Modelling 2 STATISTICAL DATA MODELLING

Chapter 7 Generalization

Video \#07

Statistical Learning Theory

- Limits of learning: No Free Lunch
- Frequentist: Statistical Learning Theory
- Bayesian Model Selection

There is...

 No Free Lunch ...just somebody else is paying.
Universal Learning Algorithm

Can we find a universal learning algorithm?

- Should works on any problem
- With good performance
- At least better than chance

Counter-question

- Depends on how you define any

Strict definition: Really any

- Then: Answer is no.
- "No free lunch theorem" of machine learning

No Free Lunch Theorem

Informal Statement

- Consider machine learning task
- E.g. classification
- E.g. regression
- It is impossible to learn models that
- Perform better than random choice if we do not restrict the problem class a priori
- "No successful learning without priors"
- Two variants / components
(NFL1) All algorithms equal (on average) over all possible problems
(NFL2) Generalization requires using prior knowledge

No Free Lunch

$$
\begin{aligned}
& \text { Formalization } \\
& \text { (for Classification) }
\end{aligned}
$$

No Free Lunch Theorem (1)

Assumption

- No prior information
- All distributions equally likely

Consequence

- All predictors (incl. random choice) are equally good (bad)
- Expected average performance is pure chance

No Free Lunch Theorem (1)

Unknown

- Features

$$
\mathbf{x} \in \Omega(X)=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}
$$

- True labeling function $y: \Omega(X) \rightarrow\{0,1\}$
- Training Data
$\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{n}, y_{n}\right), y_{i}:=y\left(\mathrm{x}_{i}\right)$

Complexity

- N possible input features
- Usually, N is very, very large
- Labels are binary
- There are 2^{N} possible labelings

No Free Lunch Theorem (1)

Training data

- Training features $X_{T}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \Omega(X), n<N$
- Training labels $\quad y\left(x_{i}\right)$ given for all $i=1 \ldots n$

Result of training

- Learned model $h: \Omega(X) \rightarrow\{0,1\}$ ("Hypothesis")

Problem: Generalization

- Non-training features $X_{G}=\Omega(X) \backslash X_{T}$
- We want to infer $y(\mathrm{x})$ for $\mathrm{x} \in X_{G}$

No Free Lunch Theorem

Quality measure: Generalization error

$$
L(h):=\frac{1}{\# X_{G}} \sum_{\mathbf{x} \in X_{G}}|h(\mathbf{x})-y(\mathbf{x})|
$$

- Average generalization error
- I.e., average on off-training data

Assumption

- Draw true labeling function

$$
y: \Omega(X) \rightarrow\{0,1\}
$$

uniformly \& randomly from set of all such functions

- (Really) no prior knowledge (possible)

No Free Lunch Theorem

Theorem ("no free lunch (1)")

- Under these assumptions
- Pick labeling function uniform, randomly from function space
- All possible models h have the same expected performance

$$
L(h)=0.5
$$

- Averaged over all potential true $y \in\{y \mid y: \Omega(X) \rightarrow\{0,1\}\}$
- Corollary: All ML-algorithms are equally good (here)
- Includes fancy ones like SVMs, Deep Nets
- But same for "always answer 0" or random guessing

Proof (NFL 1)

- We have 2^{N} possible labeling

$$
y:\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \rightarrow\{0,1\}
$$

- We pick any of this with same probability
- Look at one off-training point $\mathrm{x}_{i} \notin X_{T}$
- There are 2^{N-1} functions with $y\left(\mathrm{x}_{i}\right)=0$
- There are 2^{N-1} functions with $y\left(\mathrm{x}_{i}\right)=1$
- Chance of labeling are 50:50
- Independent of training data
- $h\left(\mathrm{x}_{i}\right)$ will be wrong 50% of the time (no matter the choice)
- $\mathbb{E}_{y:\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right\} \rightarrow\{0,1\}}\left[\left|h\left(\mathrm{x}_{i}\right)-y\left(\mathrm{x}_{i}\right)\right|\right]=0.5$
- This holds for all off-training points $\Rightarrow L(h)=0.5$

Conclusion

No Free Lunch (1)

- No universal learning
- Pure mathematics / perfect symmetry

> no prior knowledge = all functions y are equal

- Random problems cannot be solved
- Universal learning schemes are nonsense

However...

- Everyday experience
- Universal learning seems to work (does it?)
- Conjecture: Property of physics
- The universe seems biased

$$
\begin{aligned}
& \text { NFL-2: Living in a } \\
& \text { Non-Random World }
\end{aligned}
$$

Why Do We Need Priors?

Scenario "The Universe is indeed biased"

- We draw a function

$$
y: \Omega(X) \rightarrow\{0,1\}
$$

from a small class

$$
U \subset H_{\text {all }}:=\{y \mid y: \Omega(X) \rightarrow\{0,1\}\}
$$

where \#U << \# $H_{\text {all }}$.

- But we have no idea what U is.
- So we consider all possible solutions $h \in H_{\text {all }}$
- With uniform a priori likelihood

No Free Lunch (2)

Theorem ("no free lunch 2")

- Under these assumptions
- "True" function sampled from a small set U
- We have no knowledge about U (uniform prior on A)
- Averaged over all functions

$$
H_{f i t}=\left\{h \in H_{\text {all }} \mid \forall \mathbf{x} \in X_{T}: h(x)=y_{i}\right\}
$$

the expected generalization performance is

$$
\frac{1}{\# H_{f i t}} \sum_{h \in H_{f i t}} L(h(\mathrm{x}))=0.5
$$

(although the training error is zero)

Proof (NFL 2)

Consider subset that fits training data

$$
H_{f i t}=\left\{h \in A \mid \forall \mathbf{x} \in X_{T}: h(\mathbf{x})=y(\mathbf{x})\right\}
$$

- Consider a off-training point $\mathbf{x} \notin X_{T}$

There are the same number of models $h \in H$ with

$$
h(\mathbf{x})=0 \quad \text { and } \quad h(\mathbf{x})=1
$$

- Because of symmetry, just counting all fitting $h \mathbf{s}$
- For other $\mathbf{x}^{\prime} \in X_{T}: h\left(\mathbf{x}^{\prime}\right)=y\left(\mathbf{x}^{\prime}\right)$ is fixed
- For other $\mathbf{x}^{\prime \prime} \notin X_{T}$: both $h\left(\mathbf{x}^{\prime \prime}\right)=0$ and $h\left(\mathbf{x}^{\prime \prime}\right)=1$ in $H_{f i t}$
- Overall: $\frac{1}{2}\left(\# \Omega(\mathrm{X})-\# X_{T}\right)$ models the choice
- Thus, the average is 0.5
- That is the case for every $\mathbf{x} \notin X_{T}$, which shows the claim

Summary NFL 1/2

Summary NFL

(1) No universal learning

- We cannot generalize a truly random labeling (ever)
- No learning algorithm will be able to do this
- No structure \rightarrow no learning

(2) No learning without priors

- We cannot generalize without prior assumptions
- e.g.: probabilistic priors $P(h)$
- e.g.: Model restrictions $h \in H, \quad \# H \ll \# H_{\text {all }}$
- Even if labeling drawn from a restrictive family
- We need to know something about the structure
- Will see soon: Gap (\#H vs. \# $H_{\text {all }}$) is exponential in practice

Similar Arguments for other Settings

Example: Regression

Housing Prices in Springfield ${ }^{*)}$

Example: Regression

Housing Prices in Springfield ${ }^{*)}$

Example: Density Estimation (NFL-1)

Relativity of Orange-Banana Spaces

Example: Density Estimation (NFL-2)

Relativity of Orange-Banana Spaces

The End.

*) ML does not work.
Back to relational data bases!

Wait...

Example: Density Estimation

Say, we have observed the data (i.i.d.) below

This model
- on its own -
looks plausible!

Same here: Regression

Housing Prices in Springfield ${ }^{*}$

\times training data (i.i.d.)
\times off-training samples (i.i.d., same p !)

This model

- on its own -
looks plausible!

Verification vs. Finding

We can objectively recognize good models

- Some oracle tells us one single model
- Performs consistently above chance on i.i.d. data

If this is true: Likely to generalize

- We know that it is likely to work on further i.i.d. data
- Can compute the odds for this holding in general

But: We cannot search for them universally

- If we consider all possible models, we cannot generalize

How many can we consider?

Summary

Conclusion

No Free Lunch

- No universal learning
- Random problems cannot be solved
- Unrestricted solutions will not work: Priors required
- Universal priors / learning schemes are nonsense

However

- We can quantify the likelihood of generalization
- Depends on number of models considered during training
- Next video: determine the odds
- Universal learning possible for restricted universes
- Like ours: Human scientists believe in it

Conclusion

No Free Lunch

- No universal learning
- Random problems cannot be solved

- Unrestricted solutions will not work: Priors required
- Universal priors / learning schemes are nonsense

However

- We can quantify the likelihood of generalization
- Depends on number of models considered during training
- Next video: determine the odds
- Universal learning possible for restricted universes
- Like ours: Human scientists believe in it

Modelling 2 STATISTICAL DATA MODELLING

Chapter 7 Generalization

Video \#07

Statistical Learning Theory

- Limits: No Free Lunch
- Frequentist: Statistical Learning Theory
- Bayesian Model Selection

Overfitting is Evil ...and to be avoided

Regression Example

Housing Prices in Springfield

disclaimer: numbers are made up this is not an investment advice

Overfitting

[source: https://commons.wikimedia.org/wiki/File:Aztecs10_sacrifice.gif]

Model Selection

How to choose the right model?

For example

- Linear, Quadratic, Higher order

We have seen

- Bayesian model averaging

Many other methods

- E.g.: cross validation (split in training/validation data)

But can we get an a priori guarantee?

SLT: Frequentist Bounds

Answer: "Statistical Learning Theory"

- Objective bounds on generalization error
- Hence frequentist usage of statistics

SLT: Frequentist Bounds

"Probably Approximately Correct" (PAC)

- "PAC-learning" is a common model
- It tells us
- That we will maintain a certain error ϵ
- With certain likelihood δ
- Allows us to specify ϵ, δ
- Tells us: minimum number of i.i.d. training examples n

SLT - Overview

Statistical Learning Theory

- Is a whole field of research
- This section gives only an introductory glimpse

Our goal

- To understand what is in principle possible
- And why
- i.e., how to - roughly - prove that

Bias-Variance Trade-Off for General Regressors

Bias-Variance Trade-Off

Generalization error

- Training error might be misleading
- How reliable is the training error?

Bias-variance trade-off

Bias

- Coarse prior assumptions to regularize model

Variance

- Bad generalization performance

Main Insight

What is the problem

- Training error might be good "by chance"
- But generalization is still bad

Two sources of error

- We might not be able to find a good model
- Try to fit a linear classifier to detect images of cats \& dogs.
- Good luck.)
- We might not know the expected performance with sufficient precision

Wait...

We have seen that before!

Classical Statistics

Two alternatives

- Hypothesis: The model performs at least this well
- Null Hypothesis: Just a random fluctuation

Frequentist Test

- Compute, how often we will see such fluctuations
- Shows how "significant" the observation was

Fair Coin Toss: What to expect

$P(k)$ for varying k

Baseline

- $n=100$
- $\theta=0.5$ (fair)

Experiment

- $n=100$
- $k=58$

Two Sided Test

How often do we observe deviations $\Delta k \geq 8$?

$$
\begin{aligned}
P(|k-50| \geq K) & =2 \cdot \sum_{k=K}^{100}\binom{100}{k} \theta^{k}(1-\theta)^{n-k} \\
& \approx 13 \%
\end{aligned}
$$

This Gaussian Model

Out of 40 i.i.d. fruit photos

- 20 banana, 20 oranges
- It classified 36 correctly
- It classified 4 wrongly

Likelihood for pure chance? Null-Hypothesis

Binomial distribution: pick fruits, i.i.d., 50\% banana

$$
p(" \leq 4 \text { wrong" })=\sum_{k \in\{0,1,2,3,4\}}\binom{40}{k} 0.5^{k} 0.5^{40-k}=9.3 \cdot 10^{-8}
$$

What could possibly go wrong?

Does this solve our problem?

- No, because we want to fit a model
- We will choose from many models
- Evaluating only the best-performing one is not right

Illustrative: The extreme case

- We test all models
- Report only the best fitting
- Which fits perfectly
- Obvious b.s. (bad science)

XKCD

"Green Jelly Beans"

WE FOUNDNO LINK BETWEEN LINK BETWEE
TEAL JELIY BEANS AND AONE ($P>0.05$).

Speaking of Overfitting...

Multiple Hypothesis Testing

- Controversies are not uncommon
- Famous example: "Munich Dowsing Experiments"
- https://en.wikipedia.org/wiki/Dowsing\#Betz_1990_study

But those 6 guys

Multiple Hypothesis Testing

Machine Learning

- We have many potential models
- Formulations
- Parameters $\theta \in \Omega(\theta)$
- Or models $m \in M$
- Might even be continuous
- $\theta \in \mathbb{R}^{d}$

How do we correct for this?

- Statistics: "Multiple Hypothesis Testing"
- Let's try this first...

Problem Formalization

Hypotheses \& Losses

Learning Task

- Find function

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}
$$

from training data $\left(\mathbf{x}_{1} \mapsto \mathrm{y}_{1}\right), \ldots,\left(\mathbf{x}_{n} \mapsto \mathrm{y}_{n}\right)$

- Set of hypotheses

$$
H \subset\left\{h \mid h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}\right\}
$$

- Loss functional

$$
L: H \rightarrow \mathbb{R}, \quad L(h)=\text { "how bad is } h \text { ? " }
$$

Hypotheses \& Losses

Per data point

- Define loss $\ell(\tilde{y}, y)$

$$
\ell(\tilde{\mathrm{y}}, \mathrm{y})
$$

$$
\text { e. g. }: \ell(\tilde{y}, y)=|\tilde{y}-y|
$$

point-wise loss

Two types of losses

- Empirical loss

$$
\hat{L}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(\mathrm{x}_{i}\right), \mathrm{y}_{i}\right)
$$

$\hat{L}(h)$
empirical loss
$L(h)$
expected loss

Hypotheses \& Losses

Best guesses

\hat{h}

empirical risk minimizer

- Best guess (ERM) empirical risk minimizer (best according to

$$
\hat{h}:=\underset{h \in \mathcal{H}}{\arg \min } \hat{L}(h)
$$ what we know)

h^{*}

best possible hypothesis

- Actually best hypothesis

$$
h^{*}:=\underset{h \in \mathcal{H}}{\arg \underset{\operatorname{Ln}}{\min }} L(h)
$$

Bias-Variance Trade-Off

Hypotheses \& Losses

Best guesses

- Bias-Variance-Trade-Off

$$
L(\hat{h})=\underbrace{L\left(h^{*}\right)}_{\text {bias }}+\underbrace{L(\hat{h})-L\left(h^{*}\right)}_{\text {excess loss }}
$$

we do not have any good model
we do not know how good our models are

Hypotheses \& Losses

Best guesses

- Bias-Variance-Trade-Off

$$
L(\hat{h})=\underbrace{L\left(h^{*}\right)}_{\text {bias }}+\underbrace{L(\hat{h})-L\left(h^{*}\right)}_{\text {excess loss }}
$$

we do not have any good model

Know-how needed for building good H
we do not know how good our models are

Depends on training size n and complexity of H ("overfitting")

Culprit: Excess Loss

$\uparrow \hat{L}(h)$ vs $L(h)$

To Remember

Overfitting (in SLT terms)

- Excess loss too large
- Unable to pick good model
- Too much noise
$\hat{L}(h)$ vs $L(h)$

What causes large excess loss?

- Too few data points
- Too many models in H

This is a trade-off!

Does this require noisy data?

- Observation of binary outcomes is already binomial!

Hypotheses \& Losses

Theorem

- Set H : with \# H hypothesis
- Training data $D: n$ data points $\mathbf{x}_{i}, y_{i}=y\left(\mathbf{x}_{i}\right)$, i.i.d.
- Bounded loss: $\quad \forall h, D: L(h) \in[0,1]$
- Learn $h \in H$: by empirical risk minimization

Then \Rightarrow excess loss bound

$$
\begin{array}{r}
L(\hat{h})-L\left(h^{*}\right) \leq \sqrt{\frac{2\left(\ln (\# H)+\ln \frac{2}{\delta}\right)}{n}} \\
\quad \text { with probability } p \geq 1-\delta
\end{array}
$$

Proof Sketch: "Uniform Error Bound"

Steps

- Empirical loss: $\quad \hat{L}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i}\right), y_{i}\right)$
- Asymptotically approx. normal distributed (CLT)
- Expected error $\mathcal{O}(1 / \sqrt{n})$
- Deviation by factor c with prob. $\mathcal{O}\left(\exp \left(-c^{2}\right)\right)$
- Multiple-hypothesis testing correction
- Conservative assumption: P (any h_{k} overshoots) $=\sum_{k=1}^{\# H} P\left(h_{k}\right.$ overshoots $)$
- Union bound

Details

Single hypothesis

- Loss $\hat{L}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i}\right), y_{i}\right)$

- Mean $L(h)=\mathbb{E}\left[\ell\left(h(x), y_{i}\right)\right]$
- Hoeffding inequality (think "CLT")

$$
\text { with } \hat{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

we get $P(\hat{X}-\mathbb{E}[\bar{X}] \geq \epsilon) \leq e^{-2 n \epsilon^{2}}$

Details

Single hypothesis

- Hoeffding inequality

$$
P(\hat{X}-\mathbb{E}[\bar{X}] \geq \epsilon) \leq e^{-2 n \epsilon^{2}}
$$

- Applied

$$
P\left(\hat{L}\left(h_{i}\right)-L\left(h_{i}\right) \geq \epsilon\right) \leq e^{-2 n \epsilon^{2}}
$$

- Two sided

$$
P\left(\left|\hat{L}\left(h_{i}\right)-L\left(h_{i}\right)\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2}}
$$

Details

Multiple hypotheses

$$
P(|\widehat{L}(h)-L(h)| \leq \epsilon) \geq 1-2 e^{-2 n \epsilon^{2}} \quad \text { hypothesis } \rightarrow
$$

- We now bound all \#H hypotheses

$$
\begin{aligned}
& P(\exists h \in H:|\hat{L}(h)-L(h)| \leq \epsilon) \\
& \geq 1-\sum_{h \in H} P(|\hat{L}(h)-L(h)| \geq \epsilon) \\
& \geq 1-(\# H) 2 e^{-2 n \epsilon^{2}} \quad \begin{array}{r}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
\leq P(A)+P(B) \\
\text { "union bound" }
\end{array} \\
& \text { "every h is totally different" }
\end{aligned}
$$

Details

We got

$$
\begin{aligned}
& P(\exists h \in H:|\hat{L}(h)-L(h)| \geq \epsilon) \\
\leq & 1-2(\# H) e^{-2 n \epsilon^{2}}
\end{aligned}
$$

- Uniform error bound on all hypotheses

We use this...

$$
\begin{aligned}
-L(\hat{h})-L\left(h^{*}\right) & =L(\widehat{h})-\hat{L}(\widehat{h})=0 \\
& +\widehat{L}(\widehat{h})-\hat{L}\left(h^{*}\right)=0 \\
& +\widehat{L}\left(h^{*}\right)-L\left(h^{*}\right)
\end{aligned}
$$

Details

We got

$$
\begin{aligned}
& P(\exists h \in H:|\hat{L}(h)-L(h)| \geq \epsilon) \\
\leq & 1-2(\# H) e^{-2 n \epsilon^{2}}
\end{aligned}
$$

- Uniform error bound on all hypotheses

We use this...

$$
\begin{aligned}
-L(\hat{h})-L\left(h^{*}\right) & \left.=L(\widehat{h})-\hat{L}(\widehat{h})\} \leq \epsilon / 2^{*}\right) \\
& \left.+\hat{L}(\widehat{h})-\hat{L}\left(h^{*}\right)\right\} \leq 0(\widehat{h} \text { is best wrt. } \widehat{L}) \\
& \left.+\hat{L}\left(h^{*}\right)-L\left(h^{*}\right)\right\} \leq \epsilon / 2^{*}
\end{aligned}
$$

Details

We got

$$
\begin{aligned}
& P(\exists h \in H:|\hat{L}(h)-L(h)| \geq \epsilon) \\
\leq & 1-2(\# H) e^{-2 n \epsilon^{2}}
\end{aligned}
$$

- Uniform error bound on all hypotheses

We use this...

- $L(\hat{h})-L\left(h^{*}\right) \leq \epsilon$ with probability $1-2(\# H) e^{-2 n \cdot \frac{1}{4} \epsilon^{2}}$
- Bound should hold with probability $1-\delta$

Details

We use this...

- $L(\hat{h})-L\left(h^{*}\right) \leq \epsilon$

with probability $1-(\# H) e^{-\frac{1}{2} n \epsilon^{2}}$
hypothesis \rightarrow
- Should hold with probability $1-\delta$,

$$
\begin{gathered}
\text { i.e., } 2(\# H) e^{-\frac{1}{2} n \epsilon^{2}} \leq \delta \\
\text { i.e., } L(\hat{h})-L\left(h^{*}\right) \leq \epsilon \leq \sqrt{\frac{2\left(\log (\# H)+\log \left(\frac{2}{\delta}\right)\right)}{n}}
\end{gathered}
$$

Details

We use this...

- $L(\hat{h})-L\left(h^{*}\right) \leq \epsilon$

hypothesis \rightarrow with probability $1-(\# H) e^{-\frac{1}{2} n \epsilon^{2}}$
- Should hold with probability $1-\delta$

$$
\begin{array}{rl|l}
& 2(\# H) e^{-\frac{1}{2} n \epsilon^{2}} \leq \delta & \\
\Rightarrow & -2(\# H) e^{-\frac{1}{2} n \epsilon^{2}} \leq-\delta & \\
\Rightarrow(\# H) e^{-\frac{1}{2} n \epsilon^{2}} \geq \frac{1}{2} n \epsilon^{2} \leq \log (\# H)-\log \frac{\delta}{2} \\
\Rightarrow & -\frac{1}{2} n \epsilon^{2} \geq \log \frac{\delta}{2}-\log (\# H) & \\
\Rightarrow & \frac{1}{2} n \epsilon^{2} \leq \log (\# H)-\log \frac{\delta}{2} n \epsilon^{2} \leq \log \left(\frac{2 \# H}{\delta}\right) \\
& & \Rightarrow \epsilon^{2} \leq \frac{2}{n} \log \left(\frac{2 \# H}{\delta}\right) \\
& & \\
& & \\
& & \\
& & \\
\frac{2\left(\log (\# H)+\log \left(\frac{2}{\delta}\right)\right)}{n}
\end{array}
$$

Main Idea of the Proof

Consequences

Fixed errors ϵ, δ, determine n :

$$
n \geq \frac{2}{\epsilon^{2}} \log \left(\frac{2 \# H}{\delta}\right)
$$

- We can compute a lower bound for the sample size
- Just solve inequality for n

Consequences

Bias-Variance Trade-Off

$$
L(\hat{h}) \leq \underbrace{L\left(h^{*}\right)}_{\text {bias }}+\underbrace{\sqrt{\frac{2\left(\log (\# H)+\log \left(\frac{2}{\delta}\right)\right)}{n}}}_{\text {variance }=\text { excess loss }}
$$

with probability $p \geq 1-\delta$

- For loss functions $L \in[0,1]$
- Other bounds: adapt analysis with rescaling
- Unbounded, finite variance: Approximation via CLT
- Discrete set of hypotheses
- Bound might not be particularly tight

Consequences

Version for classification: Fits directly

- Finite set of \#H models H
- Binary labeling problem: $y \in\{0,1\}$
- Use n i.i.d. data items $\left(x_{i}, y_{i}\right)$ for training
- ERM: Choose model with lowest training error
- Trade-off for generalization error L

$$
L(\hat{h}) \leq \underbrace{L\left(h^{*}\right)}_{\text {bias }}+\underbrace{\sqrt{\frac{2}{n} \ln \left(\frac{2 \# H}{\delta}\right)}}_{\text {variance }} \text { with } p \geq 1-\delta
$$

Continuous Models? (1)

Models classes are usually continuous

- $h=f_{\theta}$ for $\theta \in \mathbb{R}^{d}$

Simple argument: We are digital

- Each parameter θ_{i} is in $\mathbb{R} \approx \mathrm{float32}$.
- 32 = 0(1) bits
- Training set size $n \in \mathcal{O}(d)$ for d parameters
- Exact numerical bound is rather loose anyways

Fancier argument

- ϵ-Covering of the function space

How about continuous models? (2)

Very rough idea:

$$
[h,(x, y)] \mapsto \ell(h(x), y)
$$

" „Loss surface" varies with $h \in H$

- We can have $h \in H=\left\{h_{\theta} \mid \theta \in \mathbb{R}^{d}\right\}$
- But not every class H yields a useful bound
- Cover function space H with $K \epsilon$-balls

$$
B_{\epsilon}(h)=\left\{\begin{array}{l|c}
h^{\prime} \in H & \begin{array}{c}
\forall x \in \Omega(X), y \in \Omega(Y): \\
\left|\ell(h(x), y)-\ell\left(h^{\prime}(x), y\right)\right| \leq \epsilon
\end{array}
\end{array}\right\}
$$

How about continuous models? (2)

Finite Covering of Function Space

- Assuming, we find a finite set

$$
\mathrm{B}=\left\{B_{\epsilon}\left(h_{1}\right), \ldots, B_{\epsilon}\left(h_{K}\right)\right\} \text { with } H \subseteq \bigcup_{i=1}^{K} B_{\epsilon}\left(h_{i}\right)
$$

- We can substitute $\# H \leftarrow K$, but have additional error

$$
L(\hat{h})-L\left(h^{*}\right) \leq \mathcal{O}\left(\sqrt{\frac{2}{n} \ln \left(\frac{K}{\delta}\right)}+\epsilon\right) \text { with } p \geq 1-\delta
$$

- We can search for best ϵ

Qualitative Analysis

Analysis

- Absolute numbers might not be tight

Qualitatively

$$
\text { excess loss }(\text { variance }) \in \mathcal{O}\left(\sqrt{\frac{\log \# H}{n}}\right)
$$

Two Theoretical Insights

Bias-Variance Trade-off

- Generalization error polynomial in model complexity:
j bits $\rightarrow K \leq 2^{j}$ models

$$
\rightarrow \mathcal{O}\left(\sqrt{\frac{1}{n} \log 2^{j}}\right)=\mathcal{O}\left(\sqrt{\frac{j}{n}}\right) \text { error }
$$

- Error $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ for n training examples

Relation to "No-Free-Lunch"

We get No-Free-Lunch back

- Inputs $\mathrm{x} \in\{0,1\}^{d}$ consists of d bits
- 2^{d} different inputs possible
- Labelings $y:\left\{0,1, \ldots, 2^{d}-1\right\} \rightarrow\{0,1\}$

$$
\text { *) } n \geq \frac{2}{\epsilon^{2}} \log \left(\frac{2 \# H}{\delta}\right)
$$

- $2^{2^{d}}$ many classifications possible
- Most flexible set of hypotheses: $\# H_{\text {all }}=2^{2^{d}}$
- Can test K hypothesis with $n \in \mathcal{O}(\log K)$ samples*)
- Asymptotics of no free-lunch:

$$
\begin{aligned}
& \left.K=2^{2^{d}} \text { (all possible: } H_{\text {all }}\right) \\
\rightarrow & O\left(2^{d}\right) \text { samples (all examples) }
\end{aligned}
$$

More Complexity Analysis

This is also interesting

- Again, input $x \in\{0,1\}^{d}$ (as "bitstring")
- Assume, we build a model that can fit

$$
H_{\text {all }}=\left\{h_{\theta} \mid \theta \in\{0,1\}^{M}\right\}
$$

- Model is binary encoded in M bits
- We need to encode $2^{2^{d}}$ models: need $M \geq 2^{d}$ bits
- Universal classifier will be infeasibly big

More Complexity Analysis

Considering $H_{\text {all }}$ requires exponential data

- Lesson for $h \in H_{\text {all }}$:
$\left.\begin{array}{l}\text { - enc }(h)=2^{\operatorname{enc}(x)} \\ \text { - Training size } 2^{d}=2^{\operatorname{enc}(x)}\end{array}\right\}$ exponential in input
- This also applies to a generative process!
- Machine that generate
- possible examples
- and their labels
- and can be tuned to any model, controlled by a bit-string
- The description of this machine will also be exponential in enc(x)

How Big Is the Gap?

Only polynomial-sized classifiers

- Have to shrink model size
- H from $2^{2^{d}}$ models to $\mathcal{O}\left(2^{\text {poly }(d)}\right)$ models
- Polynomial instead of exponential model size
- Polynomial number of training examples
- Realistically: linear
- Exponential gap
- Prior knowledge must decrease \#H
from exponential in enc(x) to polynomial/linear
- Uniform prior $P(X)$: Entropy from exponential to lin./poly.
- Exponentially more a priori knowledge than what we learn

Summary

Bias-Variance Trade-Off

To avoid overfitting

- Training set size n scales (worst-case) linearly with number of parameters (w/c. in bits)

To reduce randomness

- Increasing n reduces error by $\mathcal{O}\left(n^{-\frac{1}{2}}\right)$

Prior knowledge

- To learn in realistic times, most of the knowledge must come from the prior

$$
\text { rule of thumb: } H(P(X)) \text { linear in enc }(\mathbf{x})
$$

Modelling 2 STATISTICAL DATA MODELLING

Chapter 7 Generalization

Video \#07

Statistical Learning Theory

- Limits: No Free Lunch
- Frequentist: Statistical Learning Theory
- Bayesian Model Selection

What We Have Learned So Far

No free lunch

- We cannot learn without (strong) priors

Generalization bounds

- Excess loss
- Can prevent assessing generalization error
- Bias-Variance-Trade-Off
- Sufficient: $\mathcal{O}(n)$ data points for model with n bits

Goal of this Section

Understand better

- The bigger picture
- Why are these bounds like this?
- What is possible/impossible?
- How to select models
- Adapt complexity automatically
- Bayesian model selection
- How the Bayesian method works
- What it can / cannot do for us
- Information theoretical view
- Looking back at the polynomial example

$$
\begin{gathered}
\text { A Basic } \\
\text { Information Theoretical } \\
\text { View }
\end{gathered}
$$

"Frequentist" Model of Information

Experiment

Transmission

guys,
the outcomes are
$x_{7}, x_{42}, x_{23}, x_{8}$

(operator) Alice

The Experiment is the Channel

Phenomenon

Statistical Model

the world as such (operator)

Bob (receiver)

Back-of-the-Envelope Calculation

Information requirements

- Model has n bits of information (entropy)
- Need to draw n bits out of experiments

Back-of-the-Envelope Calculation

Information requirements

- Model has n bits of information
- k equally likely hypotheses $\rightarrow \log _{2} k$ bits
- Prior $p(\theta) \rightarrow H(p)=\mathbb{E}_{p}[\log p]$ bits
- Information that the prior cannot "fill-in"

Back-of-the-Envelope Calculation

Information requirements

- Model has n bits of information
- k equally likely hypotheses $\rightarrow \log _{2} k$ bits
- Prior $p(\theta) \rightarrow H(p)=\mathbb{E}_{p}[\log p]$ bits
- Information that the prior cannot "fill-in"

Back-of-the-Envelope Calculation

Information requirements

- Model has n bits of information
- k equally likely hypotheses $\rightarrow \log _{2} k$ bits
- Prior $p(\theta) \rightarrow H(p)=\mathbb{E}_{p}[\log p]$ bits
- Information that the prior cannot "fill-in"
- Need to draw n bits out of experiments
- We get back at most $O(1)$ bits in every experiment
- $\Omega(n)$ experiments necessary
- $O(n)$ experiments sufficient to assess probability of successful predicting an output bit
- Conclusion: \#data points ~ model entropy

Back-of-the-Envelope Calculation

Our goal now

- Build an automatic regularizer
- Ensure information criterion automatically
- Cannot break NFL: need prior model restriction

What Can Occam's Razor Do for us?

Occam's Razor

- "The simplest model fitting the data should be preferred"
- Keep models as simple as possible

Statistical Learning theory

- Bounded complexity allows us to predict generalization performance
- It still might be very bad, but we know beforehand
- This is not a way to find models

What Can Occam's Razor Do for us?

Model Selection Scenario

- We have a restricted class of models
- "All models" does not work - NFL-theorem!
- Within this class, models vary in complexity
- Typically: assume that a "well-fitting" model is in this set
- We can automatically pick a suitable one
- Complexity adapted to amount of data
- Complexity adapted to difficulty of fitting
- As simple as possible
- Results can be bad
- Garbage (bad generalization), if set of models is unsuitable

MDL-Minimum

 Description Length

William of Ockham (1287-1347)

MDL Method

Minimum Description Length (MDL)

- Developed by Rissanen [1978]
- Try to keep models as simple as possible
- Simplified / tractable version of earlier ideas of Solomonov, Kolmogorov, Chaitin

Principle

- Encode data + model in the least amount of space
- Using entropy-coding as model (e.g. Huffman)

Literature:
Peter Grunwald: A tutorial introduction to the minimum description length principle. https://arxiv.org/pdf/math/0406077.pdf, 2004.

Solomonov Induction

Assumptions

- Data generated \& recognized by algorithm
- Universal Turing-machine (TM), incl. Python \& C++
- Short models are best
- Easiest to fit: preferred for statistical reasons
- Easiest to find? "Universal" prior
- Bayes rule: Model M, Data D

$$
\begin{gathered}
P(M \mid D) \sim P(D \mid M) P(M) \\
P(M)=2^{-\left|T M_{\min }(M)\right|}
\end{gathered}
$$

$\left|T M_{\text {min }}(M)\right|=$ Length of shortest TM computing M

Solomonov Induction

Properties

- Uncomputable
- $\left|T M_{\text {min }}(M)\right|$ cannot be computed
- Asymptotically invariant
- Length of TM only vary by additive constant
- Simulator for TM in a universal TM needs O(1) space
- "Radical" formalization of Occam’s Razor

Variants

- AIXI - Reinforcement learning (M. Hutter)
- Speed-Prior: short-running TMs first (J. Schmidhuber)
- Exponential instead of impossible

Rissanen's MDL

Minimum Description Length

- Probabilistic measurement of data d
- n i.i.d. repeats
- Looking for best model m
- m needs parameters $\boldsymbol{\theta}$
- Shortest message describing all n experiments
- Optimal choice of m depends on n

Practical method

- No inherent computability issues
" Machine model implicit in "coding unit"

Back to the Standard Model...

Experiment

(channel)

Formalization

Experimental Setup

- Model m out of set $M=\left\{m_{1}, \ldots, m_{k}\right\}$
- Each model has parameters θ
- Data $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$

Minimum Description Length Method

- Alice sends outcome d to Bob using model m
- Send model m
- Send model parameters $\boldsymbol{\theta}$
- Send data d
- Using the model: "residuals" to model mean
- Probabilistic codes for $P\left(d_{i} \mid m, \boldsymbol{\theta}\right)$

Information Theory

Reminder

- Probability distribution $p(x)$
- Information $I(x)=-\log p(x)$
- Expected information = Entropy

$$
H(p)=-\sum_{x \in \Omega(X)} p(x) \log p(x)
$$

Coding Theorem

- Can encode outcomes x with expected $[H(p)]$ bits
- Constructive proof: Huffman coding

MDL Formalization

How to send?

- There are k models.
- Need at most $\left[\log _{2} k\right]$ bits
- Parameters θ for model m have N_{m} bits: $\theta \in\{0,1\}^{N_{m}}$
- At most $\left[\log _{2} N_{m}\right\rceil$ bits
- N_{m} depends on / describes model complexity!
- Observations have N bits:
- At most $n\left[\log _{2} N\right]$ bits
- But we can do better, and this is important!

MDL Formalization
 Sending a model

- Encode choice of m
- Binary number with $\left\lceil\log _{2} k\right\rceil$ bits
- Message length $L(m)=\left\lceil\log _{2} k\right\rceil$
- Encode parameters θ
- Using $\left\lceil\log _{2} N_{m}\right]$ bits
- Large N_{m} means larger messages
- Message length $L(\theta \mid m) \leq\left\lceil\log _{2} N_{m}\right\rceil$
- Encode data d
- Using distribution $P(\mathbf{d} \mid m, \boldsymbol{\theta})$
- Using $L(\mathbf{d} \mid m, \boldsymbol{\theta})=H(P(\mathbf{d} \mid m, \boldsymbol{\theta}))$ bits

Model Selection

Wo do not ever send models

$\underbrace{\operatorname{enc}(m)}_{\text {fixed }} \underbrace{\operatorname{enc}(\boldsymbol{\theta})}_{$| model |
| :---: |
| complexity |$} \underbrace{\operatorname{enc}\left(d_{1}\right) \ldots \operatorname{enc}\left(d_{n}\right)}_{\text {data fit }}$

- This is just a thought experiment
- We choose model m such that message length

$$
L(m)+L(\theta \mid m)+L(\mathbf{d} \mid \theta, m)
$$

is minimized

Analysis

$$
\underbrace{L(m)}_{\begin{array}{c}
\text { constant } \\
\text { (for now) }
\end{array}}+\underbrace{L(\boldsymbol{\theta} \mid m)}_{\begin{array}{c}
\text { grows with } \\
\text { \#parameters }
\end{array}}+\underbrace{L(\mathrm{~d} \mid \boldsymbol{\theta}, m)}_{\begin{array}{c}
\text { neg-log- } \\
\text { likelihood }
\end{array}}
$$

Example

Polynomial Regression

- Model m : Polynomial of degree $D=0,1,2 \ldots, 9$
- Parameters θ (for fixed m):
- Coefficients in \mathbb{R}^{D}
- Encoded in floating point: $O(D)$ bits
- Data d: samples from function at n points
- If model is good, no extra bits needed
- If model is bad, many extra bits needed
- Bad = uncertain or inaccurate
- Both increase coding length
- Uncertainty increases entropy
- Inaccuracy asks for uncommon (long) codes

Model Selection Example

Polynomial approximation

- 10 samples from sine curve
- Approximation with polynomial of degree 0 to 9

Model Selection

Empirically

- Degrees 3-7 "reasonable"
- Degree 5 closest fit, degree 3,4 less wiggly

Model Selection

Empirically

- Degrees 3-7 "reasonable"
- Degree 5 closest fit, degree 3,4 less wiggly

Model Selection

Empirically

- Degrees 3-7 "reasonable"
- Degree 5 closest fit, degree 3,4 less wiggly

Example

Polynomial Example

- Kind-of-works (degree 3 best)
- But discretization is still arbitrary for continuous parameters
- Need more "specific" entropy for θ

weighting

Bayesian Perspective on MDL

(1287-1347)
(c. 1701-1761)

Bayesian Model Selection

Consider two variants

- "MAP-Style" MDL
- Simple, but ad-hoc
- "Full-Bayesian" model selection
- Relationship to / interpretation as MDL

MAP-Style MDL

Sending a model

- We fix a model m to assess
- Joint density:

$$
P(\mathbf{d}, \boldsymbol{\theta} \mid m)=P(\mathbf{d} \mid \theta, m) P(\theta \mid m)
$$

- Posterior for θ :

$$
P(\theta \mid \mathbf{d}, m) \sim P(\mathbf{d} \mid \theta, m) P(\theta \mid m)
$$

- Determine $\widehat{\boldsymbol{\theta}}=\arg \max _{\theta} P(\theta \mid \mathbf{d}, m)$

Model Selection

- Compute message length for all m and pick shortest

MAP-Style MDL

Sending a model

- Encode choice of m
- Use $L(m)=-\log \mathrm{P}(m)$
- Can encode a priori model preferences
- Encode parameters θ
- Determine parameter prior $P(\theta \mid m)$
- $L(\widehat{\boldsymbol{\theta}} \mid m)=-\log P(\widehat{\boldsymbol{\theta}} \mid m)$ bits
- Encode data d
- $L(\mathbf{d} \mid \widehat{\boldsymbol{\theta}}, m)=-\log P(\mathbf{d} \mid \widehat{\boldsymbol{\theta}}, m)$
- Neg-log-likelihood of best fitting model

Bayesian MDL

Bayesian Model Selection

- Inferring model

$$
\begin{aligned}
P(m \mid \mathbf{d}) & =\frac{P(\mathbf{d} \mid m) P(m)}{P(\mathbf{d})} \\
& \sim \underbrace{P(\mathbf{d} \mid m)}_{\text {marginal }} \underbrace{P(m)}_{\text {model }}
\end{aligned}
$$

- We would select the most likely model m
- Product of marginal likelihood and model prior
- Reminder: Needs computation of marginal likelihood

$$
\begin{aligned}
& P(\mathbf{d} \mid m)=\sum_{\theta \in \Omega(\theta)} P(\mathbf{d} \mid \theta, m) P(\theta \mid m) \quad \text { (which can be expensive) } \\
& \text { integral for continuous } \Theta
\end{aligned}
$$

Bayesian MDL

Bayesian Model

- We have so far...

$$
P(m \mid \mathbf{d}) \sim \underbrace{P(\mathbf{d} \mid m)}_{\begin{array}{c}
\text { marginal } \\
\text { likelihood prior }
\end{array}} \underbrace{P(m)}_{\text {model }}
$$

- ...and...

$$
P(\mathbf{d} \mid m)=\sum_{\theta \in \Omega(\Theta)} P(\mathbf{d} \mid \boldsymbol{\theta}, m) P(\theta \mid m)
$$

Encoding

- Send model: $L(m)=-\log P(m)$ (choose model m)
- Send data: $L(\mathbf{d} \mid m)=-\log P(\mathbf{d} \mid m)$ (send \mathbf{d}, model-based)

Bayesian MDL

Encoding

- Model costs: $L(m)=-\log P(m)$
- Prior for model selection
- Optional/hand-tunable (in this context)
- For non-uniform $P(m)$, this part is not constant
- Data costs: $L(\mathbf{d} \mid m)=-\log P(\mathbf{d} \mid m)$
- Marginal likelihood gives direct encoding model for the data
- Parameter costs are implicit ("1 part model")

Bayesian MDL

Encoding

- Tighter fit than "MAP-Style"
- MAP-Style costs:

$$
\begin{aligned}
& \min _{\theta \in \Omega(\Theta)}(-\log P(\theta \mid m)-\log P(\mathbf{d} \mid \theta, m)) \\
= & \min _{\theta \in \Omega(\Theta)}(-\log P(\mathbf{d} \mid \theta, m) P(\theta \mid m))
\end{aligned}
$$

- Bayes:

$$
-\log \left(\sum_{\theta \in \Omega(\theta)} P(\mathbf{d} \mid \theta, m) P(\theta \mid m)\right)
$$

- Bayesian expression is never larger
- Tighter fit (better complexity estimate)

Note on MDL

There are more variants

- "Normalized Maximum Likelihood"
- Theoretical advantages over Bayesian approach
- "Coarse" (Grunwald), ad-hoc MDL
- Define approximate coding length along-the-way
- Common obstacle
- Continuous variables carry infinite information
- Address for example with accuracy constraints
- See MacKay's book Ch. 28
- Bayesian method models noise in data explicitly

Bayesian Model Selection \& Averaging

Model Selection

Bayesian approach

- Which model is better?
- Model m_{1} vs m_{2}
- Simple question
- Compare $P\left(m_{1} \mid \mathbf{d}\right)$ with $P\left(m_{2} \mid \mathbf{d}\right)$
- Select more likely

Fancy version: Bayesian model averaging

$$
\overline{\boldsymbol{\theta}}=\int_{m \in \Omega(M)} \boldsymbol{\theta} \cdot P(m \mid \mathbf{d}) d \boldsymbol{\theta}
$$

- If models share parameters \& params are vectors

Bayesian MDL

Bayesian Model Selection

$$
\begin{aligned}
P(m \mid \mathbf{d}) & =\frac{P(\mathbf{d} \mid m) P(m)}{P(\mathbf{d})} \\
& \sim \underbrace{P(\mathbf{d} \mid m)}_{\text {marginal }} \underbrace{P(m)}_{\text {model }}
\end{aligned}
$$

$$
=\sum_{\theta \in \Omega(\Theta)} \underbrace{P \underbrace{P(\mathbf{d} \mid \theta, m)}_{\begin{array}{c}
\text { data } \\
\text { likelihood } \\
\text { prior }
\end{array}} \underbrace{P(\theta \mid m)}_{\begin{array}{c}
\text { parameter } \\
\text { prior }
\end{array}} \underbrace{P(m)}, \text { (m)}}_{\begin{array}{c}
\text { marginal } \\
\text { likelihood }
\end{array}}
$$

Simple Example

Polynomial Fit

Reminder: Least-Squares Fit

$$
-f_{\mathrm{c}_{K}}\left(x_{i}\right)=\underbrace{\left(x_{i}^{0}, \ldots, x_{i}^{d}, \ldots, x_{i}^{K}\right)}_{\xi_{i}^{T}} \cdot \mathrm{c}_{K}=\xi_{i}^{T} \cdot \mathrm{c}_{K}
$$

- Design matrix A $=\xi_{i} \xi_{i}^{T}$, optimum $\hat{\mathbf{c}}_{K}$

Marginal Likelihood

$$
P(D \mid K) \sim \sigma_{c}^{-K} \cdot e^{-\frac{1}{2 \sigma_{D}^{2}}\left(\sum_{i=1}^{n} y_{i}^{2}-\hat{\epsilon}_{K}^{2}\right)} \cdot \operatorname{det}\left(\mathbf{A}+\frac{\sigma_{D}^{2}}{\sigma_{c}^{2}} \mathbf{I}\right)^{-\frac{1}{2}}
$$

Flat (improper) Prior

$$
P(D \mid K) \sim \underbrace{e^{-\frac{1}{2 \sigma_{D}^{2}}\left(\sum_{i=1}^{n} y_{i}^{2}-\hat{c}_{K}^{2}\right)}}_{\text {data fit }} \cdot \underbrace{\operatorname{det}(\mathbf{A})^{-\frac{1}{2}}}_{\begin{array}{c}
\text { complexity } \tag{143}\\
\text { penalty }
\end{array}}
$$

Connection to MDL

Gaussian Distributions

$$
\mathcal{N}_{\mu, \Sigma}(\mathrm{x}):=\left(\frac{1}{(2 \pi)^{\frac{d}{2}} \operatorname{det}(\Sigma)^{\frac{1}{2}}}\right) e^{-\frac{1}{2}(\mathrm{x}-\mu)^{\mathrm{T}} \Sigma^{-1}(\mathrm{x}-\mu)} \quad \begin{aligned}
& \text { d dimensions, } \\
& \text { cov. matrix } \Sigma
\end{aligned}
$$

- Has (differential) entropy

$$
\mathrm{H}\left(\mathcal{N}_{\mu, \Sigma}\right)=\ln \left[(2 \pi e)^{d} \operatorname{det}(\Sigma)^{\frac{1}{2}}\right]
$$

"Complexity Penalty"

$$
\begin{align*}
& \qquad P(D \mid K) \sim \underbrace{e^{-\frac{1}{2 \sigma_{D}^{2}}\left(\sum_{i=1}^{n} y_{i}^{2}-\hat{c}_{K}^{2}\right)}}_{\text {data fit }} \cdot \underbrace{\operatorname{det}(\mathbf{A})^{-\frac{1}{2}}}_{\text {complexity }} \begin{array}{c}
\begin{array}{c}
\text { entropy of } \\
\text { parameters } \mathbb{C}_{K}
\end{array} \\
\begin{array}{c}
\text { entropy of } \\
\text { data } y_{i} \\
\text { under model } \\
\text { (coding length) }
\end{array}
\end{array}=\underbrace{e^{-\frac{1}{2 \sigma_{D}^{2}\left(\sum_{i=1}^{n} y_{i}^{2}-\hat{c}_{K}^{2}\right)}} \cdot \underbrace{e^{-c \cdot H(\text { param })}}_{\text {complexity }}}_{\text {data fit }}
\end{align*}
$$

Finite Resolution?

Version with prior

- Pentalty: $\operatorname{det}\left(\mathbf{A}+\frac{\sigma_{D}^{2}}{\sigma_{c}^{2}} \mathbf{I}\right)^{-\frac{1}{2}}$
- Ratio of
- Noise in data (absolute precision)
- Expected range of variability
- Regularizer - adding identity matrix limits resolution
- Determinant is product of eigenvalues (main axis variances)
- Singular if variance is zero in one direction
- Sensitive to very small values
- Identity creates "noise floor" at std.-dev. $\frac{\sigma_{D}}{\sigma_{c}}$
- Below this, "nothing matters"

Perspectives

A Bit of Caution Needed...

MDL \& Model Selection

- Literature gives varying accounts
- MDL just special case of Bayesian inference [MacKay 2003]
- MDL more general [Grunwald 2004]
- Arguments revolve around the role of priors (as often)
- Bayesian pitfalls
- Bayesian model selection requires proper priors [MacKay 2003, Dawid et al. 1997]
- It might work without (our example), but there are dragons

Simple Example

Gaussian Model

singular for single sample

$$
p_{\sigma}(d)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(d-\mu)^{2}}{2 \sigma^{2}}}
$$

(data $d, \underbrace{\text { mean } \mu}, \underbrace{\text { variance } \sigma}$)
parameter "model"

When to Use What?

Bayesian Averaging

- Marginal likelihood tractable (and good nerves)
- Estimating vectorial model parameters

Bayesian Model selection

- General model parameters

MDL (e.g., ad-hoc/MAP-Style)

- Marginal likelihood intractable (or too much for my nerves)

Frequentist generalization bounds

- Need guarantees on excess loss

When to Use What?

None of the above

- Simple model, tons of data (WCPGW, YOLO)
- Hand-tuned regularizer (e.g. MAP applications)
- Deep Networks (because, who knows)

When to Use What?

What should I do nonetheless?

- Use validation data
- Separate from training data
- Monitor generalization performance
- ...during computational optimization
- ...during manual model-tuning
- Use test set, separated at the beginning
- Use only once to measure generalization performance
- Perform frequentist significance test
- Report these numbers to your customer
- Or scientific journal, if you are in that business
- Manual overfitting to the test set is possible

Summary

Model Selection

Information Theory

- Intuitive arguments for
\#data samples ~ \#model parameters
- "Data sends us information through experiments"

Minimum Description Length

- Objective: compact encoding of the data
- "Best compression": model size + data size
- Roughly:
min (data neg log likelihood + parameter entropy)

Model Selection

Bayesian Model Selection

- Special case of probabilistic compression model
- Works well, but is technically "sensitive"
- Marginal likelihood for comparison
- Might be intractable
- Might be nasty to compute even if tractable
- Need to think seriously about
- Priors
- Error bars on data
- Bayesian model averaging strongly related
- Just uses marginal likelihood as weight

