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Statistical Learning Theory

• Limits of learning: No Free Lunch

• Frequentist: Statistical Learning Theory

• Bayesian Model Selection

Video #07

(4)



No Free Lunch
There is…

…just somebody else is paying.



Universal Learning Algorithm

Can we find a universal learning algorithm?

▪ Should works on any problem

▪ With good performance

▪ At least better than chance

Counter-question

▪ Depends on how you define any

Strict definition: Really any

▪ Then: Answer is no.

▪ “No free lunch theorem” of machine learning

(6)



No Free Lunch Theorem

Informal Statement

▪ Consider machine learning task

▪ E.g. classification

▪ E.g. regression

▪ It is impossible to learn models that

▪ Perform better than random choice
if we do not restrict the problem class a priori

▪ “No successful learning without priors”

▪ Two variants / components

(NFL1) All algorithms equal (on average) over all possible problems

(NFL2) Generalization requires using prior knowledge

(7)



Formalization
(for Classification)

No Free Lunch



No Free Lunch Theorem (1)

Assumption

▪ No prior information

▪ All distributions equally likely

Consequence

▪ All predictors (incl. random choice) are 
equally good (bad)

▪ Expected average performance is pure chance



No Free Lunch Theorem (1)

Unknown

▪ Features 𝐱 ∈ Ω(𝑋) = 𝐱1, … , 𝐱𝑁

▪ True labeling function 𝑦: Ω 𝑋 → 0,1

▪ Training Data 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛 , 𝑦𝑖 ≔ 𝑦(𝐱𝑖)

Complexity

▪ 𝑁 possible input features

▪ Usually, 𝑁 is very, very large

▪ Labels are binary

▪ There are 2𝑁 possible labelings

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

𝐱1
𝐱2
𝐱3



No Free Lunch Theorem (1)

Training data

▪ Training features 𝑋𝑇 = 𝐱1, … , 𝐱𝑛 ⊂ Ω 𝑋 , 𝑛 < 𝑁

▪ Training labels 𝑦 𝐱𝑖 given for all 𝑖 = 1…𝑛

Result of training

▪ Learned model ℎ: Ω 𝑋 → 0,1 (“Hypothesis”)

Problem: Generalization

▪ Non-training features 𝑋𝐺 = Ω 𝑋 \𝑋𝑇

▪ We want to infer 𝑦 𝐱 for 𝐱 ∈ 𝑋𝐺



No Free Lunch Theorem

Quality measure: Generalization error

𝐿(ℎ) ≔
1

#𝑋𝐺


𝐱∈𝑋𝐺

ℎ 𝐱 − 𝑦 𝐱

▪ Average generalization error

▪ I.e., average on off-training data

Assumption

▪ Draw true labeling function
𝑦: Ω 𝑋 → 0,1

uniformly & randomly from set of all such functions

▪ (Really) no prior knowledge (possible)



No Free Lunch Theorem

Theorem (“no free lunch (1)”)

▪ Under these assumptions

▪ Pick labeling function uniform, randomly
from function space

▪ All possible models ℎ have the same expected 
performance 

𝐿 ℎ = 0.5

▪ Averaged over all potential true 𝑦 ∈ 𝑦|𝑦: Ω 𝑋 → 0,1

▪ Corollary: All ML-algorithms are equally good (here)

▪ Includes fancy ones like SVMs, Deep Nets

▪ But same for “always answer 0” or random guessing



Proof (NFL 1)

▪ We have 2𝑁 possible labeling
𝑦: {𝐱1, … , 𝐱𝑁} → 0,1

▪ We pick any of this with same probability

▪ Look at one off-training point 𝐱𝑖 ∉ 𝑋𝑇
▪ There are 2𝑁−1 functions with 𝑦 𝐱𝑖 = 0

▪ There are 2𝑁−1 functions with 𝑦 𝐱𝑖 = 1

▪ Chance of labeling are 50:50

▪ Independent of training data

▪ ℎ(𝐱𝑖) will be wrong 50% of the time (no matter the choice)

▪ 𝔼𝑦:{𝐱1,…,𝐱𝑁}→ 0,1 ℎ 𝐱𝑖 − 𝑦(𝐱𝑖) = 0.5

▪ This holds for all off-training points ⇒ 𝐿 ℎ = 0.5

(14)



Conclusion

No Free Lunch (1)

▪ No universal learning
▪ Pure mathematics / perfect symmetry

no prior knowledge = all functions 𝑦 are equal

▪ Random problems cannot be solved

▪ Universal learning schemes are nonsense

However…

▪ Everyday experience
▪ Universal learning seems to work (does it?)

▪ Conjecture: Property of physics
▪ The universe seems biased



NFL-2: Living in a
Non-Random World

(16)



Why Do We Need Priors?

Scenario “The Universe is indeed biased”

▪ We draw a function
𝑦: Ω 𝑋 → 0,1

from a small class

𝑈 ⊂ 𝐻𝑎𝑙𝑙 ≔ 𝑦|𝑦: Ω 𝑋 → 0,1

where #𝑈 ≪ #𝐻𝑎𝑙𝑙.

▪ But we have no idea what 𝑈 is.

▪ So we consider all possible solutions ℎ ∈ 𝐻𝑎𝑙𝑙

▪ With uniform a priori likelihood

(17)



No Free Lunch (2)

Theorem (“no free lunch 2”)

▪ Under these assumptions

▪ “True” function sampled from a small set 𝑈

▪ We have no knowledge about 𝑈 (uniform prior on 𝐴)

▪ Averaged over all functions 
𝐻𝑓𝑖𝑡 = ℎ ∈ 𝐻𝑎𝑙𝑙 ∀𝐱 ∈ 𝑋𝑇: ℎ 𝑥 = 𝑦𝑖

the expected generalization performance is
1

#𝐻𝑓𝑖𝑡


ℎ∈𝐻𝑓𝑖𝑡

𝐿 ℎ 𝐱 = 0.5

(although the training error is zero)

(18)



Proof (NFL 2)

Consider subset that fits training data

𝐻𝑓𝑖𝑡 = ℎ ∈ 𝐴 ∀𝐱 ∈ 𝑋𝑇: ℎ 𝐱 = 𝑦(𝐱)

▪ Consider a off-training point 𝐱 ∉ 𝑋𝑇
There are the same number of models ℎ ∈ 𝐻 with

ℎ 𝐱 = 0 and   ℎ 𝐱 = 1

▪ Because of symmetry, just counting all fitting ℎs

▪ For other 𝐱′ ∈ 𝑋𝑇 : ℎ 𝐱′ = 𝑦 𝐱′ is fixed

▪ For other 𝐱′′ ∉ 𝑋𝑇 : both ℎ 𝐱′′ = 0 and ℎ 𝐱′′ = 1 in 𝐻𝑓𝑖𝑡

▪ Overall: 
1

2
#Ω X − #𝑋𝑇 models the choice

▪ Thus, the average is 0.5

▪ That is the case for every 𝐱 ∉ 𝑋𝑇 , which shows the claim
(19)



Summary NFL 1/2



Summary NFL

(1) No universal learning

▪ We cannot generalize a truly random labeling (ever)
▪ No learning algorithm will be able to do this

▪ No structure → no learning

(2) No learning without priors

▪ We cannot generalize without prior assumptions
▪ e.g.: probabilistic priors 𝑃(ℎ)

▪ e.g.: Model restrictions ℎ ∈ 𝐻, #𝐻 ≪ #𝐻𝑎𝑙𝑙

▪ Even if labeling drawn from a restrictive family
▪ We need to know something about the structure

▪ Will see soon: Gap (#𝐻 vs. #𝐻𝑎𝑙𝑙) is exponential in practice

(21)



Similar Arguments for 
other Settings



Example: Regression

Housing Prices in Springfield

100 K

200 K

300 K

400 K

500 K

600 K

1960 1970 1980 1990 2000 2010

*) This is not investment advice

*)



Example: Regression

Housing Prices in Springfield

100 K

200 K

300 K

400 K

500 K

600 K

1960 1970 1980 1990 2000 2010

same likelihood for 
all in-between values
same likelihood for 

all in-between values

*)

*) neither this



Example: Density Estimation (NFL-1)

Relativity of Orange-Banana Spaces

vs.

“smooth densities”
Here: Gaussians

“random”
distributions



Example: Density Estimation  (NFL-2)

Relativity of Orange-Banana Spaces

vs.

“smooth densities”
Here: Gaussians

“anything goes”
prior



Told you
so!

The End.

*) ML does not work.
Back to relational data bases!

*)



Wait…



Example: Density Estimation

Say, we have observed the data (i.i.d.) below

“smooth densities”
Here: Gaussians

This model
– on its own –

looks plausible!



Same here: Regression

Housing Prices in Springfield

100 K

200 K

300 K

400 K

500 K

600 K

1960 1970 1980 1990 2000 2010

*)

*) neither this

training data (i.i.d.)

off-training samples
(i.i.d., same 𝑝!)

This model
– on its own –

looks plausible!



Verification vs. Finding

We can objectively recognize good models

▪ Some oracle tells us one single model

▪ Performs consistently above chance on i.i.d. data

If this is true: Likely to generalize

▪ We know that it is likely to work on further i.i.d. data

▪ Can compute the odds for this holding in general

But: We cannot search for them universally

▪ If we consider all possible models, we cannot generalize

How many can we consider?
(31)



Summary



Conclusion

No Free Lunch

▪ No universal learning
▪ Random problems cannot be solved

▪ Unrestricted solutions will not work: Priors required

▪ Universal priors / learning schemes are nonsense

However

▪ We can quantify the likelihood of generalization
▪ Depends on number of models considered during training

▪ Next video: determine the odds

▪ Universal learning possible for restricted universes
▪ Like ours: Human scientists believe in it

(33)



Conclusion

No Free Lunch

▪ No universal learning
▪ Random problems cannot be solved

▪ Unrestricted solutions will not work: Priors required

▪ Universal priors / learning schemes are nonsense

However

▪ We can quantify the likelihood of generalization
▪ Depends on number of models considered during training

▪ Next video: determine the odds

▪ Universal learning possible for restricted universes
▪ Like ours: Human scientists believe in it

(34)

I 
don’t!
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Statistical Learning Theory

• Limits: No Free Lunch

• Frequentist: Statistical Learning Theory

• Bayesian Model Selection

Video #07

(39)



Overfitting is Evil
…and to be avoided



Regression Example

Housing Prices in Springfield

100 K

200 K

300 K

400 K

500 K

600 K

1960 1970 1980 1990 2000 2010

disclaimer: numbers are made up
this is not an investment advice



Overfitting

[source: https://commons.wikimedia.org/wiki/File:Aztecs10_sacrifice.gif]



Model Selection

How to choose the right model?

For example

▪ Linear, Quadratic, Higher order

We have seen

▪ Bayesian model averaging

Many other methods

▪ E.g.: cross validation (split in training/validation data)

But can we get an a priori guarantee?



SLT: Frequentist Bounds

Answer: “Statistical Learning Theory”

▪ Objective bounds on generalization error

▪ Hence frequentist usage of statistics

(44)

Idea: Can’t work every time by chance…



SLT: Frequentist Bounds

“Probably Approximately Correct” (PAC)

▪ “PAC-learning” is a common model

▪ It tells us

▪ That we will maintain a certain error 𝜖

▪ With certain likelihood 𝛿

▪ Allows us to specify 𝜖, 𝛿

▪ Tells us: minimum number of i.i.d. training examples 𝑛

(45)



SLT – Overview

Statistical Learning Theory

▪ Is a whole field of research

▪ This section gives only an introductory glimpse

Our goal

▪ To understand what is in principle possible

▪ And why

▪ i.e., how to – roughly – prove that

(46)



Bias-Variance Trade-Off
for General Regressors



Bias-Variance Trade-Off

Generalization error

▪ Training error might be misleading

▪ How reliable is the training error?

Bias-variance trade-off

Bias

▪ Coarse prior assumptions to regularize model

Variance

▪ Bad generalization performance



What is the problem

▪ Training error might
be good “by chance”

▪ But generalization is still bad

Two sources of error

▪ We might not be able to find a good model

▪ Try to fit a linear classifier to detect images of cats & dogs.

▪ Good luck.

▪ We might not know the expected performance with 
sufficient precision

Main Insight

(49)

*)

linear SVM on cifar-10
l2-loss, testing, mean acc. 39,8%

18%
35%

*)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

To the
moon!



Wait…
We have seen that before!

There are
ways to gain

objective
knowledge



Classical Statistics

Two alternatives

▪ Hypothesis: The model performs at least this well

▪ Null Hypothesis: Just a random fluctuation

Frequentist Test

▪ Compute, how often we will see such fluctuations

▪ Shows how “significant” the observation was

(51)



Fair Coin Toss: What to expect

Baseline

▪ 𝑛 = 100

▪ 𝜃 = 0.5 (fair)

(52)

𝑘/𝑛 [%]

Experiment

▪ 𝑛 = 100

▪ 𝑘 = 58

𝑃𝜃=0.5(𝑘)

200 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

3010 50 70 90

Experiment:
𝑘 = 58

𝑃(𝑘) for varying 𝑘



Two Sided Test

How often do we observe deviations Δ𝑘 ≥ 8?

𝑃 𝑘 − 50 ≥ 𝐾 = 2 ⋅ 

𝑘=𝐾

100

100
𝑘

𝜃𝑘 1 − 𝜃 𝑛−𝑘

≈ 13%

(53)

𝑘/𝑛 [%]

𝑃(𝑘)

200 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

3010 50 70 90

Experiment:
𝑘 = 58



(54)

red

green

decision 
boundary

This Gaussian Model

Out of 40 i.i.d. fruit photos

• 20 banana, 20 oranges

• It classified 36 correctly

• It classified 4 wrongly

pure chance?Likelihood for Null-Hypothesis

Binomial distribution: pick fruits, i.i.d., 50% banana

𝑝 ≤ 4 wrong" = 

𝑘∈ 0,1,2,3,4

40
𝑘

0.5𝑘0.540−𝑘 = 9.3 ⋅ 10−8"



What could possibly go wrong?

Does this solve our problem?

▪ No, because we want to fit a model

▪ We will choose from many models

▪ Evaluating only the best-performing one is not right

Illustrative: The extreme case

▪ We test all models

▪ Report only the best fitting

▪ Which fits perfectly

▪ Obvious b.s. (bad science)

(55)



XKCD
“Green Jelly Beans”

Comic: [Randall Munroe, https://xkcd.com/882/]



Speaking of Overfitting…

Multiple Hypothesis Testing

▪ Controversies are not uncommon

▪ Famous example: “Munich Dowsing Experiments”

▪ https://en.wikipedia.org/wiki/Dowsing#Betz_1990_study

(57)

[Georgius Agricolas "De re metallica libri XII“, 1556]



But those 6 guys

(58)



Multiple Hypothesis Testing

Machine Learning

▪ We have many potential models

▪ Formulations

▪ Parameters 𝜃 ∈ Ω 𝜃

▪ Or models 𝑚 ∈ 𝑀

▪ Might even be continuous

▪ 𝜃 ∈ ℝ𝑑

How do we correct for this?

▪ Statistics: “Multiple Hypothesis Testing”

▪ Let’s try this first…

(59)



Problem
Formalization



Hypotheses & Losses

Learning Task

▪ Find function

𝑓:ℝ𝑑 → ℝ𝑘

▪ from training data 𝐱1 ↦ 𝐲1 , … , 𝐱𝑛 ↦ 𝐲𝑛

▪ Set of hypotheses

𝐻 ⊂ ℎ ℎ:ℝ𝑑 → ℝ𝑘

▪ Loss functional

𝐿:𝐻 → ℝ, 𝐿 ℎ = "how bad is ℎ? "



Per data point

▪ Define loss ℓ 𝐲, 𝐲
e. g. : ℓ 𝐲, 𝐲 = 𝐲 − 𝐲

Two types of losses

▪ Empirical loss

▪ Actual expected loss
𝐿 ℎ = 𝔼𝐱~𝑝 ℓ ℎ 𝐱 , 𝑓 𝐱

= න
Ω

ℓ ℎ 𝐱 , 𝑓 𝐱 𝑝 𝐱 𝑑𝐱

Hypotheses & Losses

𝐿 ℎ =
1

𝑛


𝑖=1

𝑛

ℓ ℎ 𝐱𝑖 , 𝐲𝑖

point-wise loss

ℓ 𝐲, 𝐲

expected loss

𝐿 ℎ

𝐿 ℎ

empirical loss



Hypotheses & Losses

Best guesses

▪ Best guess (ERM)

ℎ ≔ arg min
ℎ∈ℋ

𝐿 ℎ

▪ Actually best hypothesis

ℎ∗ ≔ arg min
ℎ∈ℋ

𝐿 ℎ

empirical risk minimizer
(best according to 

what we know)

best fitting hypothesis
available

ℎ
empirical risk 

minimizer

ℎ∗

best possible
hypothesis



Bias-Variance Trade-Off



Hypotheses & Losses

Best guesses

▪ Bias-Variance-Trade-Off

𝐿 ℎ = 𝐿 ℎ∗

bias

+ 𝐿 ℎ − 𝐿 ℎ∗

excess loss

we do not know how good
our models are

we do not have
any good model



Hypotheses & Losses

Best guesses

▪ Bias-Variance-Trade-Off

𝐿 ℎ = 𝐿 ℎ∗

bias

+ 𝐿 ℎ − 𝐿 ℎ∗

excess loss

we do not know how good
our models are

we do not have
any good model

Depends on training size 𝑛 and

complexity of 𝐻 (“overfitting”)

Know-how needed

for building good 𝐻



ℎ →↑ℎ

↑↑

Culprit: Excess Loss

ℎ →

𝐿 ℎ

ℎ →

𝐿 ℎ

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8

ℎ∗ ℎ

𝐿 ℎ

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8

excess loss

vs 𝐿 ℎ

↑ℎ∗

↑↑

↑



To Remember

Overfitting (in SLT terms)

▪ Excess loss too large

▪ Unable to pick good model

▪ Too much noise

What causes large excess loss?

▪ Too few data points

▪ Too many models in 𝐻

Does this require noisy data?

▪ Observation of binary outcomes is already binomial!
(68)

This is a trade-off!

𝐿 ℎ

ℎ∗ℎ

excess loss

vs 𝐿 ℎ

↑ ↑



Hypotheses & Losses

Theorem

▪ Set 𝐻: with #𝐻 hypothesis

▪ Training data 𝐷: 𝑛 data points 𝐱𝑖 , 𝑦𝑖 = 𝑦(𝐱𝑖), i.i.d.

▪ Bounded loss: ∀ℎ, 𝐷: 𝐿 ℎ ∈ 0,1

▪ Learn ℎ ∈ 𝐻: by empirical risk minimization

Then ⇒ excess loss bound

𝐿 ℎ − 𝐿 ℎ∗ ≤
2 ln #𝐻 + ln

2
𝛿

𝑛

with probability 𝑝 ≥ 1 − 𝛿



Proof Sketch: “Uniform Error Bound”

Steps

▪ Empirical loss:

▪ Asymptotically approx. normal distributed (CLT)

▪ Expected error 𝒪 1/ 𝑛

▪ Deviation by factor 𝑐 with prob. 𝒪 exp(−𝑐2)

▪ Multiple-hypothesis testing correction

▪ Conservative assumption:

P(any ℎ𝑘 overshoots) = σ𝑘=1
#𝐻 𝑃 ℎ𝑘 overshoots

▪ Union bound

𝐿 ℎ =
1

𝑛


𝑖=1

𝑛

ℓ ℎ 𝑥𝑖 , 𝑦𝑖



Details

Single hypothesis

▪ Loss

▪ Mean 𝐿 ℎ = 𝔼 ℓ ℎ 𝑥 , 𝑦𝑖

▪ Hoeffding inequality (think “CLT”)

with 𝑋 =
1

𝑛


𝑖=1

𝑛

𝑋𝑖

we get 𝑃 𝑋 − 𝔼 ത𝑋 ≥ 𝜖 ≤ 𝑒−2𝑛𝜖
2

(71)

d
e

vi
a

ti
o

n
 →

ℎ7ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ8

hypothesis →

uniform bound

𝐿 ℎ =
1

𝑛


𝑖=1

𝑛

ℓ ℎ 𝑥𝑖 , 𝑦𝑖



Details

Single hypothesis

▪ Hoeffding inequality

𝑃 𝑋 − 𝔼 ത𝑋 ≥ 𝜖 ≤ 𝑒−2𝑛𝜖
2

▪ Applied

𝑃 𝐿 ℎ𝑖 − 𝐿 ℎ𝑖 ≥ 𝜖 ≤ 𝑒−2𝑛𝜖
2

▪ Two sided

𝑃 𝐿 ℎ𝑖 − 𝐿 ℎ𝑖 ≥ 𝜖 ≤ 2𝑒−2𝑛𝜖
2

(72)

d
e

vi
a

ti
o

n
 →

ℎ7ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ8

hypothesis →

uniform bound



Details

Multiple hypotheses

𝑃 𝐿 ℎ − 𝐿 ℎ ≤ 𝜖 ≥ 1 − 2𝑒−2𝑛𝜖
2

▪ We now bound all #𝐻 hypotheses

𝑃 ∃ℎ ∈ 𝐻: 𝐿 ℎ − 𝐿 ℎ ≤ 𝜖

≥

≥ 1 − #𝐻 2𝑒−2𝑛𝜖
2

(73)

d
e

vi
a

ti
o

n
 →

ℎ7ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ8

hypothesis →

uniform bound

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵

≤ 𝑃 𝐴 + 𝑃 𝐵

“union bound”

1 − 

ℎ∈𝐻

𝑃 𝐿 ℎ − 𝐿 ℎ ≥ 𝜖

“every h is totally different”



Details

We got

𝑃 ∃ℎ ∈ 𝐻: 𝐿 ℎ − 𝐿 ℎ ≥ 𝜖

≤ 1 − 2 #𝐻 𝑒−2𝑛𝜖
2

▪ Uniform error bound on all hypotheses

We use this…

▪ 𝐿 ℎ − 𝐿 ℎ∗ = 𝐿 ℎ − 𝐿 ℎ

+ 𝐿 ℎ − 𝐿 ℎ∗

+ 𝐿 ℎ∗ − 𝐿 ℎ∗

(74)

d
e

vi
a

ti
o

n
 →

ℎ7ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ8

hypothesis →

uniform bound

= 0

= 0



Details

We got

𝑃 ∃ℎ ∈ 𝐻: 𝐿 ℎ − 𝐿 ℎ ≥ 𝜖

≤ 1 − 2 #𝐻 𝑒−2𝑛𝜖
2

▪ Uniform error bound on all hypotheses

We use this…

▪ 𝐿 ℎ − 𝐿 ℎ∗ = 𝐿 ℎ − 𝐿 ℎ

+ 𝐿 ℎ − 𝐿 ℎ∗

+ 𝐿 ℎ∗ − 𝐿 ℎ∗

(75)

d
e

vi
a

ti
o

n
 →

ℎ7ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ8

hypothesis →

uniform bound

≤ 𝜖/2

≤ 0 (ℎ is best wrt. 𝐿)

≤ 𝜖/2

*) we will choose 𝜖 later

*)

*)



Details

We got

𝑃 ∃ℎ ∈ 𝐻: 𝐿 ℎ − 𝐿 ℎ ≥ 𝜖

≤ 1 − 2 #𝐻 𝑒−2𝑛𝜖
2

▪ Uniform error bound on all hypotheses

We use this…

▪ 𝐿 ℎ − 𝐿 ℎ∗ ≤ 𝜖 with probability 1 − 2 #𝐻 𝑒−2𝑛⋅
1

4
𝜖2

▪ Bound should hold with probability 1 − 𝛿

(76)
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Details

We use this…

▪ 𝐿 ℎ − 𝐿 ℎ∗ ≤ 𝜖

with probability 1 − #𝐻 𝑒−
1

2
𝑛𝜖2

▪ Should hold with probability 1 − 𝛿, 

i.e., 2 #𝐻 𝑒−
1
2𝑛𝜖

2
≤ 𝛿

i.e., 𝐿 ℎ − 𝐿 ℎ∗ ≤ 𝜖 ≤
2 log #𝐻 + log

2
𝛿

𝑛

(77)
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Details

We use this…

▪ 𝐿 ℎ − 𝐿 ℎ∗ ≤ 𝜖

with probability 1 − #𝐻 𝑒−
1

2
𝑛𝜖2

▪ Should hold with probability 1 − 𝛿

(78)

d
e
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a

ti
o

n
 →

ℎ7ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ8

hypothesis →

uniform bound

⇒
1

2
𝑛𝜖2 ≤ log #𝐻 − log

𝛿

2

⇒
1

2
𝑛𝜖2 ≤ log

2#𝐻

𝛿

⇒ 𝜖2 ≤
2

𝑛
log

2#𝐻

𝛿

⇒ 𝜖 ≤
2 log #𝐻 + log

2
𝛿

𝑛

2 #𝐻 𝑒−
1

2
𝑛𝜖2 ≤ 𝛿

⇒ −2 #𝐻 𝑒−
1

2
𝑛𝜖2 ≤ −𝛿

⇒ #𝐻 𝑒−
1

2
𝑛𝜖2 ≥

𝛿

2

⇒ −
1

2
𝑛𝜖2 ≥ log

𝛿

2
− log #𝐻

⇒
1

2
𝑛𝜖2 ≤ log #𝐻 − log

𝛿

2



Main Idea of the Proof

(79)

1

𝑛

1

𝑛

#𝐻 𝑒−𝑐𝜖
2



Consequences

Fixed errors 𝜖, 𝛿, determine 𝑛:

𝑛 ≥
2

𝜖2
log

2#𝐻

𝛿

▪ We can compute a lower bound for the sample size

▪ Just solve inequality for 𝑛

(80)



Consequences

Bias-Variance Trade-Off

𝐿 ℎ ≤ 𝐿 ℎ∗

bias

+
2 log #𝐻 + log

2
𝛿

𝑛
variance = excess loss

with probability 𝑝 ≥ 1 − 𝛿

▪ For loss functions 𝐿 ∈ 0,1

▪ Other bounds: adapt analysis with rescaling

▪ Unbounded, finite variance: Approximation via CLT

▪ Discrete set of hypotheses

▪ Bound might not be particularly tight
(81)



Consequences

Version for classification: Fits directly

▪ Finite set of #𝐻 models 𝐻

▪ Binary labeling problem: 𝑦 ∈ {0,1}

▪ Use 𝑛 i.i.d. data items (𝑥𝑖 , 𝑦𝑖) for training

▪ ERM: Choose model with lowest training error

▪ Trade-off for generalization error 𝐿

𝐿 ℎ ≤ 𝐿 ℎ∗

bias

+
2

𝑛
ln

2#𝐻

𝛿

variance

with 𝑝 ≥ 1 − 𝛿



Continuous Models? (1)

Models classes are usually continuous

▪ ℎ = 𝑓𝛉 for 𝛉 ∈ ℝ𝑑

Simple argument: We are digital

▪ Each parameter 𝜃𝑖 is in ℝ ≈ float32.

▪ 32 = O(1) bits

▪ Training set size 𝑛 ∈ 𝒪 𝑑 for 𝑑 parameters

▪ Exact numerical bound is rather loose anyways

Fancier argument

▪ 𝜖-Covering of the function space

(83)



How about continuous models? (2)

Very rough idea:
ℎ, 𝑥, 𝑦 ↦ ℓ ℎ 𝑥 , 𝑦

▪ „Loss surface“ varies with ℎ ∈ 𝐻

▪ We can have ℎ ∈ 𝐻 = ℎ𝛉 𝛉 ∈ ℝ
𝑑

▪ But not every class 𝐻 yields a useful bound

▪ Cover function space 𝐻 with 𝐾 𝜖-balls

𝐵𝜖 ℎ = ℎ′ ∈ 𝐻
∀𝑥 ∈ Ω 𝑋 , 𝑦 ∈ Ω 𝑌 :

ℓ ℎ 𝑥 , 𝑦 − ℓ ℎ′ 𝑥 , 𝑦 ≤ 𝜖



How about continuous models? (2)

Finite Covering of Function Space

▪ Assuming, we find a finite set

B = 𝐵𝜖 ℎ1 , … , 𝐵𝜖 ℎ𝐾 with 𝐻 ⊆ 𝑖=1ڂ
𝐾 𝐵𝜖 ℎ𝑖

▪ We can substitute #𝐻 ← 𝐾, but have additional error 

𝐿 ℎ − 𝐿 ℎ∗ ≤ 𝒪
2

𝑛
ln

𝐾

𝛿
+ 𝜖 with  𝑝 ≥ 1 − 𝛿

▪ We can search for best 𝜖



Qualitative Analysis

Analysis

▪ Absolute numbers might not be tight

Qualitatively

excess loss (variance) ∈ 𝒪
log #𝐻

𝑛

(86)



Two Theoretical Insights

Bias-Variance Trade-off

▪ Generalization error polynomial in model complexity:

𝑗 bits  → 𝐾 ≤ 2𝑗 models

→ 𝒪
1

𝑛
log 2𝑗 = 𝒪

𝑗

𝑛
error

▪ Error 𝒪
1

𝑛
for 𝑛 training examples



Relation to “No-Free-Lunch”

We get No-Free-Lunch back

▪ Inputs 𝐱 ∈ 0,1 𝑑 consists of 𝑑 bits

▪ 2𝑑 different inputs possible

▪ Labelings 𝑦: 0,1, … , 2𝑑 − 1 → 0,1

▪ 22
𝑑

many classifications possible

▪ Most flexible set of hypotheses: #𝐻𝑎𝑙𝑙 = 22
𝑑

▪ Can test 𝐾 hypothesis with 𝑛 ∈ 𝒪 log𝐾 samples

▪ Asymptotics of no free-lunch:

𝐾 = 22
𝑑

(all possible: 𝐻𝑎𝑙𝑙)

→ 𝑂(2𝑑) samples (all examples)

*)

*)



More Complexity Analysis

This is also interesting

▪ Again, input 𝐱 ∈ 0,1 𝑑 (as “bitstring”)

▪ Assume, we build a model that can fit 

𝐻𝑎𝑙𝑙 = ℎ𝛉 𝛉 ∈ 0,1 𝑀

▪ Model is binary encoded in 𝑀 bits

▪ We need to encode 22
𝑑

models: need 𝑀 ≥ 2𝑑 bits

▪ Universal classifier will be infeasibly big

(89)



More Complexity Analysis

Considering 𝐻𝑎𝑙𝑙 requires exponential data

▪ Lesson for ℎ ∈ 𝐻𝑎𝑙𝑙:

▪ enc ℎ = 2enc(𝐱)

▪ Training size 2𝑑 = 2enc(𝐱)

▪ This also applies to a generative process!

▪ Machine that generate 

– possible examples

– and their labels

– and can be tuned to any model,
controlled by a bit-string

▪ The description of this machine will also be
exponential in enc(𝐱)

(90)

exponential in input



How Big Is the Gap?

Only polynomial-sized classifiers

▪ Have to shrink model size

▪ 𝐻 from 22
𝑑

models to 𝒪 2poly 𝑑 models

▪ Polynomial instead of exponential model size

▪ Polynomial number of training examples

▪ Realistically: linear

▪ Exponential gap

▪ Prior knowledge must decrease #𝐻
from exponential in enc 𝐱 to polynomial/linear

▪ Uniform prior 𝑃(𝑋): Entropy from exponential to lin./poly.

▪ Exponentially more a priori knowledge
than what we learn

(91)



Summary

(92)



Bias-Variance Trade-Off

To avoid overfitting

▪ Training set size 𝑛 scales (worst-case)
linearly with number of parameters (w/c. in bits)

To reduce randomness

▪ Increasing n reduces error by 𝒪 𝑛−
1

2

Prior knowledge

▪ To learn in realistic times, most of the knowledge 
must come from the prior

rule of thumb: 𝐻 𝑃 𝑋 linear in enc 𝐱
(93)
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Statistical Learning Theory

• Limits: No Free Lunch

• Frequentist: Statistical Learning Theory

• Bayesian Model Selection

Video #07

(98)



What We Have Learned So Far

No free lunch

▪ We cannot learn without (strong) priors

Generalization bounds

▪ Excess loss

▪ Can prevent assessing generalization error

▪ Bias-Variance-Trade-Off

▪ Sufficient: 𝒪(𝑛) data points for model with 𝑛 bits

(100)



Goal of this Section

Understand better

▪ The bigger picture 

▪ Why are these bounds like this?

▪ What is possible/impossible?

▪ How to select models

▪ Adapt complexity automatically

▪ Bayesian model selection

▪ How the Bayesian method works

▪ What it can / cannot do for us

▪ Information theoretical view

▪ Looking back at the polynomial example

(101)



A Basic 
Information Theoretical

View



(103)

guys,

the outcomes are
x7, x42, x23, x8(channel)

enc(𝑥)

(operator) Alice Bob (receiver)

Experiment Transmission

“Frequentist” Model of Information



(104)

(channel)

Bob (receiver)

Phenomenon Statistical Model

The Experiment is the Channel

the world as such

(operator)



Back-of-the-Envelope Calculation

Information requirements

▪ Model has 𝑛 bits of information (entropy)

▪ Need to draw 𝑛 bits out of experiments

(106)

Phenomenon Statistical Model



Back-of-the-Envelope Calculation

Information requirements

▪ Model has 𝑛 bits of information
▪ 𝑘 equally likely hypotheses → log2 𝑘 bits

▪ Prior 𝑝 𝛉 → 𝐻 𝑝 = 𝔼𝑝 log 𝑝 bits

– Information that the prior cannot “fill-in”

(107)



Back-of-the-Envelope Calculation

Information requirements

▪ Model has 𝑛 bits of information
▪ 𝑘 equally likely hypotheses → log2 𝑘 bits

▪ Prior 𝑝 𝛉 → 𝐻 𝑝 = 𝔼𝑝 log 𝑝 bits

– Information that the prior cannot “fill-in”

▪ Need to draw 𝑛 bits out of experiments

▪ We get back at most 𝑂 1 bits in every experiment

▪ Ω(𝑛) experiments necessary

▪ 𝑂(𝑛) experiments sufficient to assess probability of 
successful predicting an output bit

(108)

𝑃 𝛉

𝛉

𝑃 𝛉

𝛉

𝑃 𝛉

𝛉

0 bits
needed

1 bit
needed

𝐻 𝑃 𝛉 bits
needed



Back-of-the-Envelope Calculation

Information requirements

▪ Model has 𝑛 bits of information
▪ 𝑘 equally likely hypotheses → log2 𝑘 bits

▪ Prior 𝑝 𝛉 → 𝐻 𝑝 = 𝔼𝑝 log 𝑝 bits

– Information that the prior cannot “fill-in”

▪ Need to draw 𝑛 bits out of experiments

▪ We get back at most 𝑂 1 bits in every experiment

▪ Ω(𝑛) experiments necessary

▪ 𝑂(𝑛) experiments sufficient to assess probability of 
successful predicting an output bit

▪ Conclusion: #data points ~ model entropy

(109)



Back-of-the-Envelope Calculation

Our goal now

▪ Build an automatic regularizer

▪ Ensure information criterion automatically

▪ Cannot break NFL: need prior model restriction

(110)



What Can Occam’s Razor Do for us?

Occam’s Razor

▪ “The simplest model fitting the data should be 
preferred”

▪ Keep models as simple as possible

Statistical Learning theory

▪ Bounded complexity allows us to predict 
generalization performance

▪ It still might be very bad, but we know beforehand

▪ This is not a way to find models

(111)



What Can Occam’s Razor Do for us?

Model Selection Scenario

▪ We have a restricted class of models

▪ “All models” does not work – NFL-theorem!

▪ Within this class, models vary in complexity

▪ Typically: assume that a “well-fitting” model is in this set

▪ We can automatically pick a suitable one

▪ Complexity adapted to amount of data

▪ Complexity adapted to difficulty of fitting

– As simple as possible

▪ Results can be bad

▪ Garbage (bad generalization), if set of models is unsuitable

(112)



MDL-Minimum 
Description Length

Too much is
too much..!

William
of Ockham
(1287 – 1347)

[https://commons.wikimedia.org/wiki/File:William_of_Ockham_-_Logica_1341.jpg]



MDL Method

Minimum Description Length (MDL)

▪ Developed by Rissanen [1978]

▪ Try to keep models as simple as possible

▪ Simplified / tractable version of earlier ideas of 
Solomonov, Kolmogorov, Chaitin

Principle

▪ Encode data + model in the least amount of space

▪ Using entropy-coding as model (e.g. Huffman)

Literature:

Peter Grunwald: A tutorial introduction to the minimum description length principle. 
https://arxiv.org/pdf/math/0406077.pdf, 2004.

https://arxiv.org/pdf/math/0406077.pdf


Solomonov Induction

Assumptions

▪ Data generated & recognized by algorithm

▪ Universal Turing-machine (TM), incl. Python & C++

▪ Short models are best

▪ Easiest to fit: preferred for statistical reasons

▪ Easiest to find? “Universal” prior

▪ Bayes rule: Model 𝑀, Data 𝐷

𝑃 𝑀 𝐷 ~𝑃 𝐷 𝑀 𝑃 𝑀

𝑃 𝑀 = 2− 𝑇𝑀min 𝑀

𝑇𝑀min 𝑀 = Length of shortest TM computing 𝑀

(115)



Solomonov Induction

Properties

▪ Uncomputable

▪ 𝑇𝑀min 𝑀 cannot be computed

▪ Asymptotically invariant

▪ Length of TM only vary by additive constant

▪ Simulator for TM in a universal TM needs O(1) space

▪ “Radical” formalization of Occam’s Razor

Variants

▪ AIXI – Reinforcement learning (M. Hutter)

▪ Speed-Prior: short-running TMs first (J. Schmidhuber)

▪ Exponential instead of impossible

(116)



Rissanen’s MDL

Minimum Description Length

▪ Probabilistic measurement of data 𝑑
▪ 𝑛 i.i.d. repeats

▪ Looking for best model 𝑚

▪ 𝑚 needs parameters 𝛉

▪ Shortest message describing all 𝑛 experiments

▪ Optimal choice of 𝑚 depends on 𝑛

Practical method

▪ No inherent computability issues

▪ Machine model implicit in “coding unit”

(117)



(118)

guys,

the outcomes are
x7, x42, x23, x8(channel)

enc(𝐝)

(operator) Alice Bob (receiver)

Experiment Transmission

Back to the Standard Model…



Formalization

Experimental Setup

▪ Model 𝑚 out of set 𝑀 = 𝑚1, … ,𝑚𝑘

▪ Each model has parameters 𝛉

▪ Data 𝐝 = 𝑑1, … , 𝑑𝑛

Minimum Description Length Method

▪ Alice sends outcome 𝐝 to Bob using model 𝑚

▪ Send model 𝑚

▪ Send model parameters 𝛉

▪ Send data 𝐝

– Using the model: “residuals” to model mean

– Probabilistic codes for 𝑃(𝑑𝑖|𝑚, 𝛉)
(119)



Information Theory

Reminder

▪ Probability distribution 𝑝 𝑥

▪ Information 𝐼 𝑥 = − log 𝑝 𝑥

▪ Expected information = Entropy

𝐻 𝑝 = − 

𝑥∈Ω 𝑋

𝑝(𝑥) log 𝑝 𝑥

Coding Theorem

▪ Can encode outcomes 𝑥 with expected 𝐻 𝑝 bits

▪ Constructive proof: Huffman coding

(120)



MDL Formalization

How to send?

▪ There are 𝑘 models.

▪ Need at most log2 𝑘 bits

▪ Parameters 𝛉 for model 𝑚 have 𝑁𝑚 bits:𝛉 ∈ 0,1 𝑁𝑚

▪ At most log2𝑁𝑚 bits

▪ 𝑁𝑚 depends on / describes model complexity!

▪ Observations have 𝑁 bits: 𝑑𝑖 ∈ 0,1 𝑁

▪ At most 𝑛 log2𝑁 bits

▪ But we can do better, and this is important!

(121)



MDL Formalization

Sending a model

▪ Encode choice of 𝑚

▪ Binary number with log2 𝑘 bits

▪ Message length 𝐿 𝑚 = log2 𝑘

▪ Encode parameters 𝛉

▪ Using log2𝑁𝑚 bits

▪ Large 𝑁𝑚 means larger messages

▪ Message length 𝐿 𝛉|𝑚 ≤ log2𝑁𝑚

▪ Encode data 𝐝

▪ Using distribution 𝑃 𝐝 𝑚, 𝛉

▪ Using 𝐿 𝐝 𝑚, 𝛉 = 𝐻 𝑃 𝐝 𝑚, 𝛉 bits

(122)

𝑒𝑛𝑐(𝑚) 𝑒𝑛𝑐(𝛉) 𝑒𝑛𝑐(𝑑1) 𝑒𝑛𝑐(𝑑𝑛)⋯

fixed model
complexity

data fit



Model Selection

Wo do not ever
send models

▪ This is just a thought experiment

▪ We choose model m such that message length

𝐿 𝑚 + 𝐿 𝛉 𝑚 + 𝐿 𝐝 𝛉,𝑚

is minimized

Analysis
𝐿 𝑚
constant
(for now)

+ 𝐿 𝛉 𝑚
grows with
#parameters

+ 𝐿 𝐝 𝛉, 𝑚
neg−log−
likelihood

(123)

𝑒𝑛𝑐(𝑚) 𝑒𝑛𝑐(𝛉) 𝑒𝑛𝑐(𝑑1) 𝑒𝑛𝑐(𝑑𝑛)⋯

fixed model
complexity

data fit



Example

Polynomial Regression

▪ Model 𝑚: Polynomial of degree 𝐷 = 0,1,2… , 9

▪ Parameters 𝛉 (for fixed 𝑚):

▪ Coefficients in ℝ𝐷

▪ Encoded in floating point: 𝑂(𝐷) bits

▪ Data 𝐝: samples from function at 𝑛 points

▪ If model is good, no extra bits needed

▪ If model is bad, many extra bits needed

▪ Bad = uncertain or inaccurate

– Both increase coding length

– Uncertainty increases entropy

– Inaccuracy asks for uncommon (long) codes
(124)



Model Selection Example

Polynomial approximation

▪ 10 samples from sine curve

▪ Approximation with polynomial of degree 0 to 9

(125)
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Model Selection

Empirically

▪ Degrees 3-7 “reasonable”

▪ Degree 5 closest fit, degree 3,4 less wiggly
(126)

Degrees 2, 5, 9
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Model Selection

Empirically

▪ Degrees 3-7 “reasonable”

▪ Degree 5 closest fit, degree 3,4 less wiggly
(127)

Degrees 3, 4, 5
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Model Selection

Empirically

▪ Degrees 3-7 “reasonable”

▪ Degree 5 closest fit, degree 3,4 less wiggly
(128)

Degrees 3, 4, 5
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Bayesian
average
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Example

Polynomial Example

▪ Kind-of-works (degree 3 best)

▪ But discretization is still arbitrary
for continuous parameters

▪ Need more “specific” entropy for 𝛉

(129)

bits bits bits

degree degree degree
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Bayesian model averaging



Bayesian Perspective
on MDL

Too much
information

is bad..!

William
of Ockham
(1287 – 1347)

[https://commons.wikimedia.org/wiki/File:William_of_Ockham_-_Logica_1341.jpg, https://en.wikipedia.org/wiki/Thomas_Bayes]

Rev. Thomas
Bayes

(c. 1701 – 1761)

agreed.



Bayesian Model Selection

Consider two variants

▪ “MAP-Style” MDL

▪ Simple, but ad-hoc

▪ “Full-Bayesian” model selection

▪ Relationship to / interpretation as MDL

(131)



MAP-Style MDL

Sending a model

▪ We fix a model 𝑚 to assess

▪ Joint density:

𝑃 𝐝, 𝛉 𝑚 = 𝑃 𝐝 𝛉,𝑚 𝑃 𝛉 𝑚

▪ Posterior for 𝛉:

𝑃 𝛉 𝐝,𝑚 ~ 𝑃 𝐝 𝛉,𝑚 𝑃 𝛉 𝑚

▪ Determine 𝛉 = arg max𝛉 𝑃 𝛉|𝐝,𝑚

Model Selection

▪ Compute message length for all 𝑚 and pick shortest

(132)



MAP-Style MDL

Sending a model

▪ Encode choice of 𝑚
▪ Use 𝐿 𝑚 = − log P 𝑚

▪ Can encode a priori model preferences

▪ Encode parameters 𝛉
▪ Determine parameter prior 𝑃 𝛉|𝑚

▪ 𝐿 𝛉|𝑚 = − log𝑃 𝛉|𝑚 bits

▪ Encode data 𝐝
▪ 𝐿 𝐝 𝛉,𝑚 = − log 𝑃 𝐝 𝛉,𝑚

▪ Neg-log-likelihood of best fitting model

(133)

𝑒𝑛𝑐(𝑚) 𝑒𝑛𝑐(𝛉) 𝑒𝑛𝑐(𝑑1) 𝑒𝑛𝑐(𝑑𝑛)⋯

model
prior

model
complexity

data fit



Bayesian MDL

Bayesian Model Selection

▪ Inferring model

𝑃 𝑚 𝐝 =
𝑃 𝐝 𝑚 𝑃 𝑚

𝑃 𝐝

~ 𝑃 𝐝 𝑚
marginal
likelihood

𝑃 𝑚
model
prior

▪ We would select the most likely model 𝑚
▪ Product of marginal likelihood and model prior

▪ Reminder: Needs computation of marginal likelihood

𝑃 𝐝 𝑚 = 

𝛉∈Ω Θ

𝑃 𝐝 𝛉,𝑚 𝑃 𝛉 𝑚

(134)

(which can be expensive)

Integral for continuous Θ



Bayesian MDL

Bayesian Model

▪ We have so far…

𝑃 𝑚 𝐝 ~ 𝑃 𝐝 𝑚
marginal
likelihood

𝑃 𝑚
model
prior

▪ …and…

𝑃 𝐝 𝑚 = 

𝛉∈Ω Θ

𝑃 𝐝 𝛉,𝑚 𝑃 𝛉 𝑚

Encoding

▪ Send model: 𝐿 𝑚 = − log𝑃(𝑚) (choose model 𝑚)

▪ Send data: 𝐿 𝐝 𝑚 = − log𝑃 𝐝 𝑚 (send 𝐝, model-based)
(135)



Bayesian MDL

Encoding

▪ Model costs: 𝐿 𝑚 = − log𝑃(𝑚)

▪ Prior for model selection

▪ Optional/hand-tunable (in this context)

▪ For non-uniform 𝑃(𝑚), this part is not constant

▪ Data costs: 𝐿 𝐝 𝑚 = − log𝑃 𝐝 𝑚

▪ Marginal likelihood gives direct encoding model for the data

▪ Parameter costs are implicit (“1 part model”)

(136)

𝑒𝑛𝑐(𝑚) 𝑒𝑛𝑐(𝑑1) 𝑒𝑛𝑐(𝑑𝑛)

optionally
variable

data fit & model
complexity (implicit)

⋯



Bayesian MDL

Encoding

▪ Tighter fit than “MAP-Style”

▪ MAP-Style costs: 

min
𝛉∈Ω Θ

− log𝑃 𝛉|𝑚 − log 𝑃 𝐝 𝛉,𝑚

= min
𝛉∈Ω Θ

− log𝑃 𝐝 𝛉,𝑚 𝑃 𝛉|𝑚

▪ Bayes:

− log 

𝛉∈Ω Θ

𝑃 𝐝 𝛉,𝑚 𝑃 𝛉 𝑚

▪ Bayesian expression is never larger

▪ Tighter fit (better complexity estimate)

(137)

𝑒𝑛𝑐(𝑚) 𝑒𝑛𝑐(𝑑1) 𝑒𝑛𝑐(𝑑𝑛)

optionally
variable

data fit & model
complexity (implicit)

⋯



Note on MDL

There are more variants

▪ “Normalized Maximum Likelihood”

▪ Theoretical advantages over Bayesian approach

▪ “Coarse” (Grunwald), ad-hoc MDL

▪ Define approximate coding length along-the-way

▪ Common obstacle

▪ Continuous variables carry infinite information

▪ Address for example with accuracy constraints

– See MacKay’s book Ch. 28

▪ Bayesian method models noise in data explicitly

(138)



Bayesian Model 
Selection & Averaging



Model Selection

Bayesian approach

▪ Which model is better?

▪ Model 𝑚1 vs 𝑚2

▪ Simple question

▪ Compare 𝑃 𝑚1 𝐝 with 𝑃 𝑚2 𝐝

▪ Select more likely

Fancy version: Bayesian model averaging

ഥ𝛉 = න
𝑚∈Ω 𝑀

𝛉 ⋅ 𝑃 𝑚 𝐝 𝑑𝛉

▪ If models share parameters & params are vectors
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Bayesian MDL

Bayesian Model Selection

𝑃 𝑚 𝐝 =
𝑃 𝐝 𝑚 𝑃 𝑚

𝑃 𝐝

~ 𝑃 𝐝 𝑚
marginal
likelihood

𝑃 𝑚
model
prior

= 

𝛉∈Ω Θ

𝑃 𝐝 𝛉,𝑚
data

likelihood

𝑃 𝛉 𝑚
parameter

prior

marginal
likelihood

𝑃 𝑚
model
prior
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Simple Example

Gaussian Model

𝑝𝜎 𝑑 =
1

2𝜋𝜎2
𝑒
−
𝑑−𝜇 2

2𝜎2

(data 𝑑, mean 𝜇, variance 𝜎)

(142)
parameter “model”

𝜎
𝑑, 𝜇

𝑝𝜎 𝑑

𝜇

𝜇

𝜇

𝜎 large
𝑝 𝑑|𝜇, 𝜎

𝜎 small

𝜎 med.

𝜎

𝑝𝜎 𝑑|𝜎



Polynomial Fit

Reminder: Least-Squares Fit

▪ 𝑓𝐜𝐾 𝑥𝑖 = 𝑥𝑖
0, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝐾

𝝃𝑖
𝑇

⋅ 𝐜𝐾 = 𝝃𝑖
𝑇 ⋅ 𝐜𝐾

▪ Design matrix 𝐀 = 𝝃𝑖𝝃𝑖
𝑇 , optimum Ƹ𝐜𝐾

Marginal Likelihood

𝑃 𝐷 𝐾 ~ 𝜎𝑐
−𝐾 ⋅ 𝑒

−
1

2𝜎𝐷
2 σ𝑖=1

𝑛 𝑦𝑖
2− Ƹ𝐜𝐾

2

⋅ det 𝐀 +
𝜎𝐷
2

𝜎𝑐
2 𝐈

−
1
2

Flat (improper) Prior

𝑃 𝐷 𝐾 ~𝑒
−

1

2𝜎𝐷
2 σ𝑖=1

𝑛 𝑦𝑖
2− Ƹ𝐜𝐾

2

data fit

⋅ det 𝐀 −
1
2

complexity
penalty (143)



Connection to MDL

Gaussian Distributions

𝒩𝛍,𝚺 𝐱 ≔
1

2𝜋
𝑑
2 det Σ

1
2

𝑒−
1

2
𝐱−𝛍 TΣ−1 𝐱−𝛍

▪ Has (differential) entropy

H 𝒩𝛍,𝚺 = ln 2𝜋𝑒 𝑑 det Σ
1
2

“Complexity Penalty”

𝑃 𝐷 𝐾 ~𝑒
−

1

2𝜎𝐷
2 σ𝑖=1

𝑛 𝑦𝑖
2− Ƹ𝐜𝐾

2

data fit

⋅ det 𝐀 −
1
2

complexity

= 𝑒
−

1

2𝜎𝐷
2 σ𝑖=1

𝑛 𝑦𝑖
2− Ƹ𝐜𝐾

2

data fit

⋅ 𝑒−𝑐⋅𝐻(param)

complexity (144)

𝑑 dimensions,
cov. matrix Σ

entropy of
parameters 𝐜𝐾
(coding length)

entropy of
data 𝑦𝑖

under model
(coding length)



Finite Resolution?

Version with prior

▪ Pentalty: det 𝐀 +
𝜎𝐷
2

𝜎𝑐
2 𝐈

−
1

2

▪ Ratio of

▪ Noise in data (absolute precision)

▪ Expected range of variability

▪ Regularizer – adding identity matrix limits resolution

▪ Determinant is product of eigenvalues (main axis variances)

▪ Singular if variance is zero in one direction

▪ Sensitive to very small values

– Identity creates “noise floor” at std.-dev. 
𝜎𝐷

𝜎𝑐

– Below this, “nothing matters”
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Perspectives



A Bit of Caution Needed…

MDL & Model Selection

▪ Literature gives varying accounts

▪ MDL just special case of Bayesian inference [MacKay 2003]

▪ MDL more general [Grunwald 2004]

▪ Arguments revolve around the role of priors (as often)

▪ Bayesian pitfalls

▪ Bayesian model selection requires proper priors
[MacKay 2003, Dawid et al. 1997]

▪ It might work without (our example), but there are dragons

(147)

A.P. Dawid, M. Stone, J.V. Zidek:
Critique of E.T. Jaynes’s “Paradox of Probability Theory”, 2003
https://www.ucl.ac.uk/drupal/site_statistics/sites/statistics/files/rr172.pdf



Simple Example

Gaussian Model

𝑝𝜎 𝑑 =
1

2𝜋𝜎2
𝑒
−
𝑑−𝜇 2

2𝜎2

(data 𝑑, mean 𝜇, variance 𝜎)

(148)
parameter “model”

𝜎
𝑑, 𝜇

𝑝𝜎 𝑑

𝜇

𝜎 small

singular for single
sample



When to Use What?

Bayesian Averaging

▪ Marginal likelihood tractable (and good nerves)

▪ Estimating vectorial model parameters

Bayesian Model selection

▪ General model parameters

MDL (e.g., ad-hoc/MAP-Style)

▪ Marginal likelihood intractable (or too much for my nerves)

Frequentist generalization bounds

▪ Need guarantees on excess loss
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When to Use What?

None of the above

▪ Simple model, tons of data (WCPGW, YOLO)

▪ Hand-tuned regularizer (e.g. MAP applications)

▪ Deep Networks (because, who knows)
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When to Use What?

What should I do nonetheless?

▪ Use validation data

▪ Separate from training data

▪ Monitor generalization performance

▪ …during computational optimization

▪ …during manual model-tuning

▪ Use test set, separated at the beginning

▪ Use only once to measure generalization performance

▪ Perform frequentist significance test

▪ Report these numbers to your customer

– Or scientific journal, if you are in that business

▪ Manual overfitting to the test set is possible
(151)



Summary

(152)



Model Selection

Information Theory

▪ Intuitive arguments for

#data samples ~ #model parameters

▪ “Data sends us information through experiments”

Minimum Description Length

▪ Objective: compact encoding of the data

▪ “Best compression”: model size + data size

▪ Roughly:

min (data neg log likelihood + parameter entropy)
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Model Selection

Bayesian Model Selection

▪ Special case of probabilistic compression model

▪ Works well, but is technically “sensitive”

▪ Marginal likelihood for comparison

– Might be intractable

– Might be nasty to compute even if tractable

▪ Need to think seriously about

– Priors

– Error bars on data

▪ Bayesian model averaging strongly related

▪ Just uses marginal likelihood as weight
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