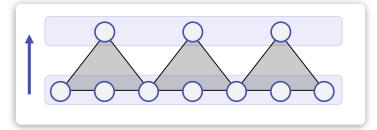
Convolutional Building Blocks



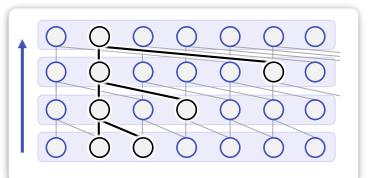
Convolutional neural network local connection / local correlations



Pooling layer reduce resolution (half, third, ...)



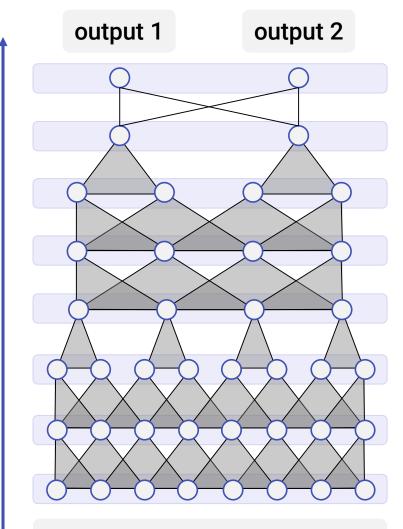
Convolution with stride reduce resolution, learned filters



Dilated networks

aggregate context, same resolution

Image Classification



data

Fully Connected

Pooling / striding (typ. 2x2)

```
Convolution (typ. 3x3, residual)
Convolution (typ. 3x3, residual)
```

many layers

```
Pooling / striding (typ. 2x2)
```

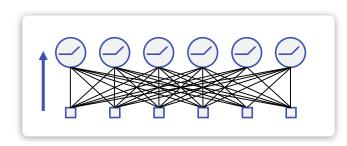
```
Convolution (typ. 3x3, residual) many layers
```

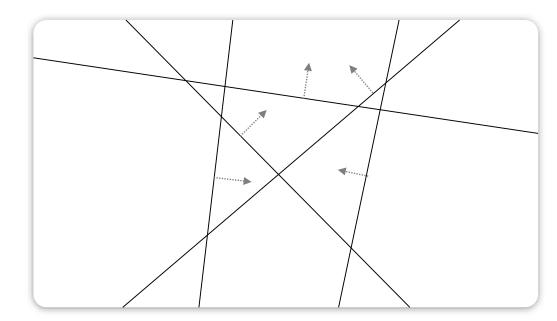
What does ReLU do?

network layer

Interpretation

ReLU-layer = arrangement of hyperplanes

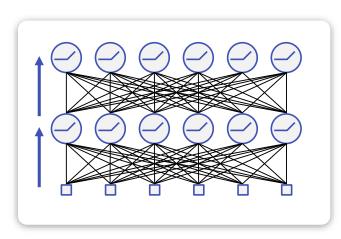


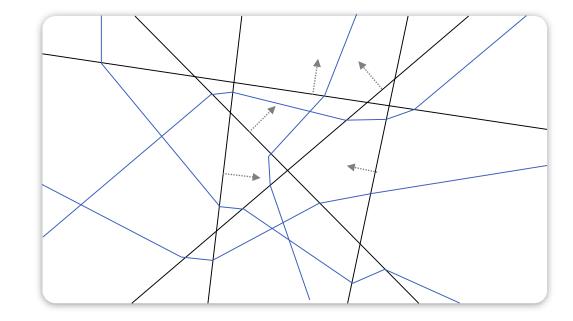


two network layers

Interpretation

Nested ReLU-layer = nested convex cells

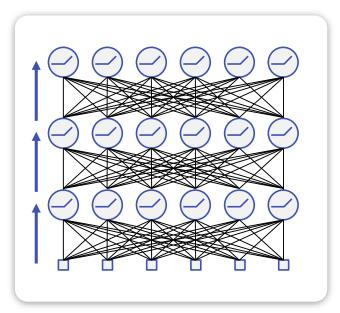


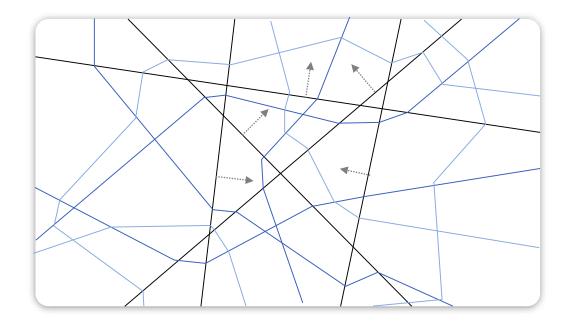


two network layers

Interpretation

Nested ReLU-layer = nested convex cells



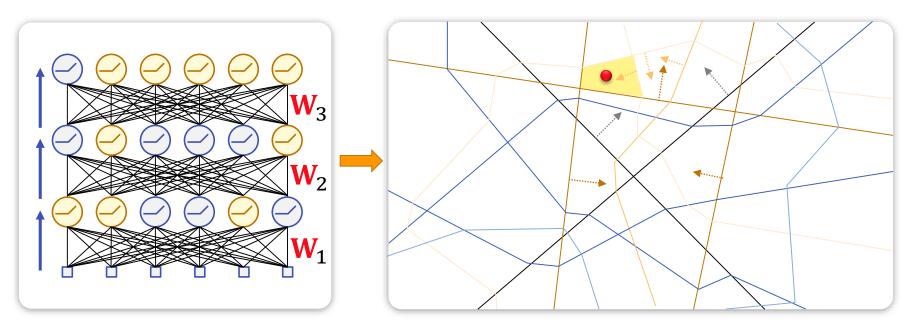


- Each cell has its own linear map
- applied to input to create output
- C⁰-continuous

two network layers

Interpretation

Nested ReLU-layer = nested convex cells



Activation Patterns

Encode combinatorial decisions (which linear map to use)

Nomenclature

Language

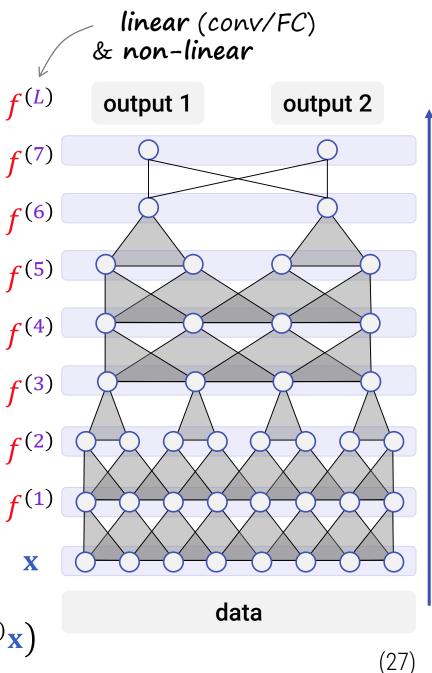
NN-Talk

- Input what goes into the network
- Output what comes out of the network
- "Features", "hidden layers" values at inner neurons
- Feed Forward Network sequential processing
- Layer one computation step in a ff network
- "preactivation" number(s) going into the non-linearity
- "activation" either
 - Numbers coming out of the non-linearity
 - Wether a ReLU has been switched "on"

Formalization

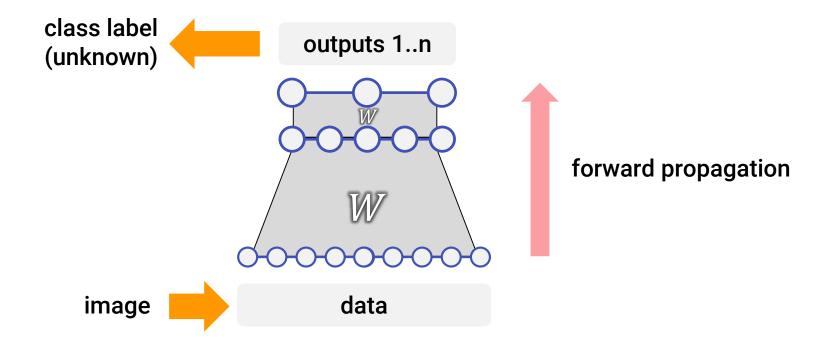
Network

- *L* layers l = 1, ..., L
- Activations $y^{(l)} \in \mathbb{R}^{d_l}$
 - Input $f^{(0)} = \mathbf{x} \in \mathbb{R}^{d_0}$
 - Output $f^{(L)} \in \mathbb{R}^{d_L}$
 - Feed-forward $f^{(l)} = op(f^{(l-1)}), f^{(0)} = \mathbf{x}$
- Layer function
 - Linear: f^(l)(x) = W^(l)x (incl. conv., pooling, striding)
 - Non-linear: $f^{(l)}(\mathbf{x}) = \varphi(\mathbf{x})$
 - All-in-one: $f^{(l)}(\mathbf{x}) = \varphi(\mathbf{W}^{(l)}\mathbf{x})$

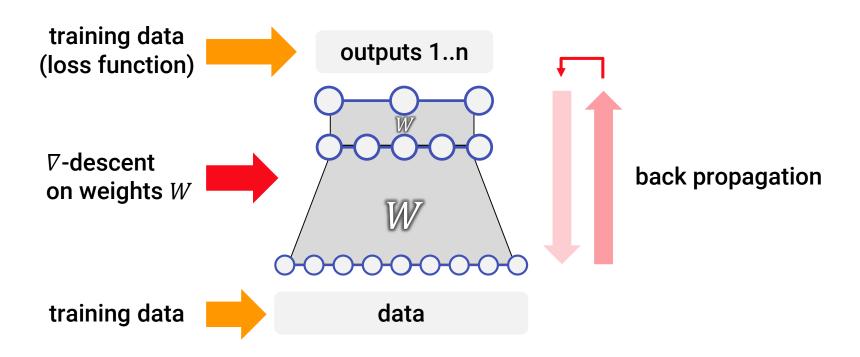


Training & Inference

Inference



Discriminative Training



Some additional tricks...

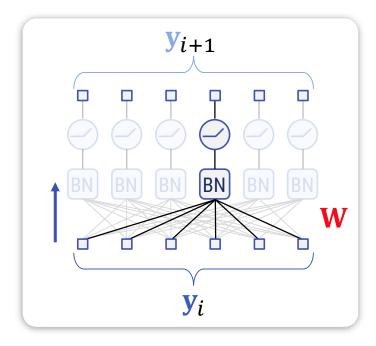
Batch Normalization

Batch-Norm Layer

- Normalize
 - mean μ = 0
 - std. deviation σ = 1
- BN-Layer: per value

$$x \mapsto \alpha \frac{x-\mu}{\sigma} + \beta$$

• Learn α , β



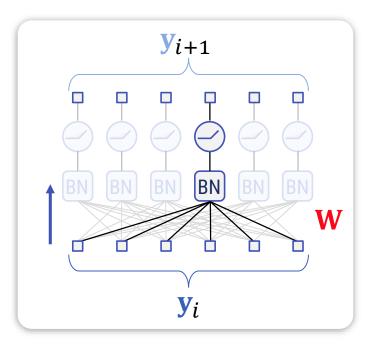
Batch Normalization

Training

- Est. μ , σ per batch
 - Empirical ML-estimators $\hat{\mu}$, $\hat{\sigma}$
 - Keep running means $\mu_{i+1} \rightarrow c\hat{\mu}_{i+1} + (1-c)\mu_i$ $\sigma_{i+1} \rightarrow \cdots$
- Train α , β along with W
- Normalize

Testing: Normalize, too

- Use running averages
- μ_T , σ_T (T = last batch)



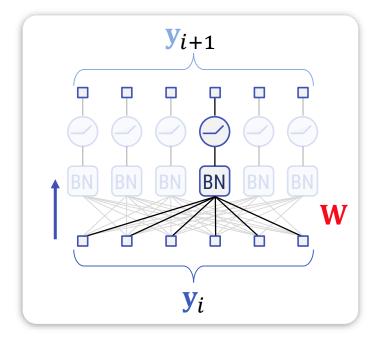
Batch Normalization

Some more alchemie

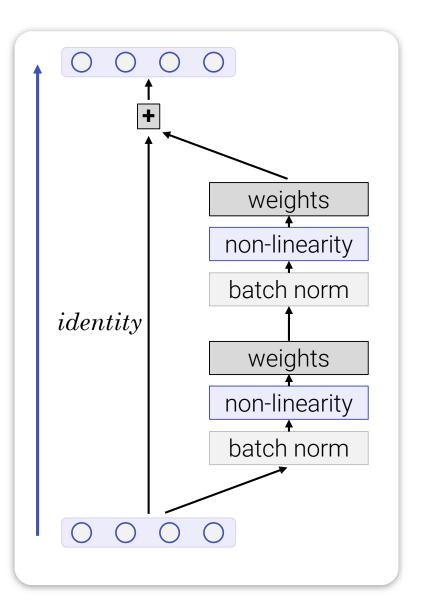
- Batch-Norm has problems
 - High-variance input data with small batches
 - Generative Networks (more later)

Variants

- Instance Norm
 - Only over one image
 - All convs/filters
- Group Norm
- Layer Norm



Residual Connections



Residual networks

Allows very deep networks Identity mapping as default

Why all of this?

Batch-Norm

"Covariate-Shift" – Data might hop around

ResNets (Batch-Norm?)

- "Vanishing gradients"
- Applying chain rule in network leads to dampening
- Some layers "do not move" anymore

What helps

- ResNet improves a lot
- BN causes "exploding grad.", the (maybe) converges

Summary

Deep Networks

Stack of

- Matrices
- Non-linearities
 - Simple ReLU "switches" do the trick (very well)

Optimization

- Simple down-hill optimization
- Local minima do not seem to hurt

Numerics

Some tricks to keep everything stable

Modelling 2 Statistical data modelling

[Deep Dream Image: Daniel Strecker]

Chapter 9 Deep Neural Networks

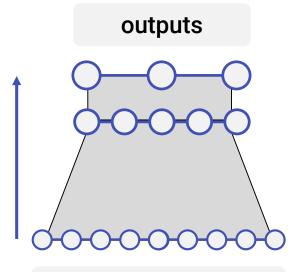
Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #09 Down the Deep End

- Back to the Future: Neural Networks
- Common Architectures
- Generative Models

Deep Regressor

Image Classification



Output values \rightarrow

Fully connected (typ. global av. pooling + 1 layer)

Convolution + pooling or striding (typ. 20-100 layers)

data

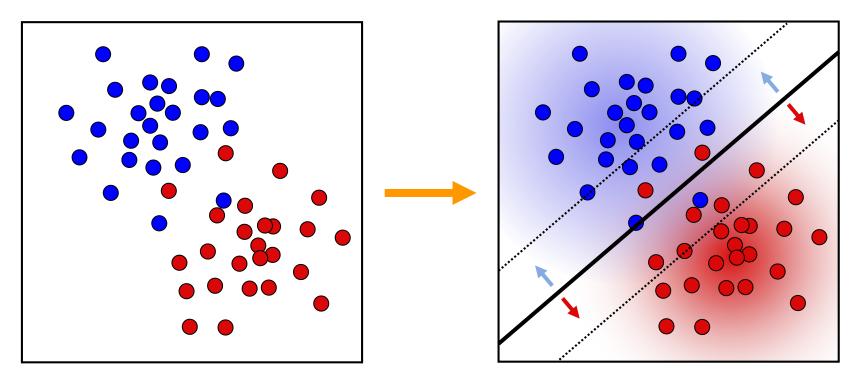
← Raw input images

Loss function

- Typ. Point-wise loss $\sum_{i=1}^{n} |[f_W(\mathbf{x})]_i \mathbf{y}_i|^p$
- Often least-squares: $L(f_W(\mathbf{x}), \mathbf{y}) = ||f_W(\mathbf{x}) \mathbf{y}||_2^2$

Deep Classifiers

SVM / Logistic, Softmax Regression



training set

linear separator (now on the top layer)

Loss Function

Notation

- Neural network f, weights W, input \mathbf{x} , output \mathbf{y}
- Supervised, training data: $(\mathbf{x}_i, \mathbf{y}_i)_{i=1..n}$

• $f_W(\mathbf{x}) = \mathbf{y}$

Different Loss Functions

Regression:

• Least squares $(f_W(\mathbf{x}_i) - \mathbf{y}_i)^2$

Classification

- One-Hot-Vectors y_i
- Cross Entropy:

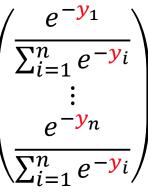
 $H(\operatorname{softmax}(f_W(\mathbf{x}_i)), \mathbf{y}_i) \leq$

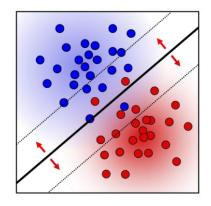
Max-Margin:

margin($f_W(\mathbf{x}_i), \mathbf{y}_i$)

Softmax:

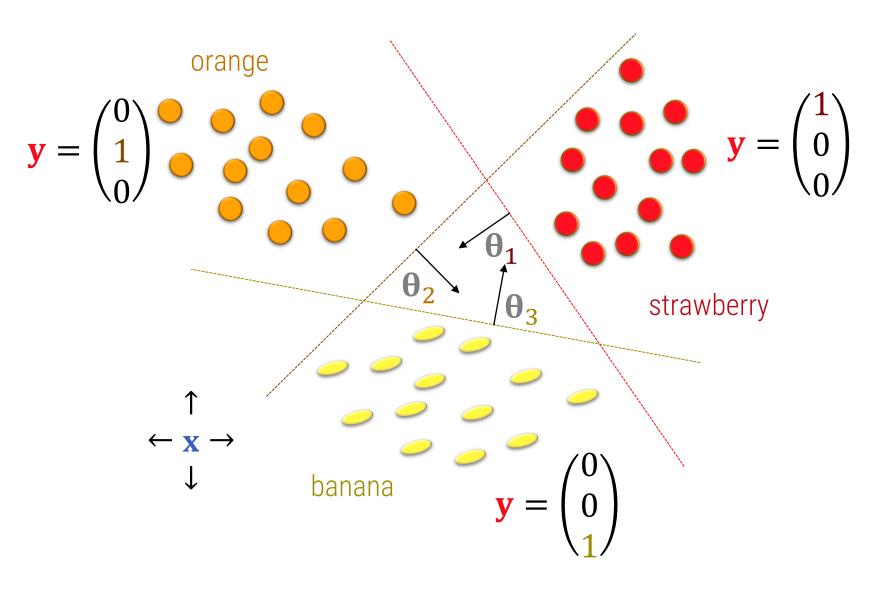
softmax(**y**) =





CE-Loss

Geometry



Softmax Regression

"Softmax" function $\sigma: \mathbb{R}^K \to \mathbb{R}^K$

$$\boldsymbol{\sigma}(\mathbf{Z}) \coloneqq \begin{pmatrix} e^{\mathbf{Z}_{1}} \\ \overline{\Sigma_{j=1}^{K} e^{\mathbf{Z}_{j}}} \\ \vdots \\ e^{\mathbf{Z}_{K}} \\ \overline{\Sigma_{j=1}^{K} e^{\mathbf{Z}_{j}}} \end{pmatrix}, \qquad \boldsymbol{\sigma}_{m}(\mathbf{Z}) \coloneqq \frac{e^{\mathbf{Z}_{m}}}{\overline{\Sigma_{j=1}^{K} e^{\mathbf{Z}_{j}}}}$$

Classifier

Classifier

$$h_{\theta}(\mathbf{x}) \coloneqq \sigma\left(\begin{bmatrix} \boldsymbol{\theta}_{1}^{T} \cdot \mathbf{x} \\ \vdots \\ \boldsymbol{\theta}_{K}^{T} \cdot \mathbf{x} \end{bmatrix} \right) = \sigma(\mathbf{u}(\boldsymbol{\theta}, \mathbf{x}))$$

$$\rightarrow h_{\theta}(\mathbf{x}) \coloneqq \sigma\left(\begin{bmatrix} f_{\mathbf{W}}(\mathbf{x})_{1} \\ \vdots \\ f_{\mathbf{W}}(\mathbf{x})_{K} \end{bmatrix} \right) = \sigma(f_{\mathbf{W}}(\mathbf{x}))$$

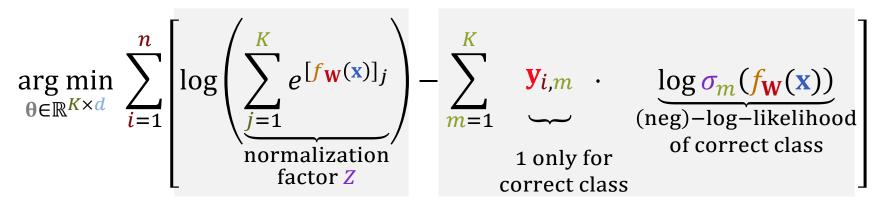
Outputs class-probabilities

- All output vector entries in [0,1]
- Entries sum up to one

Classifier

Classifier

MLE-Training via



$$= \underset{\theta \in \mathbb{R}^{K \times d}}{\arg \min} \sum_{i=1}^{n} \left[\underset{\text{normalization}}{\underbrace{\log(Z)}} - \underset{(\text{neg})-\log-\text{likelihood}}{\underbrace{\log\sigma_{class_i}(f_W(\mathbf{x}))}} \right]$$

Cross Entropy as Maximum-Likelihood

$$\arg\min_{W} KL(\mathbf{y}_{i} \parallel f_{W}(\mathbf{x}_{i})) \longleftarrow KL\text{-Divergence}$$

$$= \arg\min_{W} \sum_{k=1}^{n_{l}} [\mathbf{y}_{i}]_{k} \log_{2} \frac{[\mathbf{y}_{i}]_{k}}{[f_{W}(\mathbf{x}_{i})]_{k}}$$

$$= \arg\min_{W} \left(H(\mathbf{y}_{i}, f_{W}(\mathbf{x}_{i})) - H(\mathbf{y}_{i})\right)$$

$$= \arg\min_{W} \left(H(\mathbf{y}_{i}, f_{W}(\mathbf{x}_{i}))\right) \longleftarrow Cross\text{-Entropy}$$

$$= \arg\min_{W} \sum_{k=1}^{n_{l}} [\mathbf{y}_{i}]_{k} \log_{2} [f_{W}(\mathbf{x}_{i})]_{k}$$

$$= \arg\min_{W} \log_{2} [f_{W}(\mathbf{x}_{i})]_{k=l_{i}} \longleftarrow Class likelihood (maximization)$$

Geometry (on the top layer)

H

· θ_3

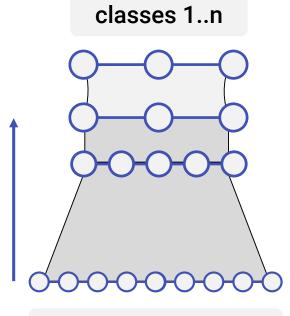
θ2

 $\leftarrow \mathbf{X} \rightarrow$

 $\mathbf{y} = \begin{pmatrix} \mathbf{0} \\ 1 \\ \mathbf{0} \end{pmatrix}$

 $\begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix}$

Image Classification



Class probabilities \rightarrow

Softmax

Fully connected (typ. global av. pooling + 1 layer)

Convolution + pooling or striding (typ. 20-100 layers)

data

← Raw input images

Loss function

- Cross-Entropy loss
- (Hinge loss would work in principle, but uncommon)

How well does it work?

ImageNet

- 14000000 Color images (RGB)
 - Scraped from the web
 - Annotated via crowdsourcing
- 20000 Classes

ImageNet Large Scale Visual Recognition Challenge

- 1000000 Training images
- 1000 Non-overlapping categories

How well does it work?

ImageNet Large Scale Visual Recognition Challenge

- 1000000 Training images
- 1000 Non-overlapping categories

Accuracy

≤ 2011: trad. methods
 2012: AlexNet
 2014: VGG-Net
 2015: ResNet / Inception
 2021: NFNet-v6
 2021: NFNet-v6
 2021: (frontrunner on papers with code 31/05/21)

Example (Tales from Down the Deep End)

Object Detection

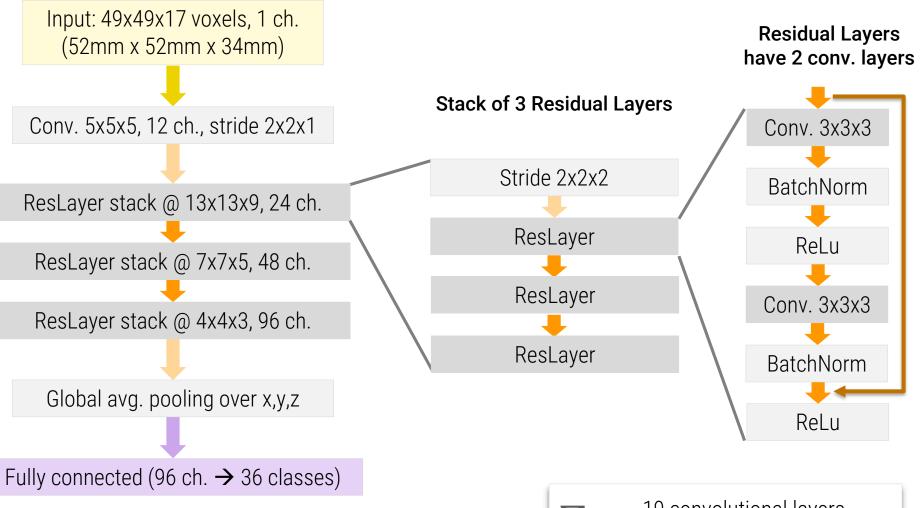
CT scans from University Hospital Mainz

- Centroids of vertebra annotated
- 36 Classes:
 - 18 different vertebra present in scans (C7, Th1-Th12, L1-L5)
 - 17 spaces between vertebra
 - I class for "not a vertebra"
- Training set: 152 CT scans
- Testing data: 66 CT scans

Microsoft Research Benchmark

150 examples (spine CTs)

Deep Residual Network



19 convolutional layers 1.809.336 trainable parameters

Sliding-Window Results

Task 2: 18 vertebrae types

- Identify vertebra by index (!)
- No context (bounding box)

Top-1-accuracy

Testing data ~ 82%

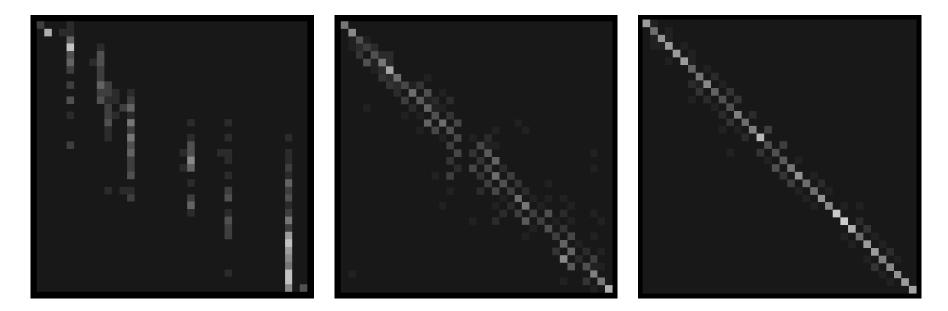
Top-3-accuracy

Testing data ~ 98%

Training

- Input: ~150 CT scans
- Training time: 10 min (dual Titan-X)

Confusion matrices



1 training step

5 training steps

200 training steps

Numerical Optimization – Conventional Wisdom –

1st Order: Gradient Descent

Gradient Descent:

- *VE* = direction of steepest ascent
 - Take small steps in direction $-\nabla E$
 - When $\nabla E = \mathbf{0}$, a critical point is found.
- Small enough steps guarantee convergence
 - In theory
 - In practice: usually slow, unstable
 - Does not work for ill-conditioned problems

Line Search

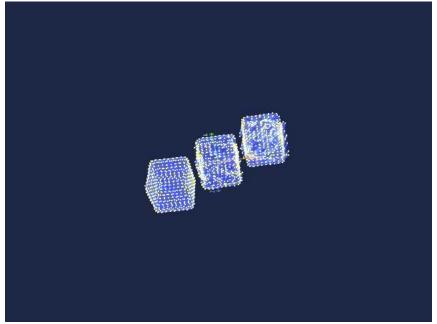
Gradient descent line search

- Step size for gradient descent
 - Fit 1D parabola to *E* in gradient direction
 - Perform 1D Newton search
 - If E does not decrease at the new position
 - Try to half step width (say up to 10-20 times).
 - If this still does not decrease *E*, stop and output local minimum.

Gradient Descent goes Boomboomboom

Gradient Descent can be unstable

- Example:
 - Rigid object
 - Modeled by stiff springs
 - Bad conditioned problem
- Gradient descent cannot solve it in float32!
 - Either no progress or explosion
- Newton Method works fine
 - Converges in 5 steps, no boom



2nd Order Non-Linear Solvers

Newton optimization

- Iteratively solve linear problems
- 2nd order Taylor expansions. Requires:
 - Function values
 - Gradient
 - Hessian matrix

• Typically, Hessian matrices are sparse.

Should be SPD (otherwise: trouble)

Use conjugate gradients to solve for critical points

Newton Optimization

Newton Optimization

Basic idea: Local quadratic approximation of *E*:

 $E(\mathbf{x}) \approx E(\mathbf{x}_0) + \nabla E(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^{\mathrm{T}} \cdot H_E(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$

Solve for vertex (critical point) of the fitted parabola

 \mathbf{X}_{0}

• Iterate until a minimum is found ($\nabla E = 0$)

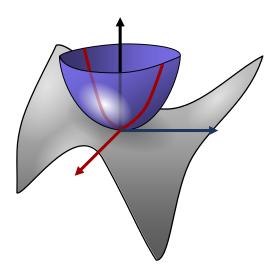
Properties:

- Typically much faster convergence, more stable
- No convergence guarantee

Newton Line Search

Line search for Newton-optimization:

- Following the quadratic fit might overshoot
- Line search:
 - Test value of E at new position
 - Half step width until error decreases (say 10-20 iterations)
 - Switch to gradient descent, if this does not work



Newton Optimization

Problem

- Steps might go uphill
- (Near-) zero or negative eigenvalues make problem ill-conditioned.

Simple solution

- Add λI to the Hessian for a small λ .
- Sum of two quadrics: λI keeps solution at x_0 .
- Comprehensive method: Levenberg-Marquant

What if I Hate Deriving the Hessian?

Gauss Newton

$$E(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})^2 \implies \tilde{E}(\mathbf{x}) = \sum_{i=1}^{n} (\nabla f_i(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + f_i(\mathbf{x}_0))^2$$

LBFGS

- "Quasi-Newton" method
- "Black box-solver"
 - Needs only gradient + function values

Non-linear conjugate gradients:

- With line search
- Usually faster than simple gradient decent

Numerical Optimization – Big Data & Deep Learning –

"Big" Data

ImageNet LSVRC

- 1000000 Training images
- 1000 Non-overlapping categories
- Resized to 224x224 pixels

Costs

- 147KB / image
- ca. 150GB/600GB image data (bytes / float32)

"Big" Data

Networks

- AlexNet (2012): 62M params 1.5 GFlops
- VGG (2014): 138M params 20 GFlops
- Inception (2014): 6.5M params 2 GFlops
- ResNet-152 (2015): 60M params 11 GFlops

(costs per forward-pass)

Training Algorithms

Gradient Descent

Too expensive

Stochastic (Batch) Gradient Descent

- Sample only small batches (randomly)
- Small gradient descent steps
- No goodies
 - No 2nd order information
 - Not even line search
- Fixed LR-schedule
 - "step decay", typically $\lambda = 0.1, 0.001, 0.0001$
 - Fancy LR-schedules (e.g. "1-cycle")

SGD Properties

Interesting Properties

- Converges to GD for small enough steps
 - Accumulate gradients by small steps
- Noise from SGD "batching" improves learning
 - Better generalization for small batches / large LR
 - Only in the beginning
 - Always slow down later
 - Empirical result
 - Analytically
 - Cross-Entropy Loss + SGD increases margin
 - Similar to SVN (also: no need for hinge-loss)

(79)

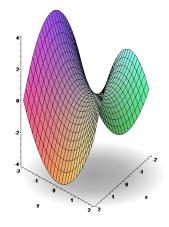
More on SGD

Global minima?

- All of these only find local minima
- Problem seem to be saddle-points rather than local minima
 - Hand-wavy argument: "In high dim., hard to go up in all directions"
 - SGD is good at escaping saddle-points

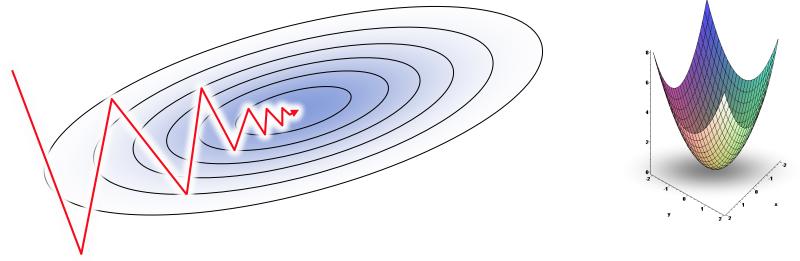
2nd-order Method

- Seems overall more expensive in a big-data setting
- Precaution needed wrt. saddle-points



Close to the minimum

Remember: GD does not work well



- Oscilatory behavior for anisotropic parabola
 - Fixed by conjugate gradients in numerics
- Simple trick for DL: "Momentum"

$$(\nabla_W f)^{i+1} = c (\nabla_W f)^i + (1-c) \widehat{\nabla_W f}$$

Improves a bit, useful at the end of training

Many Other Methods

ADAM (popular)

- Adjust/normalize LR per layer
- 1st/2nd-order momentum-like terms

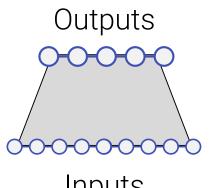
RMSProp, AdaGrad, etc.

You can also use I-BFGS, if you like

How to solve general problems?

Central Building Block: Regression

Trained with Examples

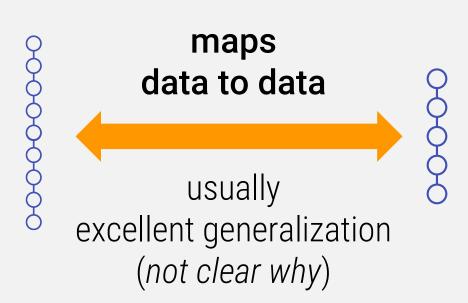


Prediction $\in \mathbb{R}^m$

General Regressor

Data $\in \mathbb{R}^n$

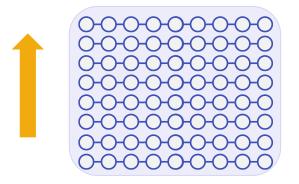
Inputs

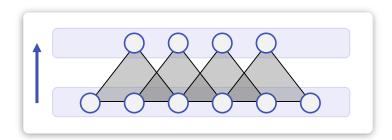


Fully-Convolutional Network

Regression target $\in \mathbb{R}^n$

00000000





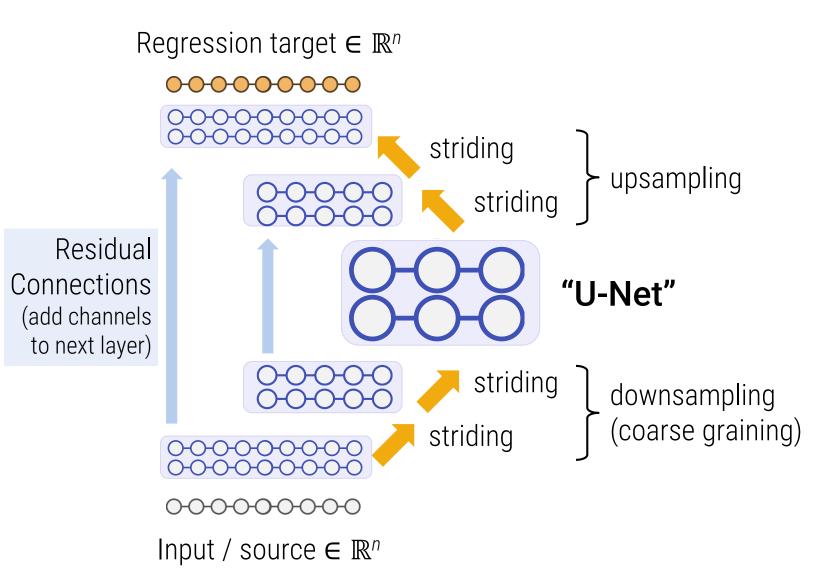
convolutional layers

MGAN Style Transfer

[joint work with Chuan Li, 2016]

MGAN Style Transfer

U-Net



Example: Segmentation

Fully-Convolutional Architectures

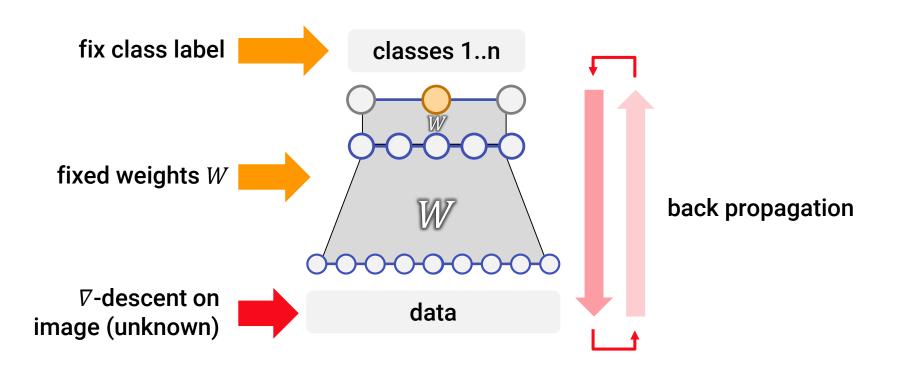
- Popular in image segmentation / annotation
- U-Net is the "Swiss-Army-Knife"

Example data from KITTI-Vision Benchmark Suite [Alhaija et al. 2018] http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015

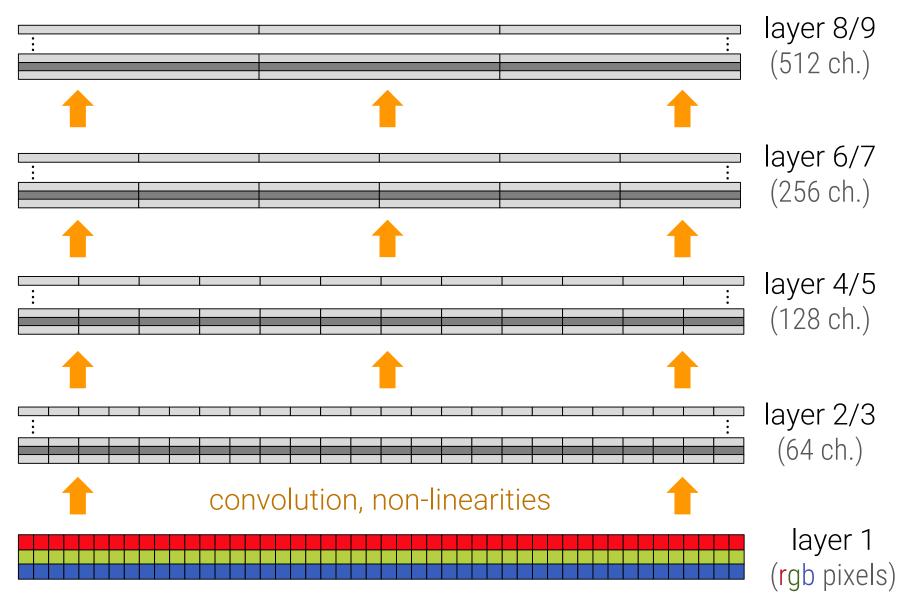
What does it actually do? Variational Inversion

(also, we like pictures)

Variational Inversion



Deep-Network (Discriminative!)



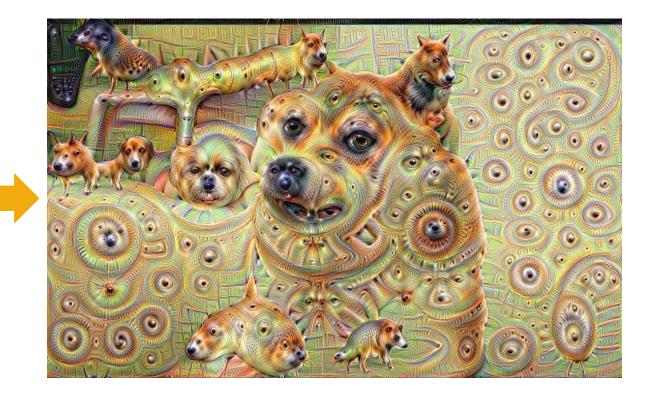
Google's "Deep Dream (Inceptionism)" Algorithms

Image: Daniel Strecker

Google's "Deep Dream (Inceptionism)" Algorithms

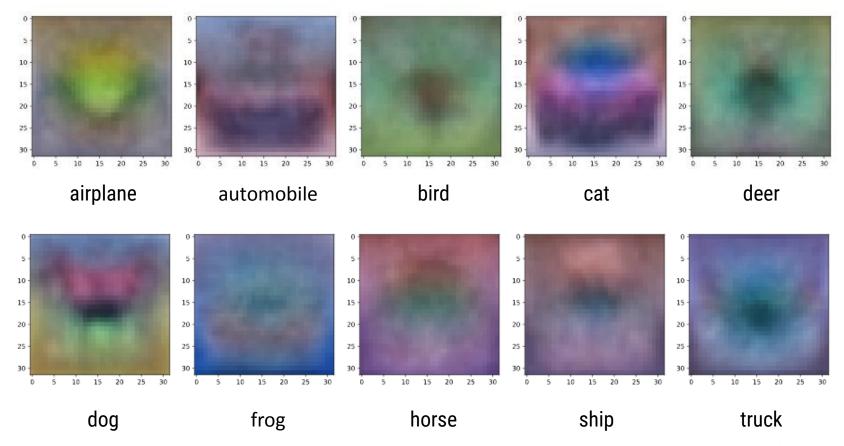
Image: Daniel Strecker

"Deep Dream"



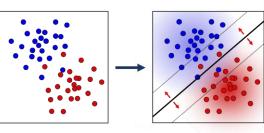
Source: Eric Wayne: "Google Deep Dream Getting Too Good" https://artofericwayne.com/2015/07/08/google-deep-dream-getting-toogood

Linear SVM Dream (C=0.00001, L2/L2)

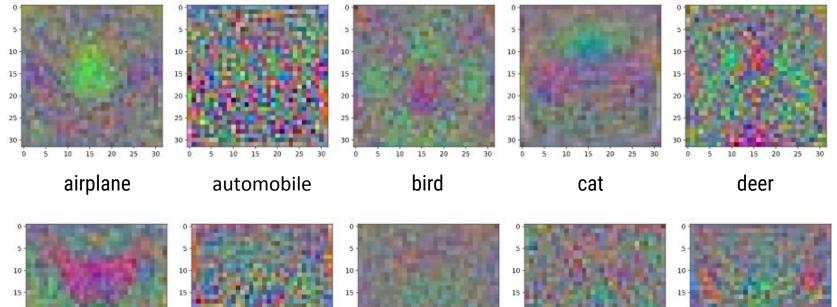


Accuracy

Train: 37.2%, Test: 36.8%



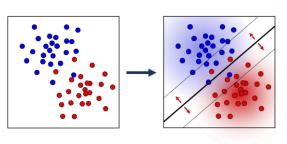
Linear SVM Dream (C=1.0, L2/L2)



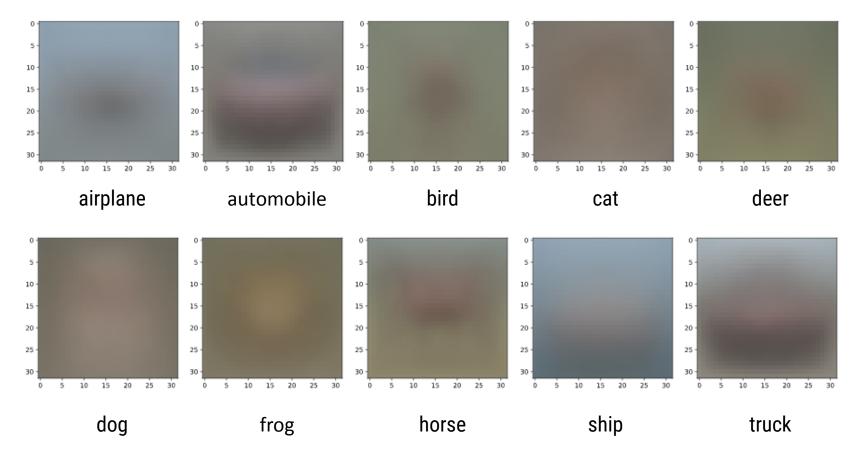
dog horse ship truck frog

Accuracy

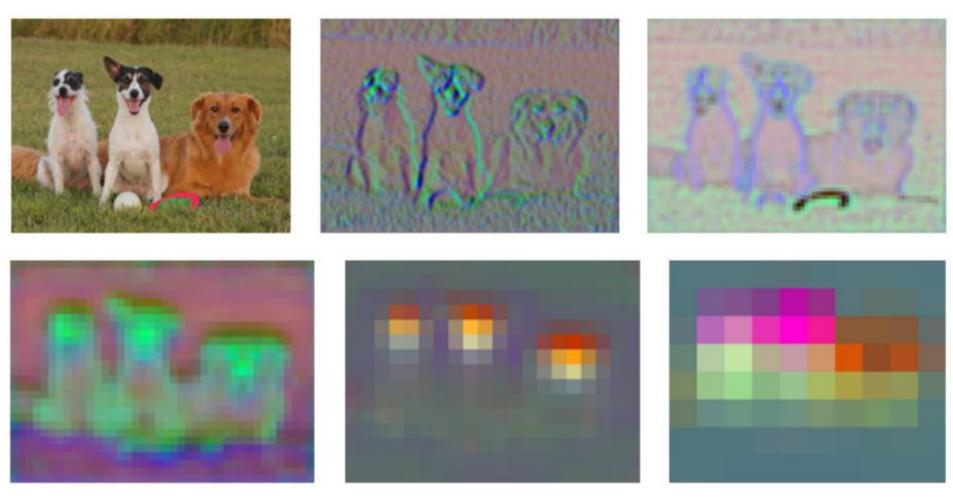
Train: 45.3%, Test: 39.8%



CIFAR-10 Class Averages

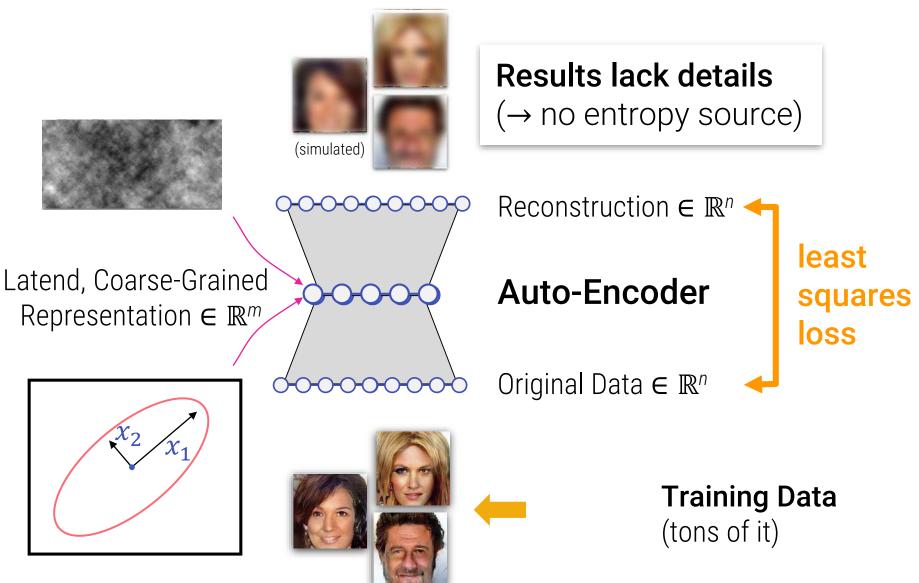


Dogs

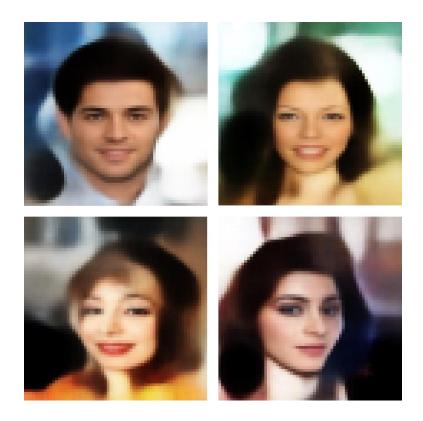


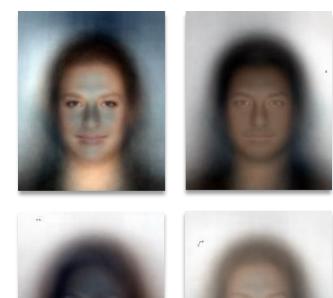
Autoencoders Nonlinear Dimensionality Reduction

Auto-Encoder: Non-linear PCA



Example: Generative Models





Autoencoder (PCA in latent space)

PCA (linear dim. reduction)

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Example: Generative Models



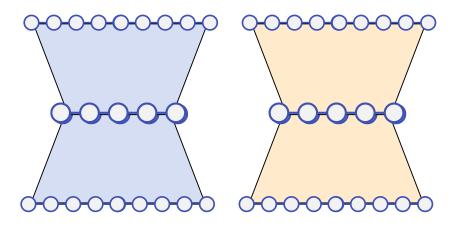


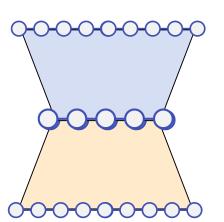
Autoencoder (PCA in latent space)

WGAN-GP (generative adversarial network)

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Cross Auto-Encoder





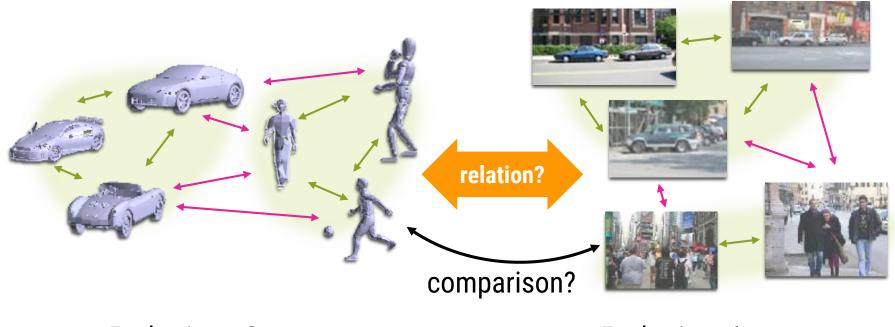
Reconstruction $\in \mathbb{R}^n$

"Cross"-Auto-Encoder

Original Data $\in \mathbb{R}^n$

(Deep) Recommender Systems (Siamese Network)

Relate Incomparable Data



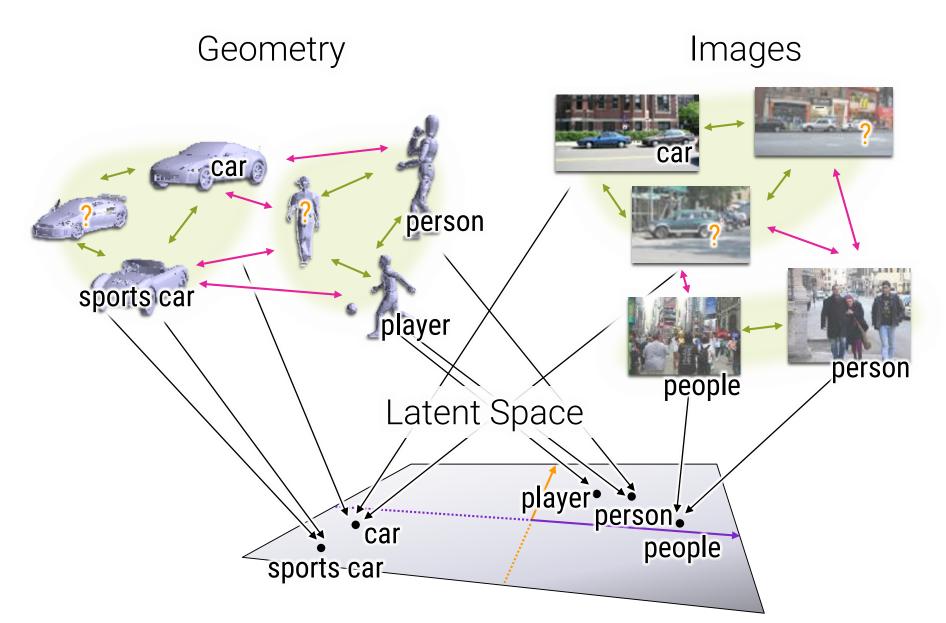
Relating Geometry

Relating Images

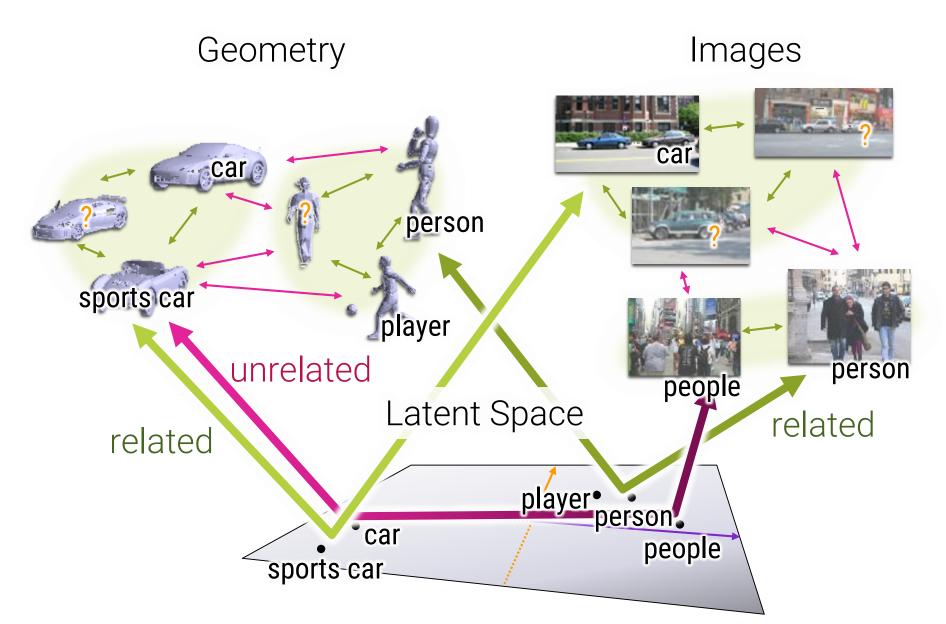
Problem

- Different modalities
- Direct comparison not meaningful

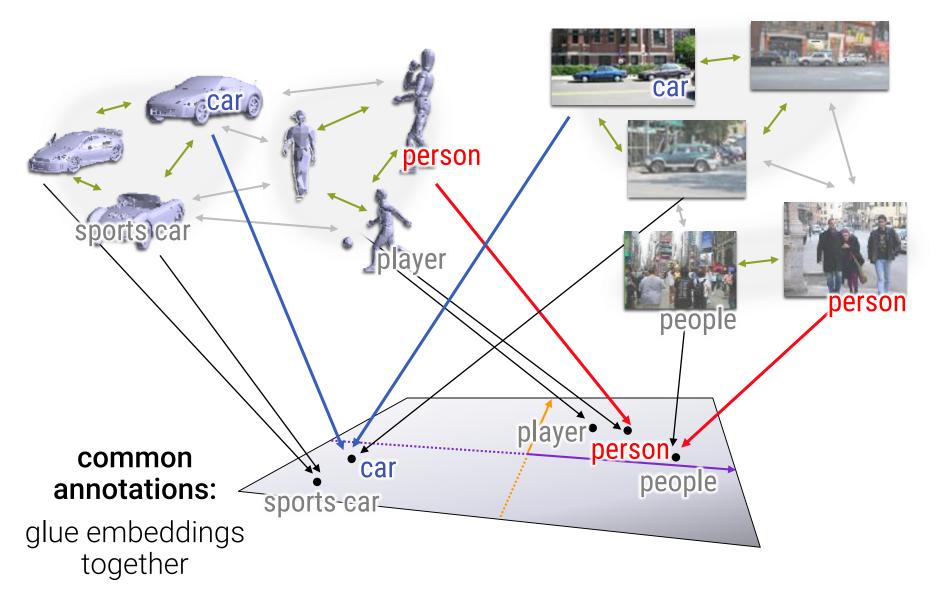
Latent Semantic Space



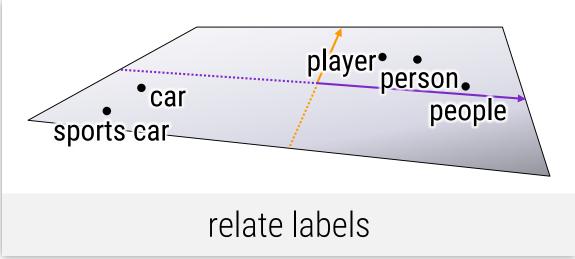
Latent Semantic Space



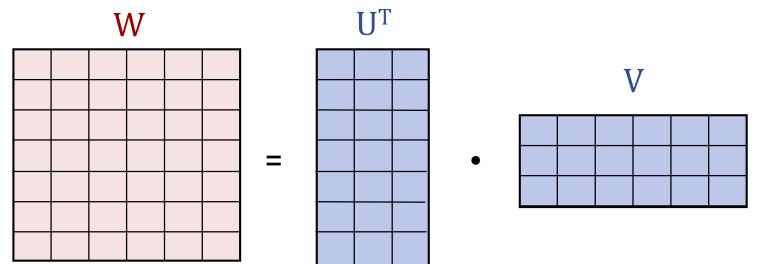
A Few Shared Annotations



Information Gained



Feature Sharing

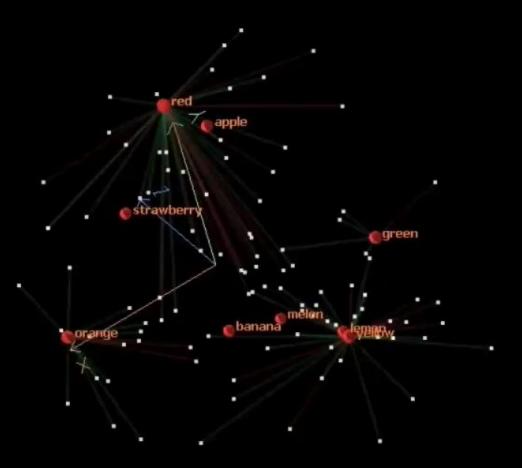


Two matrices

[Loeff & Farhadi 2008]

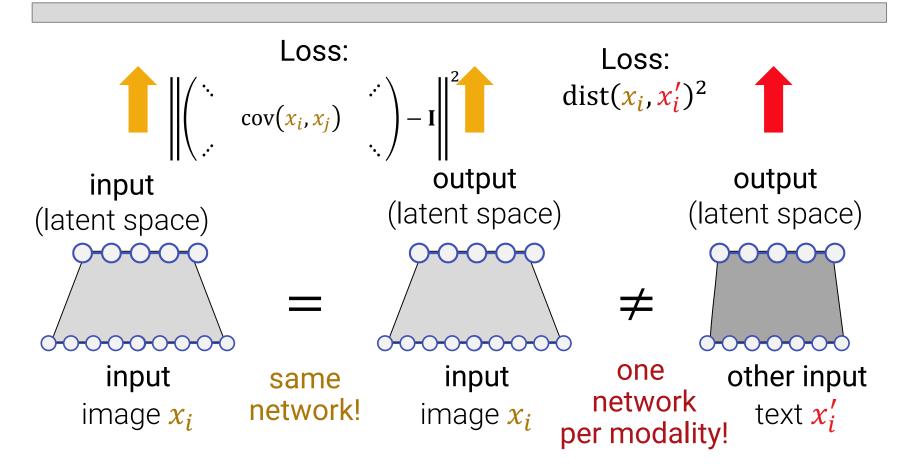
V maps descriptors to latent space

• U maps labels
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, ..., $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ to latent space



Siamese Network

(latent space)



Summary

More on Deep Networks

Tasks

- Regression
 - Basic usage: Network encodes a function
 - Then add least-squares loss (or the similar)
- Classification
 - Typically soft-max regression with non-linear function

Dimensionality reduction

- Autoencoders
- Better generative models soon!

Embedding

Siamese networks

Modelling 2 Statistical data modelling

[Deep Dream Image: Daniel Strecker]

Chapter 9 Deep Neural Networks

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #09 Down the Deep End

- Back to the Future: Neural Networks
- Common Architectures
- Generative Models

Generative Models

Overview

- Generative Models
- Generative networks

Methods

- Autoencoders revisited
- Problems with direct training
- Why not? Normalizing flows
- Autoregressive models
- Generative adversarial networks

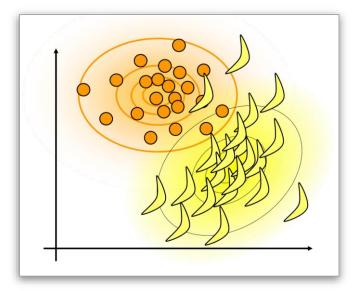
Generative Models

Generative Models

Given

Samples (i.i.d.)

$$\mathbf{x}_i \in \mathbb{R}^d, i = 1, \dots, n$$



Task

Reconstruct probability density

 $p_{\Theta}: \mathbb{R}^d \to \mathbb{R}$

such that

 $\mathbf{x}_i \sim p_{\boldsymbol{\theta}}$

is likely/plausible.

• Need to find parameters $\boldsymbol{\theta} \in \mathbb{R}^k$.

How to do it?

You know the drill...

- Specify generator p_{θ}
 - Classically: E.g., a Gaussian
 - Deep: E.g., a generative network
- Maximum likelihood (ML)

$$\arg\max_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[\prod_{i=1}^{n}\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right] = \arg\min_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[\sum_{i=1}^{n}-\log\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right]$$

Maximum a posteriori (MAP)

$$\arg\max_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[P(\boldsymbol{\theta})\prod_{i=1}^{n}\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right] = \arg\min_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[-\log P(\boldsymbol{\theta}) + \sum_{i=1}^{n} -\log \boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right]$$

How to do it?

You know the drill...

- Specify generator p_{θ}
 - Classically: E.g., a Gaussian
 - Deep: E.g., a generative network
- Maximum likelihood (ML)

$$\arg\max_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[\prod_{i=1}^{n}\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right] = \arg\min_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[\sum_{i=1}^{n}-\log\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right]$$

Maximum a posteriori (MAP)

$$\arg\max_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[P(\boldsymbol{\theta})\prod_{i=1}^{n}p_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right] = \arg\min_{\boldsymbol{\theta}\in\mathbb{R}^{k}}\left[-\log P(\boldsymbol{\theta}) + \sum_{i=1}^{n}-\log p_{\boldsymbol{\theta}}(\mathbf{x}_{i})\right]$$

Typically, in deep nets,

ML is the goal.

(but even that is hard)

Why Generative Models?

Applications for generative models

Creating samples – Example

- Input pretty pictures $\mathbf{x}_i \in \mathbb{R}^d$, i = 1, ..., n
- Learn p_{θ}
- Output more pretty pictures $\mathbf{x} \sim p_{\theta}$

Why Generative Models?

Applications for generative models

Data reconstruction – Example

- Again, learn p_{θ} from examples first
- Now, collect noisy/incomplete data d
 - E.g.: Noise, distortions
 - E.g.: Missing pixels
- Model noise/distortion as likelihood $P(\mathbf{d}|\mathbf{x})$
- Reconstruct x via

learned prior

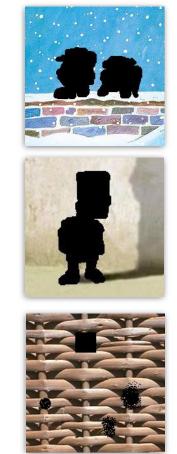
 $P(\mathbf{x}|\mathbf{d}) \sim P(\mathbf{d}|\mathbf{x})P(\mathbf{x}) = P(\mathbf{d}|\mathbf{x}) p_{\theta}(\mathbf{x})$

Reconstruction Applications

Image Denoising

Reconstruction Applications

Hole Filling



incomplete

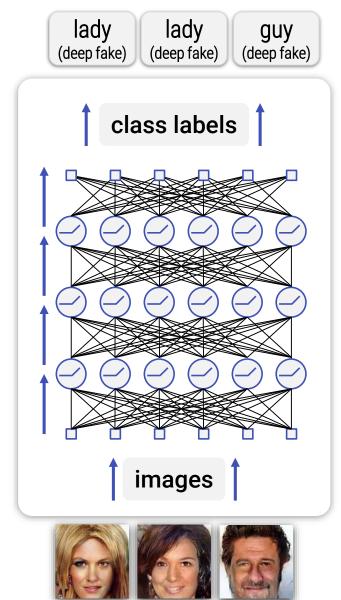
statistical completion

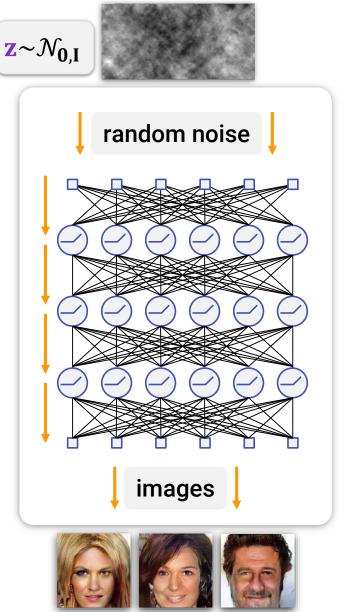
Hole Filling in 3D Scans

(134)

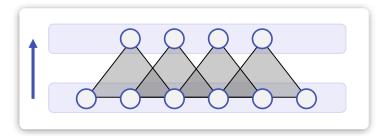
Generative Networks

Generative Networks

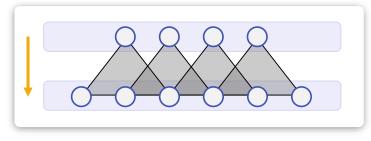




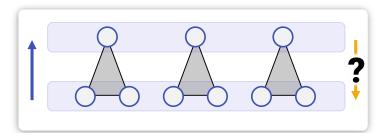
Convolutional Networks?



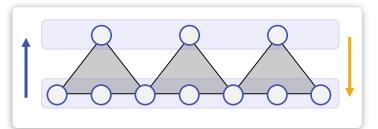
Convolutional network Discriminative network



Convolutional network Generative network

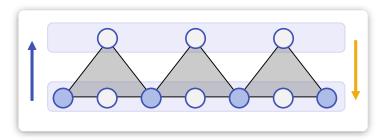


Max- / Average Pooling Difficult to reverse



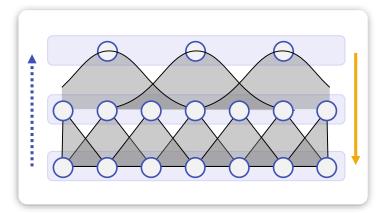
Striding Just run in reverse

While we are at it...



Striding Aliasing issues (e.g.: visible grid pattern in images)

(w/generative CNN)

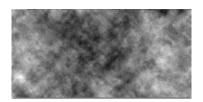


Resampled striding

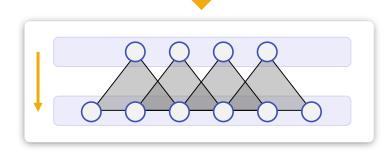
- 1) upsampling with
 - low-pass reconstruction filter
- 2) unstrided convolution

Anti-aliased (for hq-results)

How to Create the Output?



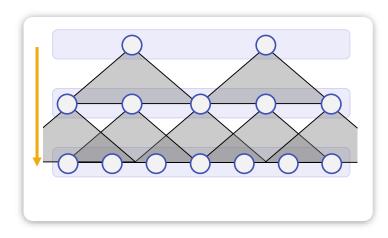
Input (for example noise)



Convolutional network Generative network

Synthesis (after many layers...)

How to Create the Output?



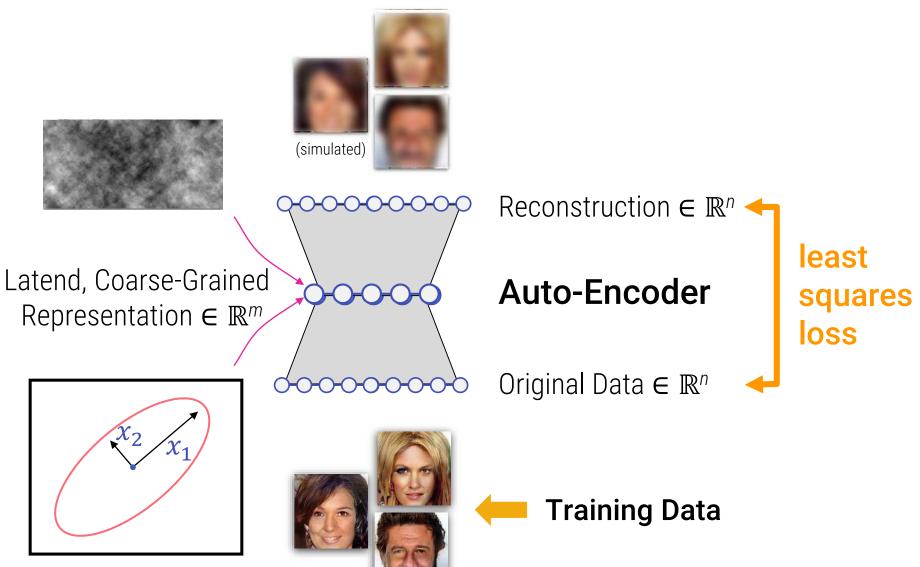
Fully convolution generator

many layers some with stride maybe upsampling layers, too

Great! How do we train it?

Autoencoder

Auto-Encoder: Non-linear PCA



Autoencoder Issues

Latent representation

- Arbitrary representation
- Sampling might yield garbage

Fixes

- Fit Gaussian to latent space
 - Empirically, works well (YMMV)
- Variational Autoencoder
 - More principled solution

$\mathcal{N}_{0,I}$ in latent space



PCA in latent space

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Autoencoder Issues

Lack of information

- Bottleneck reduces information content
 - Loss of entropy
 - Need new randomness
- L₂-loss enforces reproduction of original image
 - High-frequency details lost
 - Blurry results
- "Perceptual" metric difficult
 - In a vague sense, this is what GANs learn

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

$\mathcal{N}_{0,I}$ in latent space

PCA in latent space

Autoencoder Issues

Autoencoders

- Dimensionality reduction
- Deterministic, not probabilistic

Fixes

 VAEs ff. introduce probabilistic model

$\mathcal{N}_{0,I}$ in latent space

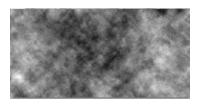
PCA in latent space

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

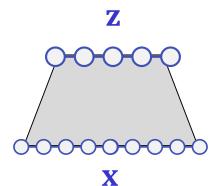
Training of Generative Networks

Learning Schemes

Gaussian Noise $\in \mathbb{R}^m$

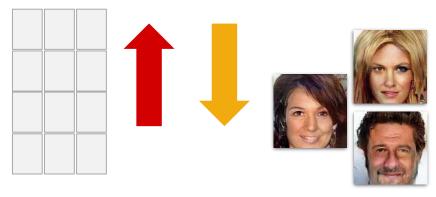


Original Data $\in \mathbb{R}^n$



Generative Network

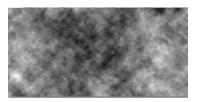
Training Data



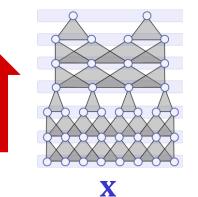
New Samples

Learning Schemes

Gaussian Noise $\in \mathbb{R}^m$



Original Data $\in \mathbb{R}^n$

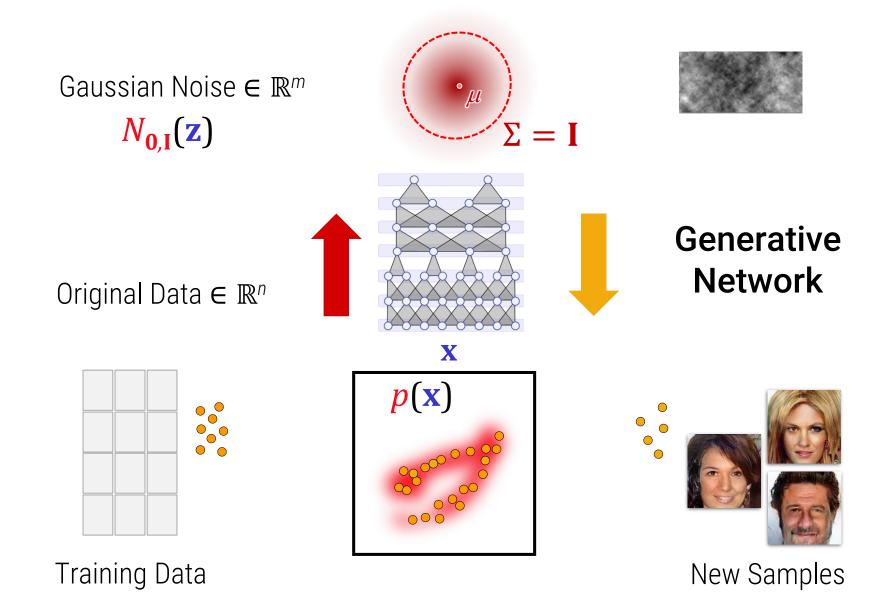


Generative Network

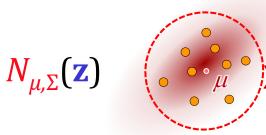
Training Data

New Samples

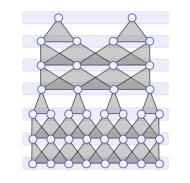
Learning Schemes

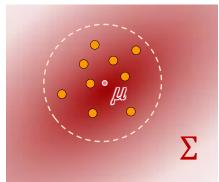


Problem: Need Normalized Density!



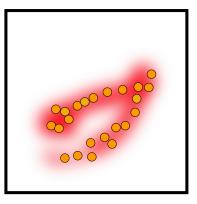
correct (normalized)





incorrect (unnormalized)

p(x)



Problems: inversion difficult normalization difficult p(x)

Let's try...

We will have...

Samples (i.i.d.)

$$\mathbf{x}_i \in \mathbb{R}^d$$
, $i = 1, ..., n$

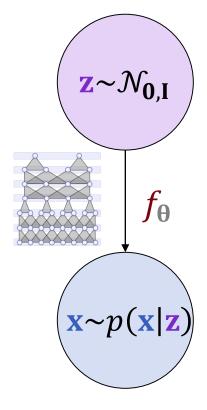
- Noise source: $\mathbf{z} \in \mathbb{R}^k$, $\mathbf{z} \sim \mathcal{N}_{\mathbf{0},\mathbf{I}}$
- Generative network

$$f_{\mathbf{\theta}}: \mathbb{R}^k o \mathbb{R}^{d_{\mathbf{X}}}, \mathbf{\theta} \in \mathbb{R}^{d_{\mathbf{\theta}}}$$

$$f_{\boldsymbol{\theta}}(\mathbf{z}) = \mathbf{x}$$

ML-objective

$$\mathbf{\Theta} = \underset{\mathbf{\Theta} \in \mathbb{R}^k}{\operatorname{arg\,max}} \left[\prod_{i=1}^n p_{\mathbf{\Theta}}(\mathbf{x}_i) \right]$$



(151)

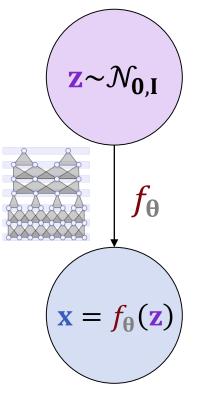
Let's try...

We will have...

In order to maximize

$$\mathbf{\Theta} = \arg \max_{\mathbf{\Theta} \in \mathbb{R}^k} \left[\prod_{i=1}^n \mathbf{p}_{\mathbf{\Theta}}(\mathbf{x}_i) \right]$$

2



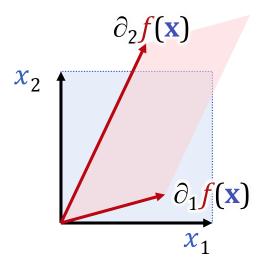
We need to compute

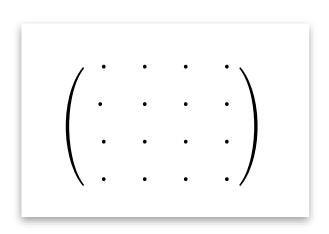
$$\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i}) = \mathcal{N}_{\boldsymbol{0},\mathbf{I}}\left(\boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{x}_{i})\right) \cdot \left|\det\left(\nabla \boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{x}_{i})\right)\right|$$

Wait – why is that?

$$\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{i}) = \mathcal{N}_{0,\mathbf{I}}\left(\boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{x}_{i})\right) \cdot \left|\det\left(\nabla \boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{x}_{i})\right)\right|$$

Jacobian: Geometric Interpretation





Function

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Jacobian matrix ("Gradient")

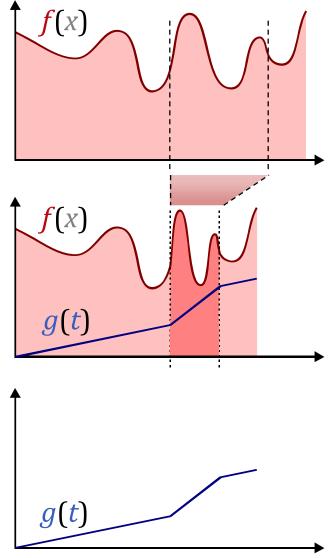
$$\nabla f = \begin{pmatrix} \partial_{x_1} f_1(\mathbf{x}) & \cdots & \partial_{x_n} f_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m(\mathbf{x}) & \cdots & \partial_{x_n} f_m(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} | & | \\ \partial_1 f(\mathbf{x}) \cdots & \partial_n f(\mathbf{x}) \\ | & | \end{pmatrix} \in \mathbb{R}^{n \times m}$$

Integral Transformations Integration by substitution:

$$\int_{a}^{b} f(x) dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) \cdot g'(t) dt$$

Need to compensate

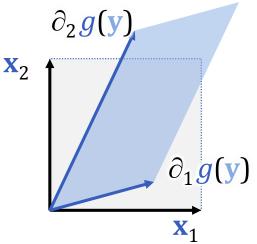
- Speed of movement affects measured area
 - Faster: shrinks measured area
 - Slower: inflates



Multi-Dimensional Substitution Transformation of Integrals:

$$\int_{\Omega} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{G}^{-1}(\Omega)} \mathbf{f}(g(\mathbf{z})) \cdot |\det[\nabla g(\mathbf{z})]| d\mathbf{z}$$

- $g \in C^1$, invertible
- Jacobian approximates local behavior of $g(\cdot)$
- Determinant: local area/volume change



Probability Density

Probability of an Event A:

Forward application

$$P(\mathbf{A}) = \int_{\mathbf{x} \in \mathbf{A}} p(\mathbf{x}) d\mathbf{x}$$
$$= \int_{\mathbf{z} \in g^{-1}(\mathbf{A})} p(g(\mathbf{z})) |\det[\nabla g(\mathbf{z})]| d\mathbf{z}$$

Reverse problem

$$\mathbf{x} = f_{\theta}(\mathbf{z}) \rightarrow p(\mathbf{x}) = p(\mathbf{z}|\mathbf{x}) = p_{\mathbf{z}}(f_{\theta}^{-1}(\mathbf{x}))$$

Thus

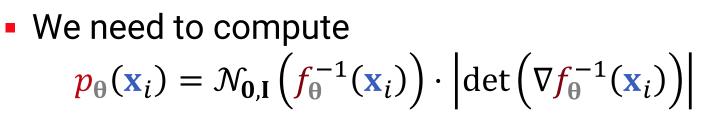
$$p(\mathbf{x}) = p\left(f_{\theta}^{-1}(\mathbf{x})\right) \underbrace{\left|\det\left[\nabla f_{\theta}^{-1}(\mathbf{x})\right]\right|}_{=\left(\det\left[\nabla f_{\theta}(\mathbf{x})\right]\right)^{-1}}$$

This is our life now

We will have...

In order to maximize

$$\mathbf{\Theta} = \arg \max_{\mathbf{\Theta} \in \mathbb{R}^k} \left[\prod_{i=1}^n p_{\mathbf{\Theta}}(\mathbf{x}_i) \right]$$



- Which is not so easy
 - Inverting the network f_{θ} is difficult/costly (if possible)
 - Computing the Jacobian matrix is costly
 - Computing the determinant is costly

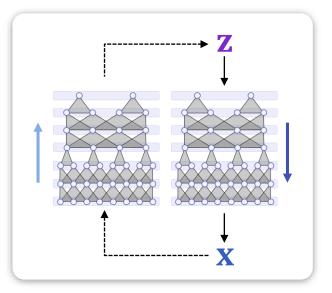
fə

Vanilla-Version

First attempt

Just use an arbitrary network

Compute inverse?



- E.g. fit an (approximate) inverse network to it
 - Takes minutes (all data points), each time

Compute determinant

- Backprop + linear algebra
 - Determinants of large matrices, per data point

Maybe not impossible, but very expensive

Why not? Normalized Flows

Clever Architecture

NICE – making our life easier

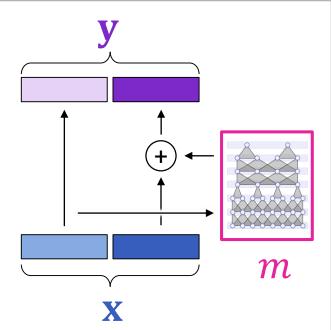
[Dinh et al. 2014]

- Input $\mathbf{x} \in \mathbb{R}^n$
- Output $f(\mathbf{x}) \in \mathbb{R}^n$ (and d < n) $f(\mathbf{x}) = \left[\mathbf{x}_{[1:d]} \mid \mathbf{x}_{[d+1:n]} + m(\mathbf{x}_{[1:d]}) \right]$
- Inverse

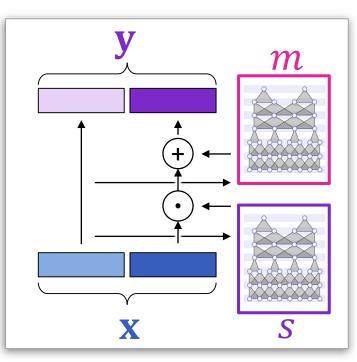
$$f^{-1}(\mathbf{y}) = \left[\mathbf{y}_{[1:d]} \mid \mathbf{y}_{[d+1:n]} - m(\mathbf{y}_{[1:d]}) \right]$$

• $det(\nabla f(\mathbf{x})) = det\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \nabla m & \mathbf{I} \end{pmatrix} = 1$

• Swap parts $\mathbf{x}_{[1:d]}$, $\mathbf{x}_{[d+1:n]}$ with every layer



Nicer



RealNVP [Dinh et al. 2017]

Function

$$\boldsymbol{f}(\mathbf{x}) = \left[\mathbf{x}_{[1:d]} \mid \mathbf{x}_{[d+1:n]} \odot \exp\left(s\left(\mathbf{x}_{[1:d]}\right)\right) + \boldsymbol{m}\left(\mathbf{x}_{[1:d]}\right) \right]$$

Inverse

$$f^{-1}(\mathbf{y}) = \begin{bmatrix} \mathbf{y}_{[1:d]} & | (\mathbf{y}_{[d+1:n]} - m(\mathbf{y}_{[1:d]})) \odot \exp(s(\mathbf{x}_{[1:d]}))^{-1} \end{bmatrix}$$
$$\det(\nabla f(\mathbf{x})) = \det\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ e^{s_1} & \vdots \\ e^{s_d} \end{pmatrix}$$

Training

Maximum Likelihood Training

$$\arg \max_{\boldsymbol{\theta} \in \mathbb{R}^k} \left(\prod_{i=1}^n p_{\boldsymbol{\theta}}(\mathbf{x}_i) \right) = \arg \min_{\boldsymbol{\theta} \in \mathbb{R}^k} \left(\sum_{i=1}^n -\log p_{\boldsymbol{\theta}}(\mathbf{x}_i) \right)$$

Neg-log-likelihood

$$-\log p_{\theta}(\mathbf{x}) = -\log \left(\mathcal{N}_{0,\mathbf{I}} \left(f_{\theta}^{-1}(\mathbf{x}) \right) \right) - \log \left((\det[\nabla f_{\theta}(\mathbf{x})])^{-1} \right)$$
$$= -\log \left(\mathcal{N}_{0,\mathbf{I}} \left(f_{\theta}^{-1}(\mathbf{x}) \right) \right) + \log \left((\det[\nabla f_{\theta}(\mathbf{x})]) \right)$$

Training

Neg-log-likelihood

$$-\log p_{\theta}(\mathbf{x}) = -\log \left(\mathcal{N}_{0,\mathbf{I}} \left(f_{\theta}^{-1}(\mathbf{x}) \right) \right) - \log \left((\det[\nabla f_{\theta}(\mathbf{x})])^{-1} \right)$$
$$= -\log \left(\mathcal{N}_{0,\mathbf{I}} \left(f_{\theta}^{-1}(\mathbf{x}) \right) \right) + \log \left((\det[\nabla f_{\theta}(\mathbf{x})]) \right)$$

Multi-layer network

$$-\log p_{\boldsymbol{\theta}}(\mathbf{x}) = -\log\left(\mathcal{N}_{0,\mathbf{I}}\left(f_{\boldsymbol{\theta}}^{-1}(\mathbf{x})\right)\right) + \sum_{l=1}^{L}\log\left(\left(\det\left[\nabla f_{\boldsymbol{\theta}}^{(l)}(\mathbf{x})\right]\right)\right)$$

Results

Quality

- Good image quality, but optimized GANs are better
- Newer variants of related ideas perform better

Versality

- We have an explicit likelihood
- Can be used as prior for image completion, reconstruction etc.

Speed

Evaluation fast and training, too.

Autoregressive Models

Autoregressive Models

Sequence

Data

 $x_1, x_2, \dots, x_d \in \mathbb{R}$

Distribution

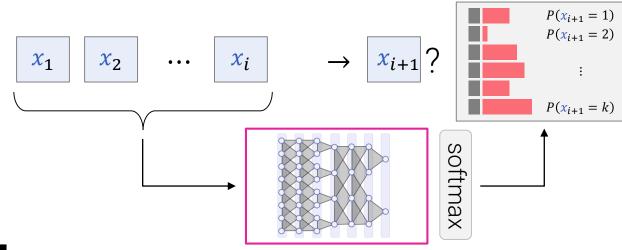
 $p(x_1, x_2, \dots, x_d)$

Chain rule (in general)

 $p(x_1, x_2, \dots, x_d)$

 $= p(x_1) \cdot p(x_2|x_1) \cdots p(x_{d-1}|x_{d-2}, \dots, x_1) \cdot p(x_d|x_{d-1}, \dots, x_1)$

Autoregressive Models



Idea

- Predict one value at a time
 - x_1 , then x_2 , then x_3 , ..., then x_d
- Generative probabilistic model

predict *distribution* $p(x_d | x_{d-1}, ..., x_1)$ based on *values* $x_{d-1}, ..., x_1 \in \mathbb{R}$

still intractable.

but we just use a

network

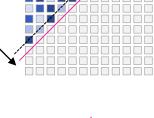
Concrete Examples

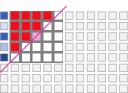
Image generation: PixelRNN / PixelCNN

- Images are created pixel-by-pixel
 - Along diagonals (left-top)
- PixelRNN: recurrent neural network (LSTM)
- PixelCNN: convolution kernel (faster)
- Distribution for x_{i+1}
 - 256 proability values (entries) for 256 pixel grey-scales
 - RGB-values are predicted sequentially (!)

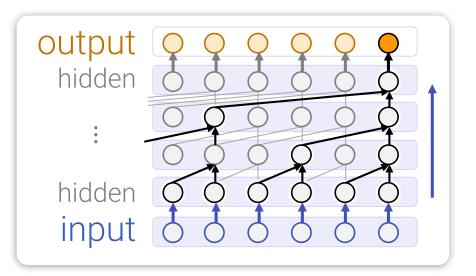
Improvements possible

Multi-resolution version (e.g. PixelCNN++, U-net like)





WaveNet



Dilated Convolutions

- Multi-scale structure
- Auto-regressive architecture
- Used for generating sound
- Expensive training (sequential processing)

Generative Adversarial Networks (GANs)

Never mind the likelihood...

Alternative idea

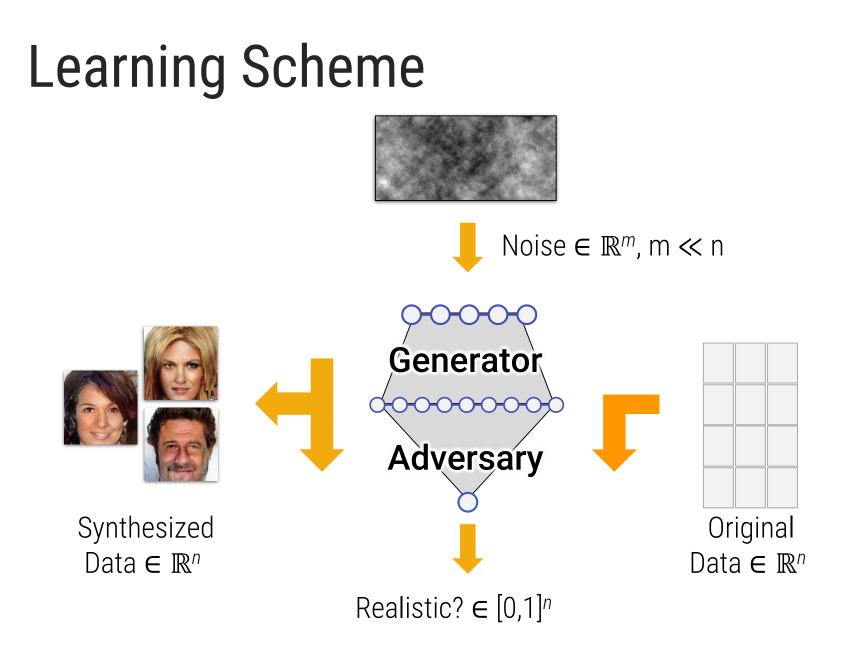
- We do not learn a distribution
- Instead, we (only) learn a sampler

Sampling seems easier

 It is possible to learn "good" samplers without explicit representation of the likelihood

"Generative Adversarial Networks"

- Idea: Complaining is easier than doing
- Let the complainers teach the doers

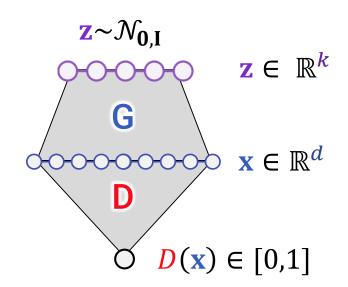


Formalization

Data: Samples (i.i.d.) $\mathbf{x}_i \in \mathbb{R}^d, i = 1, ..., n$

Networks

- Generator $G_{\Theta} : \mathbb{R}^k \to \mathbb{R}^d$
 - Takes random noise $\mathbf{z} \sim \mathcal{N}_{\mathbf{0},\mathbf{I}}, \ \mathbf{z} \in \mathbb{R}^k$
 - Outputs "fake" samples $\mathbf{x} \in \mathbb{R}^d$
- Discriminator $D_{\Phi} : \mathbb{R}^d \to [0,1]$
 - Learns to distinguish "real" from "fake" data
 - Output: likelihood of "real"



Loss Function

Distributions

- $p_{data}: \mathbb{R}^d \to \mathbb{R}$ actual data distribution
- $p_G: \mathbb{R}^d \to \mathbb{R}$ generator distribution
- $p(\mathbf{z}): \mathbb{R}^k \to \mathbb{R}$ latent noise distribution (typ. $\mathcal{N}_{0,\mathbf{I}}$)

Objective function

 $\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} V(\boldsymbol{D}_{\boldsymbol{\phi}}, \boldsymbol{G}_{\boldsymbol{\theta}})$

$$V(\mathbf{D}_{\mathbf{\phi}}, \mathbf{G}_{\mathbf{\theta}}) = \mathbb{E}_{\mathbf{x} \sim p_{data}} \left[\log D_{\mathbf{\phi}}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - D_{\mathbf{\phi}} (\mathbf{G}_{\mathbf{\theta}}(\mathbf{z})) \right) \right]$$

Loss function

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} V(\boldsymbol{D}_{\boldsymbol{\phi}}, \boldsymbol{G}_{\boldsymbol{\theta}})$$

View of the discriminator

$$\mathbb{E}_{\mathbf{x} \sim p_{data}} \left[\log D_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - D_{\phi}(G_{\theta}(\mathbf{z})) \right) \right]$$

$$large \not \gg \qquad large \not \gg \qquad low score for images of G$$

View of the generator

$$\mathbb{E}_{\mathbf{x} \sim p_{data}} \left[\log D_{\Phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - D_{\Phi}(G_{\theta}(\mathbf{z})) \right) \right]$$

indifferent small
No information for G G fools D

Optimization

Training

- Discriminator tries to distinguish real / fake
 - Maximize prediction accuracy
- Generator tries to fool discriminator
 - Minimizes prediction accuracy
- Minimax game
- Nash equilibrium at true distribution

Nash-Equilibrium

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} V(\boldsymbol{D}_{\boldsymbol{\phi}}, \boldsymbol{G}_{\boldsymbol{\theta}})$$

Optimal discriminator

 $D_{G}^{*}(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_{G}(\mathbf{x})}$ (Bayes-optimal likelihood ratio)

Optimal generator?

short:
$$p_d = p_{data}$$

$$\mathbb{E}_{\mathbf{x} \sim p_d} [\log D_G^*(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - D_G^*(G_{\theta}(\mathbf{z})) \right) \right]$$
$$= \mathbb{E}_{\mathbf{x} \sim p_d} \left[\log \frac{p_d(\mathbf{x})}{p_d(\mathbf{x}) + p_G(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - \frac{p_d(\mathbf{x})}{p_d(\mathbf{x}) + p_G(\mathbf{x})} \right) \right]$$
$$= \mathbb{E}_{\mathbf{x} \sim p_d} \left[\log \frac{p_d(\mathbf{x})}{p_d(\mathbf{x}) + p_G(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(\frac{p_G(\mathbf{x})}{p_d(\mathbf{x}) + p_G(\mathbf{x})} \right) \right]$$

Nash-Equilibrium

short:
$$p_d = p_{data}$$

Optimal generator?

$$\mathbb{E}_{\mathbf{x} \sim p_d} [\log D_G^*(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - D_G^*(G_{\theta}(\mathbf{z})) \right) \right]$$
$$= \mathbb{E}_{\mathbf{x} \sim p_d} \left[\log \frac{p_d(\mathbf{x})}{p_d(\mathbf{x}) + p_G(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(\frac{p_G(\mathbf{x})}{p_d(\mathbf{x}) + p_G(\mathbf{x})} \right) \right]$$

For $p_{data} = p_G$, we obtain ...= $\mathbb{E}_{\mathbf{x} \sim p_d} \left[\log \frac{1}{2} \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(\frac{1}{2} \right) \right] = 2 \log \frac{1}{2}$

Next, we show that this is really optimal

Optimality

short: $p_d = p_{data}$

First term in objective

 $\mathbb{E}_{\mathbf{x} \sim p_d}[\log \mathbf{D}_G^*(\mathbf{x})] = \int_{\mathbf{x} \in \mathbb{R}^d} p_d(\mathbf{x}) \log \frac{p_d(\mathbf{x})}{p_d(\mathbf{x}) + p_G(\mathbf{x})} d\mathbf{x}$

$$= \log \frac{1}{2} + \int_{\mathbf{x} \in \mathbb{R}^d} p_d(\mathbf{x}) \log \frac{p_d(\mathbf{x})}{\frac{1}{2} \left(p_d(\mathbf{x}) + p_G(\mathbf{x}) \right)} d\mathbf{x}$$

$$= \log \frac{1}{2} + KL\left(p_d(\mathbf{x}) \| \frac{p_d(\mathbf{x}) + p_G(\mathbf{x})}{2}\right)$$

Optimality

short: $p_d = p_{data}$

Second term in objective

$$\mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - \frac{D_G^* (G_{\theta}(\mathbf{z}))}{p_G(G_{\theta}(\mathbf{z}))} \right) \right]$$
$$= \int_{\mathbf{z} \in \mathbb{R}^k} p(\mathbf{z}) \log \left(\frac{p_G(G_{\theta}(\mathbf{z}))}{p_d(G_{\theta}(\mathbf{z})) + p_G(G_{\theta}(\mathbf{z}))} \right) d\mathbf{z}$$
$$= \log \frac{1}{2} + KL \left(p_G(\mathbf{x}) \left\| \frac{p_d(\mathbf{x}) + p_G(\mathbf{x})}{2} \right) \right)$$

Optimality

short: $p_d = p_{data}$

Sum of the two terms

$$V(\mathbf{D}_{G}^{*}, G_{\theta}) = 2\log \frac{1}{2} + KL\left(p_{G}(\mathbf{x}) \| \frac{p_{d}(\mathbf{x}) + p_{G}(\mathbf{x})}{2}\right)$$
$$+ KL\left(p_{d}(\mathbf{x}) \| \frac{p_{d}(\mathbf{x}) + p_{G}(\mathbf{x})}{2}\right)$$

$$= 2 \log \frac{1}{2} + 2 JS(p_G(\mathbf{x}) || p_d(\mathbf{x}))$$

minimum value
(as shown before)

so much for the theory, but now... Practice

How to Build & Operate a GAN

Practical Training

- Min-max game is unrealistically hard to compute
- Thus: simultaneous gradient descent on $V(D_{\phi}, G_{\theta})$
 - Alternate true/fake images every other iteration

Significant problem

- Theoretically, this scheme does not necessarily converge
- Practically, it is highly unstable
- Can be stabilized with a big bag of tricks

Typical problems

- Vanishing gradients: typically *D* wins, *G* stalls
- Mode collapse: G learns a small set of deceiving examples

How to Build & Operate a GAN

Tips & Tricks (useful)

- Images: Using a convolutional generator
 - Strided convolutions for upsampling
 - Maybe resampling filters
 - Known as "DCGAN" deep convolutional GAN [Radford et al. ICLR 2016]
- DCGAN approach has become standard

How to Build & Operate a GAN

Tips & Tricks (≈ Alchemy)

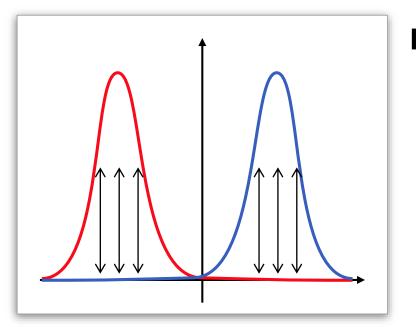
- Training
 - Discriminator might get too smart
 - Schedule updates
 - Modify objective for G slightly max log D instead of min log(1 - D)

BatchNorm is problematic

- Use InstanceNorm instead
- At least separate batches for "true" and "fake"
- Batch-Discrimination
 - Feed batches at once to D
 - Avoids (to some extend) "mode-collapse"

Wasserstein GANs

JS has its issues...



Reminder

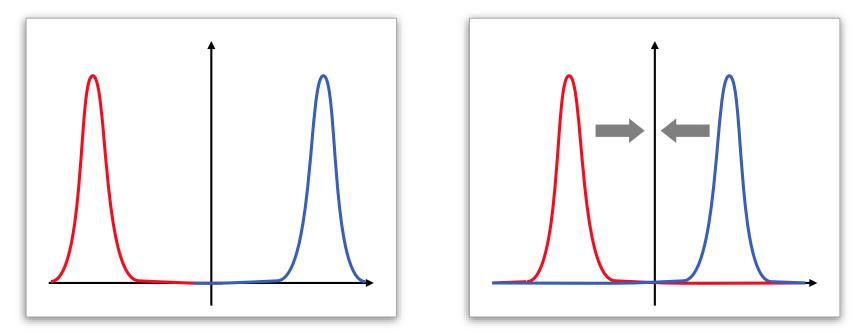
$$KL(p \parallel q) = \sum_{i=1}^{n} p_i \log_2 \frac{p_i}{q_i}$$

(discrete probabilities)
$$JS(p \parallel q)$$
$$= \frac{1}{2} \left(KL\left(p \parallel \frac{p+q}{2}\right) + KL\left(q \parallel \frac{p+q}{2}\right) \right)$$

Problems with KL/JS

- Point-wise comparison
 - Unaligned densities yield singularities in KL (not in JS)
 - Gradients of JS vanish
- GANs optimize $JS \rightarrow vanishing gradients$

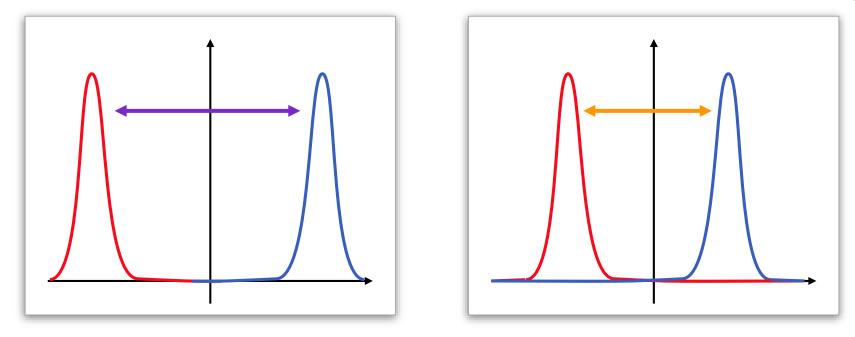
JS has its issues...



These two distributions

- Approximately the same distance
- How to get closer: JS not informative

Earth-Mover's Distance – Wasserstein W₁

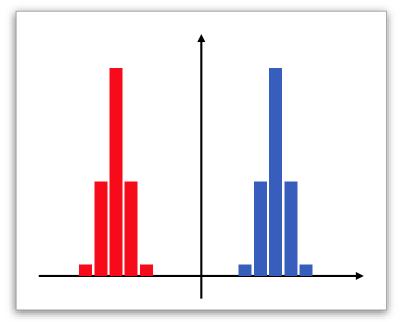


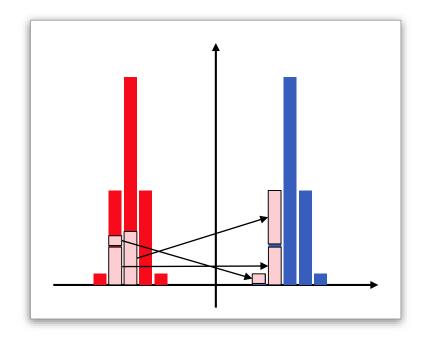
New Idea

- "Optimal transport"
 - Move probability density from p to q
 - Cost = mass x distance
 - Optimal transport = "earth-mover's distance" (Wasserstein W₁)

(190)

Definition (basic)





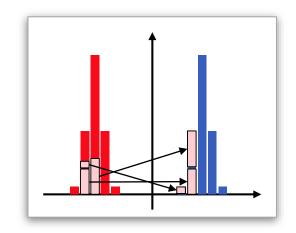
Transport Plan

- Shovel red to blue
- Amount of shoveled red must add to blue
- Cannot take more than available

Definition (basic)

Transport Plan

- Discrete model
 - $p_1, \ldots, p_n, q_1, \ldots, q_n$
- Transport plan



$$\pi_{p,q}(i,j) \ge 0, \qquad \sum_i \pi_{p,q}(i,j) = p_j, \qquad \sum_j \pi_{p,q}(i,j) = q_i$$

"Shoveling-costs"

$$C(\pi_{p,q}) = \sum_{i,j} \pi_{p,q}(i,j) |i-j|$$
$$W_1(p,q) = \inf_{\substack{\text{valid } \pi}} C(\pi_{p,q})$$

Definition (basic)

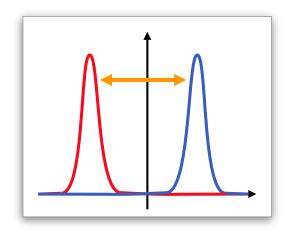
General case

- Distributions $p, q: \mathbb{R}^d \to \mathbb{R}$
- Transport plan: Joint distribution $\pi(x, y)$ such that

$$\pi(\mathbf{x}) = \mathbf{p}(\mathbf{x}), \quad \pi(\mathbf{y}) = q(\mathbf{y})$$

Wasserstein-distance

$$W_1(p,q) = \inf_{\substack{\text{distr. }\pi(x,y),\\\pi(y)=p(x),\\\pi(y)=q(y)}} \left(\mathbb{E}_{(x,y)\sim\pi}[|x-y|] \right)$$



Wasserstein GANs

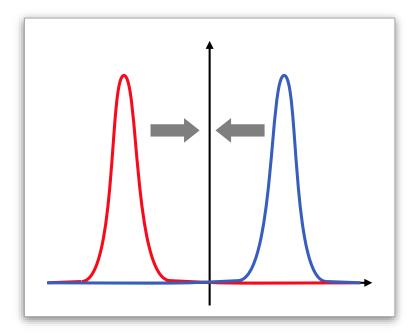
Great idea

- Replace JS-distance in GAN-objective by Wasserstein-distance
 - No vanishing gradients
 - Fixes (some) convergence issues
- Problem:

Looks very very highly totally unfortunately – intractable

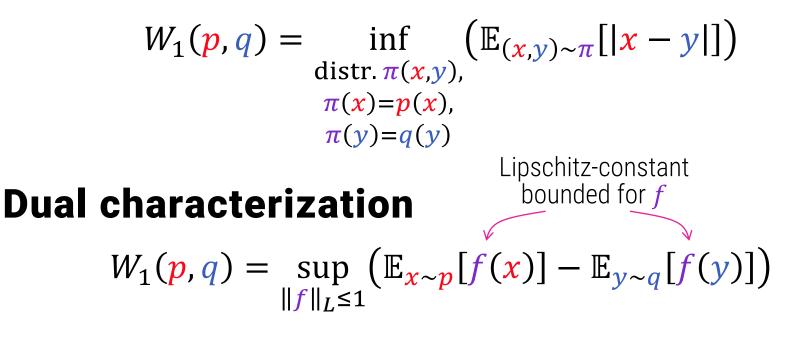
Really great idea

We can compute it indirectly



Kantorovich-Rubinstein Duality

Wasserstein distance



What does it buy us?

- Still intractable (high-dim. *f*)
- But we can use a network to approximate f

Old Design Old GAN

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} V(\boldsymbol{D}_{\boldsymbol{\phi}}, \boldsymbol{G}_{\boldsymbol{\theta}})$$

 $V(\underline{D}_{\phi}, G_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{data}} \left[\log \underline{D}_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - \underline{D}_{\phi}(G_{\theta}(\mathbf{z})) \right) \right]$

Gradients (downhill)

$$\nabla_{\mathbf{\Phi}} \mathbf{D} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{\Phi}} \log \mathbf{D}_{\mathbf{\Phi}}(\mathbf{x}_{i}) + \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{\Phi}} \log \left(1 - \mathbf{D}_{\mathbf{\Phi}}(G_{\mathbf{\theta}}(\mathbf{z}_{i}))\right)$$
$$\nabla_{\mathbf{\theta}} = -\frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{\theta}} \log \left(1 - \mathbf{D}_{\mathbf{\Phi}}(G_{\mathbf{\theta}}(\mathbf{z}_{i}))\right)$$

Old Design Old GAN – "improved" variant $\min_{\Theta} \max_{\Phi} V(D_{\Phi}, G_{\Theta})$

 $V(\underline{D}_{\phi}, G_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{data}} \left[\log \underline{D}_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - \underline{D}_{\phi}(G_{\theta}(\mathbf{z})) \right) \right]$

Gradients (downhill)

$$\nabla_{\mathbf{\Phi}} \mathbf{D} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{\Phi}} \log \mathbf{D}_{\mathbf{\Phi}}(\mathbf{x}_{i}) + \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{\Phi}} \log \left(1 - \mathbf{D}_{\mathbf{\Phi}}(G_{\mathbf{\theta}}(\mathbf{z}_{i}))\right)$$
$$\nabla_{\mathbf{\theta}} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{\theta}} \log \left(\mathbf{D}_{\mathbf{\Phi}}(G_{\mathbf{\theta}}(\mathbf{z}_{i}))\right)$$

New Design

Wasserstein GAN $\min_{\theta} \max_{\Phi} W_{D_{\phi}}(D_{\phi}, G_{\theta})$ $W_{D_{\phi}}(p_{data}, p_{G}) = \mathbb{E}_{\mathbf{x} \sim p_{data}}[D_{\phi}(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}[D_{\phi}(G_{\theta}(\mathbf{z}))]$ with $\|\nabla_{\mathbf{x}} D_{\phi}(\mathbf{x})\| \leq 1$

Gradients

$$\nabla_{\mathbf{\Phi}} \mathbf{D} = \sum_{i=1}^{n} \nabla_{\mathbf{\Phi}} \mathbf{D}_{\mathbf{\Phi}}(\mathbf{x}_{i}) + \sum_{i=1}^{n} \nabla_{\mathbf{\Phi}} \mathbf{D}_{\mathbf{\Phi}}(G_{\mathbf{\theta}}(\mathbf{z}_{i}))$$
$$\nabla_{\mathbf{\theta}} = -\sum_{i=1}^{n} \nabla_{\mathbf{\theta}} \left(\mathbf{D}_{\mathbf{\Phi}}(G_{\mathbf{\theta}}(\mathbf{z}_{i})) \right)$$

Modifications

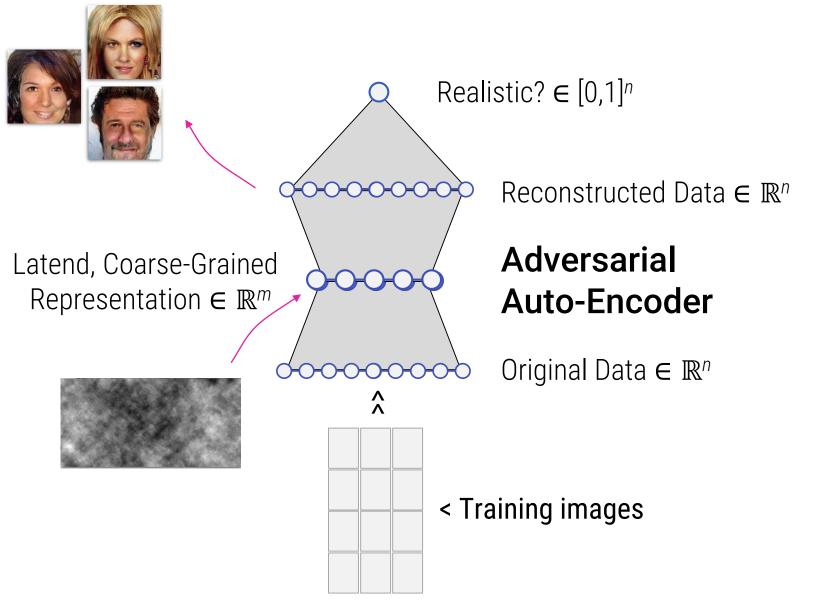
Discriminator $D \rightarrow$ "**Critic**" D

- Same architecture for *D*
- But no probabilistic output (no sigmoid)
- Needs Lipschitz-condition!
 - Option 1: Clipping of gradients
 - Original WGAN paper, does not work so well
 - Option 2: Gradient penalty
 - Penalty term $(\|\nabla D\| 1)^2$, works better
 - Option 3: Spectral normalization
 - Limit singular values of weight layers

Overall very similar to original GAN

Some Results

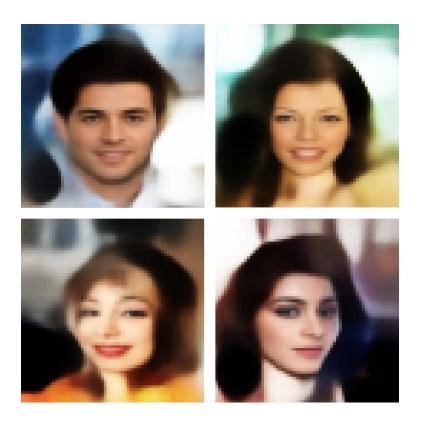
Simple Solution: AE+ GAN



Noise → Images

MGANs [joint work with Chuan Li] trained on CelebA, GAN with AE conditioned on VGG-features

Wasserstein-GAN-GP (limited GPU)



Autoencoder (PCA in latent space)

WGAN-GP (generative adversarial network)

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Style-Based GAN [Kerras et al. 2018]

Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for Generative Adversarial Networks, 2018 [image by Wikipedia user OwlsMcGee, https://en.wikipedia.org/wiki/File:Woman_1.jpg]

(205)

Summary

Generative Models

Generative deep networks

- Learning is a surprisingly difficult problem
 - Even if we assume/have "magic" regressors
- Difficulties
 - Relative Likelihood: Inverting networks
 - Absolute likelihood: proper normalization

Several tricks (we saw only an excerpt here)

- Autoencoders
- Flow-based models
- Autoregressive models
- Generative adversarial networks