

Chapter 7 Generalization

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #07 Statistical Learning Theory

- Limits of learning: No Free Lunch
- Frequentist: Statistical Learning Theory
- Bayesian Model Selection

There is... No Free Lunch

... just somebody else is paying.

Universal Learning Algorithm

Can we find a universal learning algorithm?

- Should works on any problem
- With good performance
 - At least better than chance

Counter-question

Depends on how you define any

Strict definition: Really any

- Then: Answer is no.
- "No free lunch theorem" of machine learning

No Free Lunch Theorem

Informal Statement

- Consider machine learning task
 - E.g. classification
 - E.g. regression
- It is impossible to learn models that
 - Perform better than random choice if we do not restrict the problem class a priori
 - "No successful learning without priors"
- Two variants / components

(NFL1) All algorithms equal (on average) over all possible problems(NFL2) Generalization requires *using* prior knowledge

No Free Lunch

Formalization (for Classification)

No Free Lunch Theorem (1)

Assumption

- No prior information
- All distributions equally likely

Consequence

- All predictors (incl. random choice) are equally good (bad)
- Expected average performance is pure chance

No Free Lunch Theorem (1)

Unknown

- Features $\mathbf{x} \in \Omega(X) = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- True labeling function $y: \Omega(X) \to \{0,1\}$
- Training Data $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n), \ \mathbf{y}_i \coloneqq \mathbf{y}(\mathbf{x}_i)$

Complexity

- N possible input features
 - Usually, N is very, very large
- Labels are binary
 - There are 2^N possible labelings

No Free Lunch Theorem (1)

Training data

- Training features $X_T = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subset \Omega(X), n < N$
- Training labels $y(\mathbf{x}_i)$ given for all $i = 1 \dots n$

Result of training

• Learned model $h: \Omega(X) \to \{0,1\}$ ("Hypothesis")

Problem: Generalization

- Non-training features $X_G = \Omega(X) \setminus X_T$
- We want to infer $y(\mathbf{x})$ for $\mathbf{x} \in X_G$

No Free Lunch Theorem

Quality measure: Generalization error

$$L(h) \coloneqq \frac{1}{\#X_G} \sum_{\mathbf{x} \in X_G} |h(\mathbf{x}) - \mathbf{y}(\mathbf{x})|$$

- Average generalization error
 - I.e., average on off-training data

Assumption

• Draw true labeling function $y: \Omega(X) \rightarrow \{0,1\}$

uniformly & randomly from set of all such functions

(Really) no prior knowledge (possible)

No Free Lunch Theorem

Theorem ("no free lunch (1)")

- Under these assumptions
 - Pick labeling function uniform, randomly from function space
- All possible models *h* have the same expected performance

$$L(h)=0.5$$

• Averaged over all potential true $y \in \{y | y : \Omega(X) \rightarrow \{0,1\}\}$

- Corollary: All ML-algorithms are equally good (here)
 - Includes fancy ones like SVMs, Deep Nets
 - But same for "always answer 0" or random guessing

Proof (NFL 1)

• We have 2^N possible labeling

 $\mathbf{y}: \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \to \{\mathbf{0}, \mathbf{1}\}$

- We pick any of this with same probability
- Look at one off-training point $\mathbf{x}_i \notin X_T$
 - There are 2^{N-1} functions with $y(\mathbf{x}_i) = 0$
 - There are 2^{N-1} functions with $y(\mathbf{x}_i) = 1$
- Chance of labeling are 50:50
 - Independent of training data
 - $h(\mathbf{x}_i)$ will be wrong 50% of the time (no matter the choice)
 - $\mathbb{E}_{y:\{x_1,...,x_N\}\to\{0,1\}}[|h(\mathbf{x}_i) y(\mathbf{x}_i)|] = 0.5$
- This holds for all off-training points $\Rightarrow L(h) = 0.5$

Conclusion

No Free Lunch (1)

- No universal learning
 - Pure mathematics / perfect symmetry

no prior knowledge = all functions y are equal

- Random problems cannot be solved
- Universal learning schemes are nonsense

However...

- Everyday experience
 - Universal learning seems to work (does it?)
- Conjecture: Property of physics
 - The universe seems biased

NFL-2: Living in a Non-Random World

Why Do We Need Priors?

Scenario "The Universe is indeed biased"

We draw a function

 $y:\Omega(X)\to\{0,1\}$

from a small class

 $U \subset H_{all} \coloneqq \left\{ y | y : \Omega(X) \to \{0, 1\} \right\}$

where $\#U \ll \#H_{all}$.

- But we have no idea what U is.
 - So we consider all possible solutions $h \in H_{all}$
 - With uniform a priori likelihood

No Free Lunch (2)

Theorem ("no free lunch 2")

- Under these assumptions
 - "True" function sampled from a small set U
 - We have no knowledge about U (uniform prior on A)
- Averaged over all functions $H_{fit} = \{h \in H_{all} | \forall \mathbf{x} \in X_T : h(\mathbf{x}) = \mathbf{y}_i\}$ the expected generalization performance is $\frac{1}{\#H_{fit}} \sum_{h \in H_{fit}} L(h(\mathbf{x})) = 0.5$

(although the training error is zero)

Proof (NFL 2)

Consider subset that fits training data

 $H_{fit} = \{h \in A | \forall \mathbf{x} \in X_T : h(\mathbf{x}) = \mathbf{y}(\mathbf{x})\}$

• Consider a off-training point $\mathbf{x} \notin X_T$

There are the same number of models $h \in H$ with

 $h(\mathbf{x}) = 0$ and $h(\mathbf{x}) = 1$

- Because of symmetry, just counting all fitting hs
 - For other $\mathbf{x}' \in X_T$: $h(\mathbf{x}') = \mathbf{y}(\mathbf{x}')$ is fixed
 - For other $\mathbf{x}'' \notin X_T$: both $h(\mathbf{x}'') = \mathbf{0}$ and $h(\mathbf{x}'') = \mathbf{1}$ in H_{fit}
 - Overall: $\frac{1}{2}(\#\Omega(X) \#X_T)$ models the choice
- Thus, the average is 0.5
 - That is the case for every $\mathbf{x} \notin X_T$, which shows the claim

Summary NFL 1/2

Summary NFL

(1) No universal learning

- We cannot generalize a truly random labeling (ever)
 - No learning algorithm will be able to do this
 - No structure \rightarrow no learning

(2) No learning without priors

- We cannot generalize without prior assumptions
 - e.g.: probabilistic priors P(h)
 - e.g.: Model restrictions $h \in H$, $\#H \ll \#H_{all}$
- Even if labeling drawn from a restrictive family
 - We need to know something about the structure
 - Will see soon: Gap $(\#H \text{ vs. } \#H_{all})$ is exponential in practice

Similar Arguments for other Settings

Example: Regression

Housing Prices in Springfield *>

*) This is not investment advice

Example: Regression

Housing Prices in Springfield *>

*) neither this

Example: Density Estimation (NFL-1)

Relativity of Orange-Banana Spaces

VS.

"smooth densities" Here: Gaussians "random" distributions

Example: Density Estimation (NFL-2)

Relativity of Orange-Banana Spaces

The End.*)

*) ML does not work. Back to relational data bases! Wait...

Example: Density Estimation

Say, we have observed the data (i.i.d.) below

"smooth densities" Here: Gaussians

This model – on its own – looks plausible!

Same here: Regression

Housing Prices in Springfield *)

*) neither this

Verification vs. Finding

We can objectively recognize good models

- Some oracle tells us one single model
- Performs consistently above chance on i.i.d. data

If this is true: Likely to generalize

- We know that it is likely to work on further i.i.d. data
- Can compute the odds for this holding in general

But: We cannot search for them universally

If we consider all possible models, we cannot generalize

How many can we consider?

Summary

Conclusion

No Free Lunch

- No universal learning
 - Random problems cannot be solved
 - Unrestricted solutions will not work: Priors required
- Universal priors / learning schemes are nonsense

However

- We can quantify the likelihood of generalization
 - Depends on number of models considered during training
 - Next video: determine the odds
- Universal learning possible for restricted universes
 - Like ours: Human scientists believe in it

Conclusion

No Free Lunch

- No universal learning
 - Random problems cannot be solved
 - Unrestricted solutions will not work: Priors required
- Universal priors / learning schemes are nonsense

However

- We can quantify the likelihood of generalization
 - Depends on number of models considered during training
 - Next video: determine the odds
- Universal learning possible for restricted universes
 - Like ours: Human scientists believe in it

Chapter 7 Generalization

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #07 Statistical Learning Theory

- Limits: No Free Lunch
- Frequentist: Statistical Learning Theory
- Bayesian Model Selection

Overfitting is Evil ...and to be avoided

Regression Example

Housing Prices in Springfield

disclaimer: numbers are made up this is not an investment advice

Overfitting

[source: https://commons.wikimedia.org/wiki/File:Aztecs10_sacrifice.gif]

Model Selection

How to choose the right model?

For example

Linear, Quadratic, Higher order

We have seen

Bayesian model averaging

Many other methods

• E.g.: cross validation (split in training/validation data)

But can we get an a priori guarantee?

SLT: Frequentist Bounds

Idea: Can't work every time by chance...

Answer: "Statistical Learning Theory"

- Objective bounds on generalization error
- Hence frequentist usage of statistics

SLT: Frequentist Bounds

"Probably Approximately Correct" (PAC)

- "PAC-learning" is a common model
- It tells us
 - That we will maintain a certain error ϵ
 - With certain likelihood δ
- Allows us to specify ϵ, δ
 - Tells us: minimum number of i.i.d. training examples n

SLT – Overview

Statistical Learning Theory

- Is a whole field of research
- This section gives only an introductory glimpse

Our goal

- To understand what is in principle possible
- And why
 - i.e., how to roughly prove that

Bias-Variance Trade-Off for General Regressors

Bias-Variance Trade-Off

Generalization error

- Training error might be misleading
- How reliable is the training error?

Bias-variance trade-off

Bias

Coarse prior assumptions to regularize model

Variance

Bad generalization performance

Main Insight

What is the problem

- Training error might be good "by chance"
- But generalization is still bad

Two sources of error

- We might not be able to find a good model
 - Try to fit a linear classifier to detect images of cats & dogs.
 Good luck.^{*})
- We might not know the expected performance with sufficient precision

Classical Statistics

Two alternatives

- Hypothesis: The model performs at least this well
- Null Hypothesis: Just a random fluctuation

Frequentist Test

- Compute, how often we will see such fluctuations
- Shows how "significant" the observation was

Fair Coin Toss: What to expect

P(k) for varying k

Baseline

- n = 100
- $\theta = 0.5$ (fair)

Experiment

- n = 100
- *k* = 58

Two Sided Test

How often do we observe deviations $\Delta k \ge 8$? $P(|k-50| \ge K) = 2 \cdot \sum_{k=K}^{100} {\binom{100}{k}} \theta^k (1-\theta)^{n-k}$ $\approx 13\%$

What could possibly go wrong?

Does this solve our problem?

- No, because we want to fit a model
- We will choose from many models
- Evaluating only the best-performing one is not right

Illustrative: The extreme case

- We test all models
- Report only the best fitting
 - Which fits perfectly
- Obvious b.s. (bad science)

Speaking of Overfitting...

[Georgius Agricolas "De re metallica libri XII", 1556]

Multiple Hypothesis Testing

- Controversies are not uncommon
- Famous example: "Munich Dowsing Experiments"
 - https://en.wikipedia.org/wiki/Dowsing#Betz_1990_study

But those 6 guys

Multiple Hypothesis Testing

Machine Learning

- We have many potential models
- Formulations
 - Parameters $\theta \in \Omega(\theta)$
 - Or models $m \in M$
- Might even be continuous
 - $\theta \in \mathbb{R}^d$

How do we correct for this?

- Statistics: "Multiple Hypothesis Testing"
- Let's try this first...

Problem Formalization

Hypotheses & Losses

Learning Task

Find function

$$f:\mathbb{R}^d\to\mathbb{R}^k$$

from training data $(\mathbf{x}_1 \mapsto \mathbf{y}_1), \dots, (\mathbf{x}_n \mapsto \mathbf{y}_n)$

Set of hypotheses

$$H \subset \{h \mid h \colon \mathbb{R}^d \to \mathbb{R}^k\}$$

Loss functional

 $L: H \to \mathbb{R}$, L(h) = "how bad is h?"

Hypotheses & Losses

Per data point

- Define loss $\ell(\tilde{\mathbf{y}}, \mathbf{y})$ e.g.: $\ell(\tilde{\mathbf{y}}, \mathbf{y}) = |\tilde{\mathbf{y}} - \mathbf{y}|$

Two types of losses

Empirical loss

$$\hat{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), \mathbf{y}_i)$$

20

$$\widehat{L}(h)$$
 empirical loss

Actual expected loss

$$L(h) = \mathbb{E}_{\mathbf{x} \sim p} \left[\ell \left(h(\mathbf{x}), f(\mathbf{x}) \right) \right]$$
$$= \int_{\Omega} \ell \left(h(\mathbf{x}), f(\mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}$$

Bias-Variance Trade-Off

Hypotheses & Losses

Best guesses

Bias-Variance-Trade-Off

Hypotheses & Losses

Best guesses

Bias-Variance-Trade-Off

Culprit: Excess Loss

To Remember

Overfitting (in SLT terms)

- Excess loss too large
- Unable to pick good model
- Too much noise

What causes large excess loss?

- Too few data pointsToo many models in *H*

This is a trade-off!

Does this require noisy data?

Observation of binary outcomes is already binomial!

Hypotheses & Losses

Theorem

- Set *H*: with #*H* hypothesis
- Training data *D*: *n* data points \mathbf{x}_i , $\mathbf{y}_i = \mathbf{y}(\mathbf{x}_i)$, i.i.d.
- Bounded loss: $\forall h, D: L(h) \in [0,1]$
- Learn $h \in H$: by empirical risk minimization

Then \Rightarrow excess loss bound

$$L(\hat{h}) - L(h^*) \le \sqrt{\frac{2\left(\ln(\#H) + \ln\frac{2}{\delta}\right)}{n}}$$

with probability $p \ge 1 - \delta$

Proof Sketch: "Uniform Error Bound"

Steps

• Empirical loss:
$$\hat{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)$$

- Asymptotically approx. normal distributed (CLT)
 - Expected error $\mathcal{O}(1/\sqrt{n})$
 - Deviation by factor c with prob. $\mathcal{O}(\exp(-c^2))$

Multiple-hypothesis testing correction

- Conservative assumption: $P(any h_k \text{ overshoots}) = \sum_{k=1}^{\#H} P(h_k \text{ overshoots})$
- Union bound

Single hypothesis

• Loss
$$\widehat{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)$$

- Mean $L(h) = \mathbb{E}[\ell(h(x), y_i)]$
- Hoeffding inequality (think "CLT")

with
$$\widehat{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

we get $P(\widehat{X} - \mathbb{E}[\overline{X}] \ge \epsilon) \le e^{-2n\epsilon^2}$

Single hypothesis

Hoeffding inequality

$$P(\hat{X} - \mathbb{E}[\bar{X}] \ge \epsilon) \le e^{-2n\epsilon^2}$$

Applied

$$P(\hat{L}(h_i) - L(h_i) \ge \epsilon) \le e^{-2n\epsilon^2}$$

Two sided

$$P(|\hat{L}(h_i) - L(h_i)| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

Multiple hypotheses

$$P(|\hat{L}(h) - L(h)| \le \epsilon) \ge 1 - 2e^{-2n\epsilon}$$

We now bound all #H hypotheses

 $P(\exists h \in H: |\hat{L}(h) - L(h)| \le \epsilon)$ $\ge 1 - \sum_{h \in H} P(|\hat{L}(h) - L(h)| \ge \epsilon)$ $\ge 1 - (\#H) 2e^{-2n\epsilon^2} \qquad P(A \cup B) = P$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\leq P(A) + P(B)$

"union bound"

"every h is totally different"

Uniform error bound on all hypotheses

We use this...

•
$$L(\hat{h}) - L(h^*) = L(\hat{h}) - \hat{L}(\hat{h}) = 0$$

+ $\hat{L}(\hat{h}) - \hat{L}(h^*) = 0$
+ $\hat{L}(h^*) - L(h^*)$

Details We got $P(\exists h \in H: |\hat{L}(h) - L(h)| \ge \epsilon)$ $\leq 1 - 2(\#H)e^{-2n\epsilon^2}$ $\downarrow uniform bound$ $h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8$ $hypothesis \rightarrow$

Uniform error bound on all hypotheses

We use this...

•
$$L(\hat{h}) - L(h^*) = L(\hat{h}) - \hat{L}(\hat{h}) \\ + \hat{L}(\hat{h}) - \hat{L}(h^*) \\ + \hat{L}(h^*) - L(h^*) \\ \leq \epsilon/2^{*}$$

*) we will choose
$$\epsilon$$
 later

• Uniform error bound on all hypotheses

We use this...

- $L(\hat{h}) L(h^*) \le \epsilon$ with probability $1 2(\#H)e^{-2n\cdot\frac{1}{4}\epsilon^2}$
- Bound should hold with probability 1δ

We use this...

• $L(\hat{h}) - L(h^*) \le \epsilon$ with probability $1 - (\#H)e^{-\frac{1}{2}n\epsilon^2}$

• Should hold with probability $1 - \delta$,

i.e.,
$$2(\#H)e^{-\frac{1}{2}n\epsilon^2} \leq \delta$$

i.e.,
$$L(\hat{h}) - L(h^*) \le \epsilon \le \sqrt{\frac{2\left(\log(\#H) + \log\left(\frac{2}{\delta}\right)\right)}{n}}$$

Details

We use this...

• $L(\hat{h}) - L(h^*) \le \epsilon$ with probability $1 - (\#H)e^{-\frac{1}{2}n\epsilon^2}$

the uniform bound

$$h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8$$

$$hypothesis \rightarrow$$

• Should hold with probability $1 - \delta$

$$2(\#H)e^{-\frac{1}{2}n\epsilon^{2}} \leq \delta$$

$$\Rightarrow -2(\#H)e^{-\frac{1}{2}n\epsilon^{2}} \leq -\delta$$

$$\Rightarrow (\#H)e^{-\frac{1}{2}n\epsilon^{2}} \geq \frac{\delta}{2}$$

$$\Rightarrow -\frac{1}{2}n\epsilon^{2} \geq \log\frac{\delta}{2} - \log(\#H)$$

$$\Rightarrow \frac{1}{2}n\epsilon^{2} \leq \log(\#H) - \log\frac{\delta}{2}$$

$$\Rightarrow \frac{1}{2}n\epsilon^{2} \le \log(\#H) - \log\frac{\delta}{2}$$

$$\Rightarrow \frac{1}{2}n\epsilon^{2} \le \log\left(\frac{2\#H}{\delta}\right)$$

$$\Rightarrow \epsilon^{2} \le \frac{2}{n}\log\left(\frac{2\#H}{\delta}\right)$$

$$\Rightarrow \epsilon \le \sqrt{\frac{2\left(\log(\#H) + \log\left(\frac{2}{\delta}\right)\right)}{n}}$$

Main Idea of the Proof

Consequences

Fixed errors ϵ , δ , determine *n*:

$$n \ge \frac{2}{\epsilon^2} \log\left(\frac{2\#H}{\delta}\right)$$

- We can compute a lower bound for the sample size
- Just solve inequality for n

Consequences

Bias-Variance Trade-Off

$$L(\hat{h}) \leq \underbrace{L(h^*)}_{\text{bias}} + \underbrace{\sqrt{\frac{2\left(\log(\#H) + \log\left(\frac{2}{\delta}\right)\right)}{n}}}_{\text{variance} = \text{excess loss}}$$

with probability
$$p \ge 1 - \delta$$

• For loss functions $L \in [0,1]$

- Other bounds: adapt analysis with rescaling
- Unbounded, finite variance: Approximation via CLT
- Discrete set of hypotheses
- Bound might not be particularly tight

Consequences

Version for classification: Fits directly

- Finite set of #H models H
- Binary labeling problem: $y \in \{0,1\}$
- Use *n* i.i.d. data items (x_i, y_i) for training
- ERM: Choose model with lowest training error
- Trade-off for generalization error L

$$L(\hat{h}) \leq \underbrace{L(h^*)}_{\text{bias}} + \underbrace{\sqrt{\frac{2}{n} \ln\left(\frac{2\#H}{\delta}\right)}}_{\text{variance}} \text{ with } p \geq 1 - \delta$$

Continuous Models? (1)

Models classes are usually continuous

• $h = f_{\theta}$ for $\theta \in \mathbb{R}^d$

Simple argument: We are digital

- Each parameter θ_i is in $\mathbb{R} \approx \text{float32}$.
 - 32 = O(1) bits
- Training set size $n \in O(d)$ for d parameters
 - Exact numerical bound is rather loose anyways

Fancier argument

• ϵ -Covering of the function space

How about continuous models? (2)

Very rough idea:

$$[h,(x,y)] \mapsto \ell(h(x),y)$$

- "Loss surface" varies with $h \in H$
 - We can have $h \in H = \{h_{\theta} | \theta \in \mathbb{R}^d\}$
 - But not every class H yields a useful bound
- Cover function space H with $K \epsilon$ -balls

$$B_{\epsilon}(h) = \left\{ h' \in H \middle| \begin{array}{l} \forall x \in \Omega(X), y \in \Omega(Y):\\ |\ell(h(x), y) - \ell(h'(x), y)| \leq \epsilon \end{array} \right\}$$

How about continuous models? (2)

Finite Covering of Function Space

Assuming, we find a finite set

 $B = \{B_{\epsilon}(h_1), \dots, B_{\epsilon}(h_K)\}$ with $H \subseteq \bigcup_{i=1}^K B_{\epsilon}(h_i)$

• We can substitute $\#H \leftarrow K$, but have additional error

$$L(\hat{h}) - L(h^*) \le O\left(\sqrt{\frac{2}{n}\ln\left(\frac{K}{\delta}\right)} + \epsilon\right) \text{ with } p \ge 1 - \delta$$

We can search for best e

Qualitative Analysis

Analysis

Absolute numbers might not be tight

Qualitatively

excess loss (variance)
$$\in \mathcal{O}\left(\sqrt{\frac{\log \#H}{n}}\right)$$

Two Theoretical Insights

Bias-Variance Trade-off

• Generalization error polynomial in model complexity:

j bits
$$\rightarrow K \leq 2^{j}$$
 models
 $\rightarrow \mathcal{O}\left(\sqrt{\frac{1}{n}\log 2^{j}}\right) = \mathcal{O}\left(\sqrt{\frac{j}{n}}\right)$ error

• Error $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ for *n* training examples

Relation to "No-Free-Lunch"

We get No-Free-Lunch back

- Inputs $\mathbf{x} \in \{0,1\}^d$ consists of d bits
 - 2^d different inputs possible
- Labelings $y: \{0, 1, ..., 2^d 1\} \rightarrow \{0, 1\}$

- 2^{2^d} many classifications possible
- Most flexible set of hypotheses: $#H_{all} = 2^{2^d}$
- Can test K hypothesis with $n \in \mathcal{O}(\log K)$ samples^{*})
- Asymptotics of no free-lunch:

 $K = 2^{2^{d}}$ (all possible: H_{all}) $\rightarrow O(2^{d})$ samples (all examples)

More Complexity Analysis

This is also interesting

- Again, input $\mathbf{x} \in \{0,1\}^d$ (as "bitstring")
- Assume, we build a model that can fit

 $H_{all} = \{h_{\boldsymbol{\theta}} | \boldsymbol{\theta} \in \{0, 1\}^{M}\}$

- Model is binary encoded in *M* bits
- We need to encode 2^{2^d} models: need $M \ge 2^d$ bits
- Universal classifier will be infeasibly big

More Complexity Analysis

Considering H_{all} requires exponential data

- Lesson for $h \in H_{all}$:

 - $enc(h) = 2^{enc(x)}$ Training size $2^d = 2^{enc(x)}$ } exponential in input

- This also applies to a generative process!
 - Machine that generate
 - possible examples
 - and their labels
 - and can be tuned to any model, controlled by a bit-string
 - The description of this machine will also be exponential in enc(x)

How Big Is the Gap?

Only polynomial-sized classifiers

- Have to shrink model size
- *H* from 2^{2^d} models to $\mathcal{O}(2^{\text{poly}(d)})$ models
 - Polynomial instead of exponential model size
 - Polynomial number of training examples
 - Realistically: linear
- Exponential gap
 - Prior knowledge must decrease #H from exponential in enc(x) to polynomial/linear
 - Uniform prior P(X): Entropy from exponential to lin./poly.
- Exponentially more a priori knowledge than what we learn

Summary

Bias-Variance Trade-Off

To avoid overfitting

 Training set size n scales (worst-case) linearly with number of parameters (w/c. in bits)

To reduce randomness

• Increasing n reduces error by $O(n^{-\frac{1}{2}})$

Prior knowledge

 To learn in realistic times, most of the knowledge must come from the prior

rule of thumb: H(P(X)) linear in enc(x)

Chapter 7 Generalization

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #07 Statistical Learning Theory

- Limits: No Free Lunch
- Frequentist: Statistical Learning Theory
- Bayesian Model Selection

What We Have Learned So Far

No free lunch

• We cannot learn without (strong) priors

Generalization bounds

- Excess loss
 - Can prevent assessing generalization error
 - Bias-Variance-Trade-Off
- Sufficient: $\mathcal{O}(n)$ data points for model with n bits

Goal of this Section

Understand better

- The bigger picture
 - Why are these bounds like this?
 - What is possible/impossible?
- How to select models
 - Adapt complexity automatically
- Bayesian model selection
 - How the Bayesian method works
 - What it can / cannot do for us
 - Information theoretical view
 - Looking back at the polynomial example

A Basic Information Theoretical View

"Frequentist" Model of Information

The Experiment is the Channel

Information requirements

- Model has n bits of information (entropy)
- Need to draw n bits out of experiments

Information requirements

- Model has n bits of information
 - k equally likely hypotheses $\rightarrow \log_2 k$ bits
 - Prior $p(\theta) \to H(p) = \mathbb{E}_p[\log p]$ bits
 - Information that the prior cannot "fill-in"

Information requirements

- Model has n bits of information
 - k equally likely hypotheses $\rightarrow \log_2 k$ bits
 - Prior $p(\theta) \to H(p) = \mathbb{E}_p[\log p]$ bits

Information that the prior cannot "fill-in"

Information requirements

- Model has n bits of information
 - k equally likely hypotheses $\rightarrow \log_2 k$ bits
 - Prior $p(\theta) \rightarrow H(p) = \mathbb{E}_p[\log p]$ bits – Information that the prior cannot "fill-in"
- Need to draw n bits out of experiments
 - We get back at most O(1) bits in every experiment
 - $\Omega(n)$ experiments necessary
 - O(n) experiments sufficient to assess probability of successful predicting an output bit
- Conclusion: #data points ~ model entropy

Our goal now

- Build an automatic regularizer
- Ensure information criterion automatically
- Cannot break NFL: need prior model restriction

What Can Occam's Razor Do for us?

Occam's Razor

- "The simplest model fitting the data should be preferred"
- Keep models as simple as possible

Statistical Learning theory

- Bounded complexity allows us to predict generalization performance
- It still might be very bad, but we know beforehand
- This is not a way to find models

What Can Occam's Razor Do for us?

Model Selection Scenario

- We have a restricted class of models
 - "All models" does not work NFL-theorem!
- Within this class, models vary in complexity
 - Typically: assume that a "well-fitting" model is in this set
- We can automatically pick a suitable one
 - Complexity adapted to amount of data
 - Complexity adapted to difficulty of fitting
 - As simple as possible
- Results can be bad
 - Garbage (bad generalization), if set of models is unsuitable

MDL-Minimum Description Length

[https://commons.wikimedia.org/wiki/File:William_of_Ockham_-_Logica_1341.jpg]

MDL Method

Minimum Description Length (MDL)

- Developed by Rissanen [1978]
- Try to keep models as simple as possible
- Simplified / tractable version of earlier ideas of Solomonov, Kolmogorov, Chaitin

Principle

- Encode data + model in the least amount of space
- Using entropy-coding as model (e.g. Huffman)

Literature:

Peter Grunwald: A tutorial introduction to the minimum description length principle. <u>https://arxiv.org/pdf/math/0406077.pdf</u>, 2004.

Solomonov Induction

Assumptions

- Data generated & recognized by algorithm
 - Universal Turing-machine (TM), incl. Python & C++
- Short models are best
 - Easiest to fit: preferred for statistical reasons
 - Easiest to find? "Universal" prior
- Bayes rule: Model M, Data D

 $P(M|D) \sim P(D|M)P(M)$ $P(M) = 2^{-|TM_{\min}(M)|}$

 $|TM_{\min}(M)|$ = Length of shortest TM computing M

Solomonov Induction

Properties

- Uncomputable
 - $|TM_{\min}(M)|$ cannot be computed
- Asymptotically invariant
 - Length of TM only vary by additive constant
 - Simulator for TM in a universal TM needs O(1) space
- "Radical" formalization of Occam's Razor

Variants

- AIXI Reinforcement learning (M. Hutter)
- Speed-Prior: short-running TMs first (J. Schmidhuber)
 - Exponential instead of impossible

Rissanen's MDL

Minimum Description Length

- Probabilistic measurement of data d
 - *n* i.i.d. repeats
- Looking for best model m
 - m needs parameters θ
 - Shortest message describing all n experiments
 - Optimal choice of *m* depends on *n*

Practical method

- No inherent computability issues
- Machine model implicit in "coding unit"

Back to the Standard Model...

Formalization

Experimental Setup

- Model *m* out of set $M = \{m_1, \dots, m_k\}$
- Each model has parameters θ
- Data $\mathbf{d} = (d_1, ..., d_n)$

Minimum Description Length Method

- Alice sends outcome d to Bob using model m
 - Send model m
 - Send model parameters θ
 - Send data d
 - Using the model: "residuals" to model mean
 - Probabilistic codes for $P(d_i|m, \theta)$

Information Theory

Reminder

- Probability distribution p(x)
- Information $I(x) = -\log p(x)$
- Expected information = Entropy

$$H(p) = -\sum_{x \in \Omega(X)} p(x) \log p(x)$$

Coding Theorem

- Can encode outcomes x with expected [H(p)] bits
- Constructive proof: Huffman coding

MDL Formalization

How to send?

- There are k models.
 - Need at most [log₂ k] bits
- Parameters θ for model m have N_m bits: $\theta \in \{0,1\}^{N_m}$
 - At most [log₂ N_m] bits
 - N_m depends on / describes model complexity!
- Observations have *N* bits:

 $d_i \in \{0,1\}^N$

- At most n[log₂ N] bits
- But we can do better, and this is important!

MDL Formalization

Sending a model

- Encode choice of m
 - Binary number with [log₂ k] bits

enc(m)

fixed

- Message length $L(m) = \lceil \log_2 k \rceil$
- Encode parameters θ
 - Using $\lceil \log_2 N_m \rceil$ bits
 - Large N_m means larger messages
 - Message length $L(\theta|m) \leq \lceil \log_2 N_m \rceil$
- Encode data d
 - Using distribution $P(\mathbf{d}|m, \mathbf{\theta})$
 - Using $L(\mathbf{d}|m, \mathbf{\theta}) = H(P(\mathbf{d}|m, \mathbf{\theta}))$ bits

Wo do not ever

$\begin{array}{c|c} enc(m) & enc(\theta) \\ \hline fixed & model \\ complexity \end{array} \begin{array}{c} enc(d_1) & \cdots & enc(d_n) \\ \hline data & fit \\ \end{array}$

send modelsThis is just a thought experiment

We choose model m such that message length

 $L(m) + L(\boldsymbol{\theta}|m) + L(\mathbf{d}|\boldsymbol{\theta},m)$

is minimized

Analysis

Example

Polynomial Regression

- Model *m*: Polynomial of degree D = 0,1,2...,9
- Parameters 0 (for fixed m):
 - Coefficients in \mathbb{R}^D
 - Encoded in floating point: O(D) bits
- Data d: samples from function at n points
 - If model is good, no extra bits needed
 - If model is bad, many extra bits needed
 - Bad = uncertain or inaccurate
 - Both increase coding length
 - Uncertainty increases entropy
 - Inaccuracy asks for uncommon (long) codes

Model Selection Example

Polynomial approximation

- 10 samples from sine curve
- Approximation with polynomial of degree 0 to 9

Empirically

- Degrees 3-7 "reasonable"
- Degree 5 closest fit, degree 3,4 less wiggly

Empirically

- Degrees 3-7 "reasonable"
- Degree 5 closest fit, degree 3,4 less wiggly

Empirically

- Degrees 3-7 "reasonable"
- Degree 5 closest fit, degree 3,4 less wiggly

Example

Polynomial Example

- Kind-of-works (degree 3 best)
- But discretization is still arbitrary for continuous parameters
- Need more "specific" entropy for θ

Bayesian Perspective on MDL

[https://commons.wikimedia.org/wiki/File:William_of_Ockham_-_Logica_1341.jpg, https://en.wikipedia.org/wiki/Thomas_Bayes]

Bayesian Model Selection

Consider two variants

- "MAP-Style" MDL
 - Simple, but ad-hoc
- "Full-Bayesian" model selection
 - Relationship to / interpretation as MDL

MAP-Style MDL

Sending a model

- We fix a model *m* to assess
- Joint density:

 $P(\mathbf{d}, \mathbf{\theta}|m) = P(\mathbf{d}|\mathbf{\theta}, m)P(\mathbf{\theta}|m)$

Posterior for 0:

 $P(\boldsymbol{\theta}|\mathbf{d},m) \sim P(\mathbf{d}|\boldsymbol{\theta},m)P(\boldsymbol{\theta}|m)$

• Determine $\widehat{\mathbf{\theta}} = \arg \max_{\mathbf{\theta}} P(\mathbf{\theta} | \mathbf{d}, m)$

Model Selection

Compute message length for all *m* and pick shortest

MAP-Style MDL

Sending a model

- Encode choice of m
 - Use $L(m) = -\log P(m)$
 - Can encode a priori model preferences
- Encode parameters θ
 - Determine parameter prior $P(\theta|m)$
 - $L(\widehat{\boldsymbol{\theta}}|m) = -\log P(\widehat{\boldsymbol{\theta}}|m)$ bits
- Encode data d
 - $L(\mathbf{d}|\widehat{\mathbf{\theta}}, m) = -\log P(\mathbf{d}|\widehat{\mathbf{\theta}}, m)$
 - Neg-log-likelihood of best fitting model

Bayesian Model Selection

Inferring model

$$P(m|\mathbf{d}) = \frac{P(\mathbf{d}|m)P(m)}{P(\mathbf{d})}$$

~
$$\underbrace{P(\mathbf{d}|m)}_{\text{marginal model}} \underbrace{P(m)}_{\text{model}}$$

- We would select the most likely model m
 - Product of marginal likelihood and model prior
 - Reminder: Needs computation of marginal likelihood

 $P(\mathbf{d}|m) = \sum_{\boldsymbol{\theta} \in \Omega(\boldsymbol{\Theta})} P(\mathbf{d}|\boldsymbol{\theta}, m) P(\boldsymbol{\theta}|m) \quad (\text{which can be expensive})$ Integral for continuous $\boldsymbol{\Theta}$ (134)

Bayesian Model

• We have so far... $P(m|\mathbf{d}) \sim \underbrace{P(\mathbf{d}|m)}_{\text{marginal model}} \underbrace{P(m)}_{\text{model likelihood prior}}$ • ...and... $P(\mathbf{d}|m) = \sum_{\boldsymbol{\theta} \in \Omega(\boldsymbol{\Theta})} P(\mathbf{d}|\boldsymbol{\theta}, m) P(\boldsymbol{\theta}|m)$

Encoding

- Send model: $L(m) = -\log P(m)$ (choose model m)
- Send data: $L(\mathbf{d}|m) = -\log P(\mathbf{d}|m)$ (send **d**, model-based)

Encoding

- Model costs: $L(m) = -\log P(m)$
 - Prior for model selection
 - Optional/hand-tunable (in this context)
 - For non-uniform P(m), this part is not constant
- Data costs: $L(\mathbf{d}|m) = -\log P(\mathbf{d}|m)$
 - Marginal likelihood gives direct encoding model for the data
 - Parameter costs are implicit ("1 part model")

Encoding

- Tighter fit than "MAP-Style"
 - MAP-Style costs:

 $\min_{\boldsymbol{\theta} \in \Omega(\boldsymbol{\Theta})} (-\log P(\boldsymbol{\theta}|\boldsymbol{m}) - \log P(\boldsymbol{d}|\boldsymbol{\theta},\boldsymbol{m}))$

- $= \min_{\boldsymbol{\theta} \in \Omega(\boldsymbol{\Theta})} (-\log P(\mathbf{d}|\boldsymbol{\theta}, m) P(\boldsymbol{\theta}|m))$
- Bayes:

$$-\log\left(\sum_{\boldsymbol{\theta}\in\Omega(\boldsymbol{\Theta})}P(\boldsymbol{d}|\boldsymbol{\theta},m)P(\boldsymbol{\theta}|m)\right)$$

- Bayesian expression is never larger
 - Tighter fit (better complexity estimate)

Note on MDL

There are more variants

- "Normalized Maximum Likelihood"
 - Theoretical advantages over Bayesian approach
- "Coarse" (Grunwald), ad-hoc MDL
 - Define approximate coding length along-the-way

Common obstacle

- Continuous variables carry infinite information
- Address for example with accuracy constraints
 See MacKay's book Ch. 28
- Bayesian method models noise in data explicitly

Bayesian Model Selection & Averaging

Bayesian approach

- Which model is better?
 - Model m_1 vs m_2
- Simple question
 - Compare $P(m_1|\mathbf{d})$ with $P(m_2|\mathbf{d})$
 - Select more likely

Fancy version: Bayesian model averaging

$$\overline{\mathbf{\Theta}} = \int_{m \in \Omega(M)} \mathbf{\Theta} \cdot P(m|\mathbf{d}) \ d\mathbf{\Theta}$$

If models share parameters & params are vectors

Bayesian Model Selection

Gaussian Model

$$p_{\sigma}(d) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(d-\mu)^2}{2\sigma^2}}$$

(data *d*, mean *µ*, variance *σ*)
parameter "model"

Polynomial Fit

Reminder: Least-Squares Fit

•
$$f_{\mathbf{c}_K}(\mathbf{x}_i) = \underbrace{\left(\mathbf{x}_i^0, \dots, \mathbf{x}_i^d, \dots, \mathbf{x}_i^K\right)}_{\boldsymbol{\xi}_i^T} \cdot \mathbf{c}_K = \boldsymbol{\xi}_i^T \cdot \mathbf{c}_K$$

• Design matrix $\mathbf{A} = \boldsymbol{\xi}_i \boldsymbol{\xi}_i^T$, optimum $\hat{\mathbf{c}}_K$

Marginal Likelihood

$$P(\boldsymbol{D}|K) \sim \sigma_c^{-K} \cdot e^{-\frac{1}{2\sigma_D^2} \left(\sum_{i=1}^n y_i^2 - \hat{\boldsymbol{c}}_K^2\right)} \cdot \det\left(\boldsymbol{A} + \frac{\sigma_D^2}{\sigma_c^2}\boldsymbol{I}\right)^{-\frac{1}{2}}$$

Flat (improper) Prior

$$P(D|K) \sim \underbrace{e^{-\frac{1}{2\sigma_D^2}(\sum_{i=1}^n y_i^2 - \hat{c}_K^2)}}_{\text{data fit}} \cdot \underbrace{\det(\mathbf{A})^{-\frac{1}{2}}}_{\text{complexity}}$$

Connection to MDL

Gaussian Distributions

$$\mathcal{N}_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) \coloneqq \left(\frac{1}{(2\pi)^{\frac{d}{2}} \det(\boldsymbol{\Sigma})^{\frac{1}{2}}}\right) e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

d dimensions, cov. matrix Σ

Has (differential) entropy

$$\mathrm{H}(\mathcal{N}_{\mu,\boldsymbol{\Sigma}}) = \ln\left[(2\pi e)^d \det(\boldsymbol{\Sigma})^{\frac{1}{2}}\right]$$

"Complexity Penalty"

 $P(D|K) \sim \underbrace{e^{-\frac{1}{2\sigma_D^2} \left(\sum_{i=1}^n y_i^2 - \hat{c}_K^2\right)}_{\text{data fit}} \cdot \underbrace{\det(A)^{-\frac{1}{2}}_{\text{complexity}}}_{\text{complexity}} \underbrace{entropy of}_{parameters C_K}$ $\underbrace{e^{-\frac{1}{2\sigma_D^2} \left(\sum_{i=1}^n y_i^2 - \hat{c}_K^2\right)}_{\text{data fit}} \cdot \underbrace{e^{-c \cdot H(\text{param})}_{\text{complexity}}}_{\text{complexity}} (144)$

Finite Resolution?

Version with prior

Pentalty: det
$$\left(\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2}\mathbf{I}\right)^{-\frac{1}{2}}$$

Ratio of

- Noise in data (absolute precision)
- Expected range of variability

Regularizer – adding identity matrix limits resolution

- Determinant is product of eigenvalues (main axis variances)
- Singular if variance is zero in one direction
- Sensitive to very small values
 - Identity creates "noise floor" at std.-dev. $\frac{\sigma_D}{\sigma_C}$
 - Below this, "nothing matters"

Perspectives

A Bit of Caution Needed...

MDL & Model Selection

- Literature gives varying accounts
 - MDL just special case of Bayesian inference [MacKay 2003]
 - MDL more general [Grunwald 2004]
 - Arguments revolve around the role of priors (as often)
- Bayesian pitfalls
 - Bayesian model selection requires proper priors [MacKay 2003, Dawid et al. 1997]
 - It might work without (our example), but there are dragons

A.P. Dawid, M. Stone, J.V. Zidek: Critique of E.T. Jaynes's "Paradox of Probability Theory", 2003 https://www.ucl.ac.uk/drupal/site_statistics/sites/statistics/files/rr172.pdf

Simple Example

Gaussian Model

$$p_{\sigma}(d) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(d-\mu)^2}{2\sigma^2}}$$

(data *d*, mean *µ*, variance *σ*)
parameter "model"

When to Use What?

Bayesian Averaging

- Marginal likelihood tractable (and good nerves)
- Estimating vectorial model parameters

Bayesian Model selection

General model parameters

MDL (e.g., ad-hoc/MAP-Style)

Marginal likelihood intractable (or too much for my nerves)

Frequentist generalization bounds

Need guarantees on excess loss

When to Use What?

None of the above

- Simple model, tons of data (WCPGW, YOLO)
- Hand-tuned regularizer (e.g. MAP applications)
- Deep Networks (because, who knows)

When to Use What?

What should I do nonetheless?

- Use validation data
 - Separate from training data
- Monitor generalization performance
 - ...during computational optimization
 - ...during manual model-tuning
- Use test set, separated at the beginning
 - Use only once to measure generalization performance
 - Perform frequentist significance test
 - Report these numbers to your customer
 - Or scientific journal, if you are in that business
 - Manual overfitting to the test set is possible

Summary

Information Theory

Intuitive arguments for

#data samples ~ #model parameters

"Data sends us information through experiments"

Minimum Description Length

- Objective: compact encoding of the data
- "Best compression": model size + data size
- Roughly:

min (data neg log likelihood + parameter entropy)

Bayesian Model Selection

- Special case of probabilistic compression model
- Works well, but is technically "sensitive"
 - Marginal likelihood for comparison
 - Might be intractable
 - Might be nasty to compute even if tractable
 - Need to think seriously about
 - Priors
 - Error bars on data

Bayesian model averaging strongly related

Just uses marginal likelihood as weight