Modelling 2 Statistical data modelling

Chapter 6 Information

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #06 Information Theory

- Information & Entropy
- Algebra & Applications

Information Theory

LITERATURE:

Massimiliano Tomassoli: Information Theory for Machine Learning https://github.com/mtomassoli/papers/blob/master/inftheory.pdf, 2016.

David MacKay: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

What is Information?

Defining Information

- Probability Theory
- Randomness = genuine new information

How much Information?

Answer: "How random?"

Axioms of Information

Random Information

- Random variable X
- Discrete probability distribution p(x)

Information

• I(x) – Information contained in observation of x

How to understand information?

Repeatable experiment

- Outcomes $\Omega = \{x_1, \dots, x_n\}$
- Elementary probabilities $p(x_1), \dots, p(x_n)$

Communication

- Send outcomes over channel from Alice \rightarrow Bob
 - Alice runs experiments
 - Both Alice and Bob know the experimental setting
 - Bob does not know the random outcome
- How much information is in outcome x_i?

Defining Information

Axioms of Information

Axioms

• I(x) = f(p(x)) for some f

- Information should only depend on probability
- $p(x) < p(y) \Rightarrow f(p(x)) > f(p(y))$
 - Rarer events should carry more information
 - f strictly decreasing
- f(1) = 0
 - Certain events carry no (new) information
- x, y independent $\Rightarrow I((x, y)) = I(x) + I(y)$
 - Information should add up
 - Independent experiments yield "totally new information"

Solution

Solution

$$f(p) = -\log \frac{p}{p} = \log \frac{1}{p}$$

1

Proving the properties

$$I(x) = \log \frac{1}{p(x)}$$

•
$$p(x) < p(y) \Rightarrow \log \frac{1}{p(x)} > \log \frac{1}{p(y)}$$

this solution is unique (up to basis) PS: we will usually use log₂

 $\log 1 = 0$

• x, y independent $\Rightarrow \log \frac{1}{p(x,y)} = \log \frac{1}{p(x)p(y)}$ = $\log \frac{1}{p(x)} + \log \frac{1}{p(x)}$

Summary so far...

Probability

- Independent events: Product of probabilities
- Number between 0 and 1

Information

- Information is additive
 - More info: larger value
 - No information = 0
- Information of event = negative logarithm of prob.

•
$$I(x) = -\log p(x) = \log \frac{1}{p(x)}$$

Usually: base 2 (measured in bits)

Neg-Log Likelihoods quantify Information Content

Next question: How much information is "in the whole distribution"?

Information in Outcomes

Alice observes an outcome x

• Alice needs to send Bob I(x) bits

Alice observes an outcomes x, y

- Model: Two independent runs
- Alice needs to send Bob I(x) + I(y) bits

Alice keeps observing outcomes $x_1, x_2, x_3, ...$

- Model: independent repetitions
- Alice needs to send Bob $\mathbb{E}_{x \sim p}[I(x)]$ bits on average

Entropy

Entropy

Definition: Entropy

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i) \quad \text{mean} \\ \text{neg log prob}$$

$$=\sum_{i=1}^{n} p(x_i) I(x_i)$$

 $= \mathbb{E}_{x \sim p(x)} (I(x))$

mean information

expected information

Measures: How "random" is **p**?

Examples

 $H(p) = 1 \cdot \log 1 = 0$

Finite Outcome Spaces

Definition of H(X) requires finite $\Omega(X)$

- Generalization to continuous variables non-trivial
- Just replacing Σ by \int leads to significant problems
 - Is done as "Differential Entropy": $\sum_{i} p(x_i) \log p(x_i) \rightarrow \int_{x} p(x_i) \log p(x_i)$
- Problems include
 - Negative values (density > 1)
 - Not transformation invariant

Finite Outcome Spaces

"Proper" limit fixes some problems

- But entropy becomes infinite for continuous variable
- "Limiting density of discrete point"

Coding length for continuous functions

- One can specify resolution limits / uncertainty
- Often no obvious resolution
 - Careful trade-off needed

We stick to the discrete version

Or just ignore the issue, when it comes up

Coding Theory

Coding Theory

Entropy

- Minimum number of bits required to transmit information about event x
 - We draw events i.i.d.
 - We send each outcome separately
 - After being asked for the answer
 - (Certain outcomes: no answer required)

Coding theorem

• m(x) = message about x optimally encoded in bits

•
$$H(X) \leq \mathbb{E}_{x \sim p(x)} \left(\operatorname{length}(m(x)) \right) < H(X) + 1$$

Random variable X distributed according to p(x)

Constructing a code

Huffman algorithm

- Optimal for single events send in bits
 - Multiple symbols: Overhead up to one bit each
 - Optimality reached with "arithmetic coding"

Algorithm

- Build a tree
 - Start with outcomes as leave nodes
- Iteratively:
 - Combine two lowest-probability nodes to new inner node
 - Until we have a root node
- Using a priority queue, if you care about run time

Bit-Coding

Coding of Symbols

- Number of bits $\leq \log \frac{1}{p(x)} + 1$
- Information = code length (up to one bit)
- Entropy = expected code length (up to one bit)

Summary

Summary: Information & Entropy

Information is randomness

- "Frequentist" repeated coding scenario
- Analysis of coding length
 - Information $I(x) = -\log p(x)$
 - Entropy $H(p) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$ $= \mathbb{E}_{x \sim p}[I(x)]$

Not just pure theory

Coding can be achieved (and is used) in practice
Modelling 2 Statistical data modelling

Chapter 6 Information

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #06 Information Theory

- Information & Entropy
- Algebra & Applications

Entropy: Additional Definitions & Theorems

Joint Entropy

Joint Entropy

$$H(X,Y) = -\sum_{i=1}^{n_x} \sum_{j=1}^{n_y} p(x_i, y_j) \log_2 p(x_i, y_j)$$

• Simply the entropy of the joint distribution p(x, y)

Theorem

$$H(X, Y) = H(X) + H(Y)$$

$$\Leftrightarrow p(x, y) = p(x)p(y)$$

Additive iff independent

Attention: Do not mix up with $H(p_1, p_2)$ for cross-entropy

Conditional Entropy

Conditional Entropy

$$H(X|Y) = -\sum_{i=1}^{n_x} \sum_{j=1}^{n_y} p(x_i|y_j) \log_2 p(x_i|y_j)$$

Simply the entropy of the conditional distribution p(x|y)

Conditional Entropy

Marginal Entropy

$$H(X) = -\sum_{i=1}^{n_{x}} p(x_{i}) \log_{2} p(x_{i})$$

= $-\sum_{i=1}^{n_{x}} \left(\sum_{j=1}^{n_{y}} p(x_{i}, y_{j}) \right) \left(\log_{2} \sum_{j=1}^{n_{y}} p(x_{i}, y_{j}) \right)$

• Simply the entropy of the marginal distribution p(x)

Conditional Entropy

Theorem: Chain Rule

$$H(X,Y) = H(X|Y) + H(Y)$$

= $H(Y|X) + H(X)$

Proof

Very simple :-)

"Divergences" Comparing Probability Distributions

Cross Entropy

Situation

• Two different distributions p_1, p_2 (same probability space)

Definition: Cross Entropy (aka Relative Entropy)

$$H(p_1, p_2) = -\sum_{i=1}^{n} p_1(x_i) \log_2 p_2(x_i)$$
$$= \mathbb{E}_{x \sim p_1} [I_{p_2}(x)]$$

Idea

• Coding events $x \sim p_1$ with codes optimized for p_2

How to Read This...

Often: Searching for "codes"

Properties

- Non-symmetric!
- $\forall p_2: H(p_1, p_2) \ge H(p_1, p_1) = H(p_1)$

• Reverse $(H(p_2, p_1) \text{ vs } H(p_1))$ is not true!

In optimization problems: Usually vary p₂

Kullback-Leibler Divergence

Kullback-Leibler Divergence

$$KL(p_1 \parallel p_2) = \sum_{i=1}^n p_1(x_i) \log_2 \frac{p_1(x_i)}{p_2(x_i)}$$
$$= H(p_1, p_2) - H(p_1, p_1)$$
$$= H(p_1, p_2) - H(p_1)$$

Idea

- Measure coding efficiency p₁ using p₂-codes
 - Price to pay for coding in p_2 rather than p_1
- Compare with optimum for p₁
 - Measures how far distribution p_2 is from p_1

Kullback-Leibler Divergence

Kullback-Leibler Divergence

second argument coding distribution

output increase in coding length

$$KL(p_1 || p_2) = H(p_1, p_2) - H(p_1)$$

Idea

- Compare two distributions
 - Loss in coding efficiency [in bits]
 - Extra message length (Alice \rightarrow Bob)
 - Just cross-entropy minus baseline $H(p_1, p_1)$
- Again, not symmetric

KL and JS Divergences

Kullback-Leibler Divergence

- Distance ≥ 0
- Zero distance means same distribution
- Not symmetric:

$KL(p_1 \parallel p_2)$ different from $KL(p_2 \parallel p_1)$

"Almost a metric"

Jensen-Shannon Divergence

Symmetrized version

•
$$JSD(p_1 || p_2) \coloneqq \frac{1}{2}KL(p_1 || p_2) + \frac{1}{2}KL(p_2 || p_1)$$

What kind of metric is this?

KL-Divergence

$$KL(p_1 \parallel p_2) = \sum_{i=1}^n p_1(x_i) \log_2 \frac{p_1(x_i)}{p_2(x_i)}$$

difference in Information for the same outcomes x_i

$$= \sum_{i=1}^{n} p_{1}(x_{i}) [\log_{2} p_{1}(x_{i}) - \log_{2} p_{2}(x_{i})]$$

weighted by probability
of occurrence in p_{1}

What kind of metric is this?

KL-Divergence

difference in Information for the same outcomes x_i

$$KL(p_1 \parallel p_2) = \sum_{i=1}^{n} p_1(x_i) [\log_2 p_1(x_i) - \log_2 p_2(x_i)]$$
weighted by probability

weighted by probability of occurrence in p_1

Mutual Information

I(X;Y) = H(X) + H(Y) - H(X,Y)

 Entropy of the marginal distributions minus that of the joint distribution

Marginal & Joint Histograms

• Consider H(X), H(Y), H(X, Y)

 $I(X; \mathbf{Y}) = H(X) + H(\mathbf{Y}) - H(X, \mathbf{Y})$

Alternative Formulas

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

= $H(X) - H(X|Y)$
= $H(Y) - H(Y|X)$
= $-\sum_{i=1}^{n_x} \sum_{j=1}^{n_y} p(x_i, y_j) \log_2\left(\frac{p(x_i, y_j)}{p(x_i)p(y_j)}\right)$
= $KL\left(p(x_i, y_j) \parallel p(x_i)p(y_j)\right)$

As a measure of dependency

- Most general gradual measure of dependency
- $I(X;Y) = 0 \iff X, Y$ are independent
- $I(X; Y) \rightarrow H(X) + H(Y)$: "maximally" dependent
 - Joint histogram becomes very sparse
 - H(X, Y) very small
 - Zero not possible for discrete Ω if H(X), H(Y) > 0
 - Limit for $\#\Omega(X), \#\Omega(Y) \to \infty$

Alternative measures such as correlation miss cases

- Example: Linear correlation iff PCA spectrum flat
- Does (e.g.) not detect quadratic dependencies

Computation

Actual Histograms

- Compute H(X), H(Y), H(X, Y)
- Costly: $O(|\Omega_X| \times |\Omega_Y|)$ (e.g., exponential in dimension)

Computation

Parametric Distributions

Closed-Form Expressions for Gaussians etc.

•
$$H(\mathcal{N}_{\mu,\Sigma}) = \frac{1}{2} \ln\left((2\pi e)^d \det(\Sigma)\right)$$
 (differential entropy)

Computation

Approximations

- Sample-based Entropy
 - Measure only on input/training data of a DA/ML application
- Nearest-neighbors-methods
- Lower-bounds by "variational Bayes"
 - Build neural network *f*: predicting *Y* from *X* (or vice versa)
 - Least-squares fit $\|Y f(X)\|^2$
 - Entropy of Gaussian error (covariance of errors)
 - Gives an upper bound of H(X, Y)
 - Upper bound of entropy of the joint Histogram
 - Has negative contribution, i.e.: lower bound for I(X; Y)

Application Softmax Regression

Multi-Label Case

Task

- *n* Data points, indexed by $i = 1 \dots n$
 - Data $\mathbf{x}_i \in \mathbb{R}^d$ with...
 - ...label vectors $\mathbf{y}_i \in \{0,1\}^K$
 - "One hot vectors"
- Learn class-specific parameters $\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K \in \mathbb{R}^d$

Notation

• $y(\mathbf{x}) \in \{1, ..., K\}$ denotes class index of input \mathbf{x}

Multi-Label Case

Unnormalized classifier

$$\mathbf{u}_{\mathbf{\theta}}(\mathbf{x}) = \begin{pmatrix} - & \mathbf{\theta}_{1} & - \\ & \vdots & \\ - & \mathbf{\theta}_{k} & - \end{pmatrix} \mathbf{x}$$

Class probabilities via softmax σ : $\mathbb{R}^K \to \mathbb{R}^K$

$$\sigma_{m}(\mathbf{y}_{i}) \coloneqq \frac{e^{\mathcal{Y}m}}{\sum_{j=1}^{K} e^{\mathbf{z}_{j}}},$$

$$f_{\theta}(\mathbf{x}) \coloneqq \begin{pmatrix} P(\mathbf{y}(\mathbf{x}) = 1) \\ \vdots \\ P(\mathbf{y}(\mathbf{x}) = K) \end{pmatrix} = \begin{pmatrix} \sigma_1(\mathbf{u}_{\theta}(\mathbf{x})) \\ \vdots \\ \sigma_K(\mathbf{u}_{\theta}(\mathbf{x})) \end{pmatrix}$$

Softmax Regression

MLE Training via

Cross Entropy Loss

Alternative formulation

- One-hot vectors y_i are "ground truth" distribution
 - Over classes 1 ... K
- Training: Make output distribution $f(\mathbf{x})$ similar to \mathbf{y}_i
 - Use KL-divergence to compare

$$KL(\mathbf{y}_i \parallel f_{\theta}(\mathbf{x}_i)) = \sum_{i=1}^n \mathbf{y}_i \log_2 \frac{\mathbf{y}_i}{f_{\theta}(\mathbf{x}_i)}$$

• We will see: Minimization same for cross-entropy

$$H(\mathbf{y}_i, p_2) = -\sum_{i=1}^n \mathbf{y}_i \log_2 f_{\theta}(\mathbf{x}_i)$$

Which is per-class maximum-likelihood

KL as Cross Entropy as MLE

 $\arg\min_{\boldsymbol{\theta}} KL(\mathbf{y}_i \parallel \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_i))$

← KL-Divergence

KL as Cross Entropy as MLE

$$\arg\min_{\theta} KL(\mathbf{y}_{i} \parallel f_{\theta}(\mathbf{x}_{i})) \qquad \leftarrow \qquad KL-Divergence$$

$$= \arg\min_{\theta} \sum_{k=1}^{n_{l}} [\mathbf{y}_{i}]_{k} \log_{2} \frac{[\mathbf{y}_{i}]_{k}}{[f_{\theta}(\mathbf{x}_{i})]_{k}}$$

$$= \arg\min_{\theta} \left(H(\mathbf{y}_{i}, f_{\theta}(\mathbf{x}_{i})) - H(\mathbf{y}_{i})\right)$$

$$= \arg\min_{\theta} \left(H(\mathbf{y}_{i}, f_{\theta}(\mathbf{x}_{i}))\right) \qquad \leftarrow \qquad X-Entropy$$

$$= \arg\min_{\theta} \sum_{k=1}^{n_{l}} [\mathbf{y}_{i}]_{k} \log_{2} [f_{\theta}(\mathbf{x}_{i})]_{k}$$

$$= \arg\min_{\theta} \log_{2} [f_{\theta}(\mathbf{x}_{i})]_{y(\mathbf{x}_{i})} \qquad \qquad MLE$$

Thoughts About The Nature of Information

Properties of Mutual Information

Bijection invariant

- Discrete $\Omega(X) = \{1, ..., n_X\}, \Omega(Y) = \{1, ..., n_Y\}$
- For bijective $\pi_X : \Omega(X) \to \Omega(X), \ \pi_Y : \Omega(Y) \to \Omega(Y)$ $I(X; Y) = I(\pi_X(X); \pi_Y(Y))$
- Invertible functions do not change information

Bijection Invariance

Applies to other measures

Entropy

$$H(X) = H\big(\pi(X)\big)$$

For any bijection $\pi: X \to X$

Proof

$$H(X) = \sum_{i=1}^{n} p(x_i) \log p(x_i)$$

=
$$\sum_{i=1}^{n} p(x_{\pi(i)}) \log p(x_{\pi(i)}) \text{ (identifying } x_i \text{ with } i)$$

=
$$H(\pi(X))$$

Bijection Invariance

Information theoretic measures

- Entropy
- Mutual Information

are invariant under

- Bijective mappings,
- i.e.: application of "information preserving functions"
- Applies to divergences only if both p₁, p₂ are transformed the same way
 - Cross-Entropy, KL-Divergence, J-S-Divergence

Data Processing

Deterministic Information Processing

Arbitrary function

 $f: \Omega(X) \to \Omega(Y)$

• We can only lose information $H(X) \ge H(f(X))$

Data Processing

(Probabilistic) Data Processing Inequality

Random variables with densities

X, Y, Z with p(x, y, z)

Chain-like dependency structure

Z
$$(p(z|y))$$
 Y $(p(y|x))$ X $(p(x))$
btw, this is called
a "Markov chain"
 $p(x, y, z) = p(z|y) \cdot p(y|x) \cdot p(x)$
• Data processing inequality

 $I(X;Y) \ge I(X;Z)$

Information

Information

Originate from random process X

Processing / Calculating

- Deterministic processes can only reduce information
- Probabilistic processes can add information, but cannot add information on original X
- Bijections (invertible maps) do not change anything
Probabilistic Evolution of Information

Example

- Trajectory of a projectile
 - Imprecision due to limited knowledge (wind)
- If motion was deterministic
 - No information loss: $\forall t \ge 0$: $H(X_t) = H(X_0)$
 - Physics is reversible (\equiv bijective)
 - But we have incomplete knowledge

Probabilistic Evolution of Information

With random perturbations

- Old information gradually replaced by new randomness
 - Loss: X_t cannot be fully reconstructed from X_{t+1}
 - **Gain:** X_t not fully predictable from X_{t-1} (new random info.)
- Information is probabilistic
 - Available knowledge reduces entropy of $P(X_t)$

In one sentence

Information in machine learning

Being able to predict (e.g., the future)

means

reducing the uncertainty/entropy (of the probability distribution of the outcome)

So – What *is* Information?

What is Information?

Frequentist Information

Bayesian Information?

Bayesian Probabilities \rightarrow Information

- One time-events
- Model uncertainty & subjective knowledge
- Information = "I learned something new"

Summary

Divergences: Comparing Distributions

Divergences

- Cross entropy (a.k.a. relative entropy)
- KL divergence & JS divergence
- Mutual Information

Computation

- Analytical solution
- Numerics: very expensive
 - Linear/quadratic in $|\boldsymbol{\Omega}|$ usually means exponential in input
 - There are many dirty tricks / approximations

Divergences: Comparing Distributions

What do they do?

- Measure differences in distributions wrt. information
- Pure "information"
 - Every bit of random noise counts

X-Entropy, KL/JS-Divergence

Compare information of corresponding outcomes

Mutual Information

MI is fully bijection invariant (XE/KL/JS are not!)

Use with care

• Pure information is not always what you want!