Modelling 2 STATISTICAL DATA MODELLING

Chapter 6 Information

Video \#06

Information Theory

- Information \& Entropy
- Algebra \& Applications

Information Theory

0111001101001010 1110110111001111

LITERATURE:

Massimiliano Tomassoli: Information Theory for Machine Learning https://github.com/mtomassoli/papers/blob/master/inftheory.pdf, 2016.
David MacKay: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

What is Information?

Defining Information

- Probability Theory
- Randomness = genuine new information

How much Information?

" Answer: "How random?"

Axioms of Information

Random Information

- Random variable X
- Discrete probability distribution $p(x)$

Information

- $I(x)$ - Information contained in observation of x

"Frequentist" Model of Information

Experiment

Transmission

guys,
the outcomes are
$x_{7}, x_{42}, x_{23}, x_{8}$

(operator) Alice

"Frequentist" Model of Information

Bob (receiver)

"Frequentist" Model of Information

(operator) Alice

guys,
the outcomes are

Bob (receiver)

How to understand information?

- Repeatable experiment
- Outcomes $\Omega=\left\{x_{1}, \ldots, x_{n}\right\}$
- Elementary probabilities $p\left(x_{1}\right), \ldots, p\left(x_{n}\right)$

"Frequentist" Model of Information

Communication

- Send outcomes over channel from Alice \rightarrow Bob
- Alice runs experiments
- Both Alice and Bob know the experimental setting
- Bob does not know the random outcome
- How much information is in outcome x_{i} ?

$$
\begin{aligned}
& \text { Defining } \\
& \text { Information }
\end{aligned}
$$

Axioms of Information

Axioms

- $I(x)=f(p(x))$ for some f

- Information should only depend on probability
- $p(x)<p(y) \Rightarrow f(p(x))>f(p(y))$
- Rarer events should carry more information
- f strictly decreasing
- $f(1)=0$
- Certain events carry no (new) information
- x, y independent $\Rightarrow I((\mathrm{x}, \mathrm{y}))=I(\mathrm{x})+I(\mathrm{y})$
- Information should add up
- Independent experiments yield "totally new information"

Solution

Solution

$$
f(p)=-\log p=\log \frac{1}{p}
$$

Proving the properties

- $I(x)=\log \frac{1}{p(x)}$
this solution is unique (up to basis)
PS: we will
- $p(x)<p(y) \Rightarrow \log \frac{1}{p(x)}>\log \frac{1}{p(y)}$
usually use $\log _{2}$
- $\log 1=0$
- x, y independent $\Rightarrow \log \frac{1}{p(x, y)}=\log \frac{1}{p(x) p(y)}$

$$
=\log \frac{1}{p(x)}+\log \frac{1}{p(x)}
$$

Summary so far...

Probability

- Independent events: Product of probabilities
- Number between 0 and 1

Information

- Information is additive
- More info: larger value
- No information = 0
- Information of event = negative logarithm of prob.
- $I(x)=-\log p(x)=\log \frac{1}{p(x)}$
- Usually: base 2 (measured in bits)

Neg-Log Likelihoods quantify

 Information Content

 Information Content}

Next question: How much information is "in the whole distribution"?

Information in Outcomes

Alice observes an outcome x

- Alice needs to send Bob $I(x)$ bits

Alice observes an outcomes x, y

- Model: Two independent runs
- Alice needs to send Bob $I(x)+I(y)$ bits

Alice keeps observing outcomes $x_{1}, x_{2}, x_{3}, \ldots$

- Model: independent repetitions
- Alice needs to send Bob $\mathbb{E}_{x \sim p}[I(x)]$ bits on average

Entropy

Entropy

Definition: Entropy

$$
\begin{array}{rlr}
H(X) & =-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right) & \begin{array}{c}
\text { mean } \\
\text { neg log prob }
\end{array} \\
& =\sum_{i=1}^{n} p\left(x_{i}\right) I\left(x_{i}\right) & \begin{array}{c}
\text { mean } \\
\text { information }
\end{array} \\
& =\mathbb{E}_{x \sim p(x)}(I(x)) & \\
\text { expected } \\
\text { information }
\end{array}
$$

Measures: How "random" is p ?

Examples

$H(p)=-\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}=\log n$

$$
H(p)=1 \cdot \log 1=0
$$

Finite Outcome Spaces

Definition of $H(X)$ requires finite $\Omega(X)$

- Generalization to continuous variables non-trivial
- Just replacing \sum by \int leads to significant problems
- Is done as „Differential Entropy":

$$
\sum_{i} p\left(x_{i}\right) \log p\left(x_{i}\right) \rightarrow \int_{x} p\left(x_{i}\right) \log p\left(x_{i}\right)
$$

- Problems include
- Negative values (density > 1)
- Not transformation invariant

Finite Outcome Spaces

"Proper" limit fixes some problems

- But entropy becomes infinite for continuous variable
- "Limiting density of discrete point"

Coding length for continuous functions

- One can specify resolution limits / uncertainty
- Often no obvious resolution
- Careful trade-off needed

We stick to the discrete version

- Or just ignore the issue, when it comes up

Coding Theory

Coding Theory

Entropy

- Minimum number of bits required to transmit information about event x
- We draw events i.i.d.
- We send each outcome separately
- After being asked for the answer
- (Certain outcomes: no answer required)
- Coding theorem
- $m(x)$ = message about x optimally encoded in bits
- $H(X) \leq \mathbb{E}_{x \sim p(x)}($ length $(m(x)))<H(X)+1$

Random variable x distributed according to $p(x)$

Huffman Codes

Constructing a code

- Huffman algorithm
- Optimal for single events send in bits
- Multiple symbols: Overhead up to one bit each
- Optimality reached with "arithmetic coding"

Huffman Codes

| x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5% | 4% | 53% | 6% | 7% | 25% |

Algorithm

- Build a tree
- Start with outcomes as leave nodes
- Iteratively:
- Combine two lowest-probability nodes to new inner node
- Until we have a root node
- Using a priority queue, if you care about run time

Huffman Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
5%	4%	53%	6%	7%	25%

Huffman Codes

x_{2}	x_{1}	x_{4}	x_{5}	x_{6}	x_{3}
4%	5%	6%	7%	25%	53%

Huffman Codes

Huffman Codes

Coding assign bits to edges

Huffman Codes

111001110000

Coding
assign bits to edges
Decoding
just follow tree

Bit-Coding

Coding of Symbols

- Number of bits $\leq \log \frac{1}{p(x)}+1$
- Information = code length (up to one bit)
- Entropy = expected code length (up to one bit)

Summary

Summary: Information \& Entropy

Information is randomness

- "Frequentist" repeated coding scenario
- Analysis of coding length
- Information $I(x)=-\log p(x)$
- Entropy $H(p)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right)$

$$
=\mathbb{E}_{x \sim p}[I(x)]
$$

Not just pure theory

- Coding can be achieved (and is used) in practice

Modelling 2 STATISTICAL DATA MODELLING

Chapter 6 Information

Video \#06

Information Theory

- Information \& Entropy
- Algebra \& Applications

Entropy:

Additional Definitions \& Theorems

Joint Entropy

Joint Entropy

$$
H(X, Y)=-\sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{y}} p\left(x_{i}, y_{j}\right) \log _{2} p\left(x_{i}, y_{j}\right)
$$

- Simply the entropy of the joint distribution $p(x, y)$

Theorem

$$
\begin{aligned}
& H(X, Y)=H(X)+H(Y) \\
\Leftrightarrow & p(x, y)=p(x) p(y)
\end{aligned}
$$

- Additive iff independent

Conditional Entropy

Conditional Entropy

$$
H(X \mid Y)=-\sum_{i=1}^{n_{X}} \sum_{j=1}^{n_{y}} p\left(x_{i} \mid y_{j}\right) \log _{2} p\left(x_{i} \mid y_{j}\right)
$$

- Simply the entropy of the conditional distribution $p(x \mid y)$

Conditional Entropy

Marginal Entropy

$$
\begin{aligned}
H(X) & =-\sum_{i=1}^{n_{x}} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right) \\
& =-\sum_{i=1}^{n_{x}}\left(\sum_{j=1}^{n_{y}} p\left(x_{i}, y_{j}\right)\right)\left(\log _{2} \sum_{j=1}^{n_{y}} p\left(x_{i}, y_{j}\right)\right)
\end{aligned}
$$

- Simply the entropy of the marginal distribution $p(x)$

Conditional Entropy

Theorem: Chain Rule

$$
\begin{aligned}
H(X, Y) & =H(X \mid Y)+H(Y) \\
& =H(Y \mid X)+H(X)
\end{aligned}
$$

Proof

- Very simple :-)

"Divergences"

Comparing Probability Distributions

Cross Entropy

Situation

- Two different distributions p_{1}, p_{2} (same probability space)

Definition: Cross Entropy (aka Relative Entropy)

$$
\begin{aligned}
H\left(p_{1}, p_{2}\right) & =-\sum_{i=1}^{n} p_{1}\left(x_{i}\right) \log _{2} p_{2}\left(x_{i}\right) \\
& =\mathbb{E}_{x \sim p_{1}}\left[I_{p_{2}}(x)\right]
\end{aligned}
$$

Idea

- Coding events $x \sim p_{1}$ with codes optimized for p_{2}

How to Read This...

Often: Searching for "codes"

first argument data distribution
second argument coding distribution

output

 coding length
Properties

- Non-symmetric!
- $\forall p_{2}: H\left(p_{1}, p_{2}\right) \geq H\left(p_{1}, p_{1}\right)=H\left(p_{1}\right)$
- Reverse $\left(H\left(p_{2}, p_{1}\right)\right.$ vs $\left.H\left(p_{1}\right)\right)$ is not true!
- In optimization problems: Usually vary p_{2}

Kullback-Leibler Divergence

Kullback-Leibler Divergence

$$
\begin{aligned}
K L\left(p_{1} \| p_{2}\right) & =\sum_{i=1}^{n} p_{1}\left(x_{i}\right) \log _{2} \frac{p_{1}\left(x_{i}\right)}{p_{2}\left(x_{i}\right)} \\
& =H\left(p_{1}, p_{2}\right)-H\left(p_{1}, p_{1}\right) \\
& =H\left(p_{1}, p_{2}\right)-H\left(p_{1}\right)
\end{aligned}
$$

Idea

- Measure coding efficiency p_{1} using p_{2}-codes
- Price to pay for coding in p_{2} rather than p_{1}
- Compare with optimum for p_{1}
- Measures how far distribution p_{2} is from p_{1}

Kullback-Leibler Divergence

Kullback-Leibler Divergence

first argument
data distribution
second argument coding distribution

$$
K L\left(p_{1} \| p_{2}\right)=H\left(p_{1}, p_{2}\right)-H\left(p_{1}\right)-
$$

Idea

- Compare two distributions
- Loss in coding efficiency [in bits]
- Extra message length (Alice \rightarrow Bob)
- Just cross-entropy minus baseline $H\left(p_{1}, p_{1}\right)$
- Again, not symmetric

KL and JS Divergences

Kullback-Leibler Divergence

- Distance ≥ 0
- Zero distance means same distribution
- Not symmetric:
$K L\left(p_{1} \| p_{2}\right)$ different from $K L\left(p_{2} \| p_{1}\right)$
- "Almost a metric"

Jensen-Shannon Divergence

- Symmetrized version
- $J S D\left(p_{1} \| p_{2}\right):=\frac{1}{2} K L\left(p_{1} \| p_{2}\right)+\frac{1}{2} K L\left(p_{2} \| p_{1}\right)$

What kind of metric is this?

KL-Divergence

$$
K L\left(p_{1} \| p_{2}\right)=\sum_{i=1}^{n} p_{1}\left(x_{i}\right) \log _{2} \frac{p_{1}\left(x_{i}\right)}{p_{2}\left(x_{i}\right)}
$$

difference in Information
for the same outcomes x_{i}

$$
=\sum_{i=1}^{n} \underbrace{p_{1}\left(x_{i}\right)}[\overbrace{\log _{2} p_{1}\left(x_{i}\right)-\log _{2} p_{2}\left(x_{i}\right)}]
$$

weighted by probability
of occurrence in p_{1}

What kind of metric is this?

KL-Divergence

difference in Information for the same outcomes x_{i}

$$
K L\left(p_{1} \| p_{2}\right)=\sum_{i=1}^{n} \underbrace{p_{1}\left(x_{i}\right)} \overbrace{\log _{2} p_{1}\left(x_{i}\right)-\log _{2} p_{2}\left(x_{i}\right)}]
$$

weighted by probability of occurrence in p_{1}

Mutual Information

Mutual Information

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

- Entropy of the marginal distributions minus that of the joint distribution

Mutual Information

- Consider $H(X), H(Y), H(X, Y)$

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

Mutual Information

Alternative Formulas

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =-\sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{y}} p\left(x_{i}, y_{j}\right) \log _{2}\left(\frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}\right) \\
& =K L\left(p\left(x_{i}, y_{j}\right) \| p\left(x_{i}\right) p\left(y_{j}\right)\right)
\end{aligned}
$$

Mutual Information

As a measure of dependency

- Most general gradual measure of dependency
- $I(X ; Y)=0 \Leftrightarrow X, Y$ are independent
- $I(X ; Y) \rightarrow H(X)+H(Y)$: "maximally" dependent
- Joint histogram becomes very sparse
- $H(X, Y)$ very small

$$
\begin{aligned}
& \text { - Zero not possible for discrete } \Omega \text { if } H(X), H(Y)>0 \\
& \text { - Limit for } \# \Omega(X), \# \Omega(Y) \rightarrow \infty
\end{aligned}
$$

- Alternative measures such as correlation miss cases
- Example: Linear correlation iff PCA spectrum flat
- Does (e.g.) not detect quadratic dependencies

Computation

Actual Histograms

- Compute $H(X), H(Y), H(X, Y)$
- Costly: $\mathrm{O}\left(\left|\Omega_{X}\right| \times\left|\Omega_{Y}\right|\right) \quad$ (e.g., exponential in dimension)

Computation

Parametric Distributions

- Closed-Form Expressions for Gaussians etc.
- $H\left(\mathcal{N}_{\mu, \Sigma}\right)=\frac{1}{2} \ln \left((2 \pi e)^{d} \operatorname{det}(\Sigma)\right)$
(differential entropy)

Computation

Approximations

- Sample-based Entropy
- Measure only on input/training data of a DA/ML application
- Nearest-neighbors-methods
- Lower-bounds by "variational Bayes"
- Build neural network f : predicting Y from X (or vice versa)
- Least-squares fit $\|Y-f(X)\|^{2}$
- Entropy of Gaussian error (covariance of errors)
- Gives an upper bound of $H(X, Y)$
- Upper bound of entropy of the joint Histogram
- Has negative contribution, i.e.: lower bound for I(X;Y)

Application
 Softmax Regression

Multi-Label Case

Task

- n Data points, indexed by $i=1$... n
- Data $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with...
- ...label vectors $\mathbf{y}_{i} \in\{0,1\}^{K}$
- "One hot vectors"
- Learn class-specific parameters $\theta_{1}, \ldots, \theta_{K} \in \mathbb{R}^{d}$

Notation

- $y(\mathbf{x}) \in\{1, \ldots, K\}$ denotes class index of input \mathbf{x}

Multi-Label Case

Unnormalized classifier

$$
\mathrm{u}_{\theta}(\mathrm{x})=\left(\begin{array}{ccc}
- & \theta_{1} & - \\
& \vdots & \\
- & \theta_{k} & -
\end{array}\right) \mathrm{x}
$$

Class probabilities via softmax $\sigma: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$

$$
\begin{gathered}
\sigma_{m}\left(\mathrm{y}_{i}\right):=\frac{e^{y_{m}}}{\sum_{j=1}^{K} e^{Z_{j}}}, \\
f_{\theta}(\mathrm{x}):=\left(\begin{array}{c}
P(y(\mathrm{x})=1) \\
\vdots \\
P(y(\mathrm{x})=K)
\end{array}\right)=\left(\begin{array}{c}
\sigma_{1}\left(\mathrm{u}_{\theta}(\mathrm{x})\right) \\
\vdots \\
\sigma_{K}\left(\mathrm{u}_{\theta}(\mathrm{x})\right)
\end{array}\right)
\end{gathered}
$$

Softmax Regression

MLE Training via

$$
\begin{gathered}
\theta=\underset{\theta \in \mathbb{R}^{K \times d}}{\arg \max } \prod_{i=1}^{n} f_{\theta}(\mathbf{x})_{y(\mathbf{x})} \\
=\underset{\theta \in \mathbb{R}^{K \times d}}{\arg \min } \sum_{i=1}^{n}-\log \left(f_{\theta}(\mathbf{x})_{y(\mathrm{x})}\right) \\
=\underset{\theta \in \mathbb{R}^{K \times d}}{\arg \min } \sum_{i=1}^{n}[\underbrace{\log \left(\sum_{m=1}^{K} e^{\theta_{m}^{T} \cdot \mathbf{x}}\right)}_{\text {normalization }} \quad-\underbrace{}_{\begin{array}{c}
\theta_{y(\mathbf{x})}^{T} \cdot \mathbf{x} \\
\text { (neg)-log-likelihood } \\
\text { of correct class }
\end{array}}]
\end{gathered}
$$

Cross Entropy Loss

Alternative formulation

- One-hot vectors y_{i} are "ground truth" distribution
- Over classes 1 ... K
- Training: Make output distribution $f(\mathrm{x})$ similar to y_{i}
- Use KL-divergence to compare

$$
K L\left(\mathrm{y}_{i} \| f_{\theta}\left(\mathrm{x}_{i}\right)\right)=\sum_{i=1}^{n} \mathrm{y}_{i} \log _{2} \frac{\mathrm{y}_{i}}{f_{\theta}\left(\mathrm{x}_{i}\right)}
$$

- We will see: Minimization same for cross-entropy

$$
H\left(\mathrm{y}_{i}, p_{2}\right)=-\sum_{i=1}^{n} \mathrm{y}_{i} \log _{2} f_{\theta}\left(\mathrm{x}_{i}\right)
$$

- Which is per-class maximum-likelihood

KL as Cross Entropy as MLE

 $\underset{\theta}{\arg \min } K L\left(\mathrm{y}_{i} \| f_{\theta}\left(\mathrm{x}_{i}\right)\right)$KL-Divergence

KL as Cross Entropy as MLE

$\arg \min K L\left(\mathrm{y}_{i} \| f_{\theta}\left(\mathrm{x}_{i}\right)\right)$
$=\underset{\theta}{\arg \min } \sum_{k=1}^{n_{l}}\left[y_{i}\right]_{k} \log _{2} \frac{\left[\mathrm{y}_{i}\right]_{k}}{\left[f_{\theta}\left(\mathrm{x}_{i}\right)\right]_{k}}$
$=\underset{\theta}{\arg \min }\left(H\left(\mathrm{y}_{i}, f_{\theta}\left(\mathrm{x}_{i}\right)\right)-H\left(\mathrm{y}_{i}\right)\right)$
$=\underset{\theta}{\arg \min }\left(H\left(\mathrm{y}_{i}, f_{\theta}\left(\mathrm{x}_{i}\right)\right)\right)$
$=\underset{\theta}{\arg \min } \sum_{k=1}^{n_{l}}\left[y_{i}\right]_{k} \log _{2}\left[f_{\theta}\left(\mathrm{x}_{i}\right)\right]_{k}$
$=\arg \min \log _{2}\left[f_{9}\left(\mathrm{x}_{i}\right)\right]_{y\left(\mathrm{x}_{i}\right)}$

KL-Divergence

X-Entropy
\qquad

Thoughts About

The Nature of Information

Properties of Mutual Information

Bijection invariant

- Discrete $\Omega(X)=\left\{1, \ldots, n_{X}\right\}, \Omega(Y)=\left\{1, \ldots, n_{Y}\right\}$
- For bijective $\pi_{X}: \Omega(X) \rightarrow \Omega(X), \pi_{Y}: \Omega(Y) \rightarrow \Omega(Y)$

$$
I(X ; Y)=I\left(\pi_{X}(X) ; \pi_{Y}(Y)\right)
$$

- Invertible functions do not change information

Bijection Invariance

Applies to other measures

- Entropy

$$
H(X)=H(\pi(X))
$$

For any bijection $\pi: X \rightarrow X$

- Proof

$$
\begin{aligned}
H(X) & =\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right) \\
& \left.=\sum_{i=1}^{n} p\left(x_{\pi(i)}\right) \log p\left(x_{\pi(i)}\right) \text { (identifying } x_{i} \text { with } i\right) \\
& =H(\pi(X))
\end{aligned}
$$

Bijection Invariance

Information theoretic measures

- Entropy
- Mutual Information

are invariant under

- Bijective mappings,
- i.e.: application of "information preserving functions"
- Applies to divergences only if both p_{1}, p_{2} are transformed the same way
- Cross-Entropy, KL-Divergence, J-S-Divergence

Data Processing

Deterministic Information Processing

- Arbitrary function

$$
f: \Omega(X) \rightarrow \Omega(Y)
$$

- We can only lose information

$$
H(X) \geq H(f(X))
$$

Data Processing

(Probabilistic) Data Processing Inequality

- Random variables with densities

$$
X, Y, Z \text { with } p(x, y, z)
$$

- Chain-like dependency structure

$$
\begin{aligned}
& \text { a "Markov chain" }
\end{aligned}
$$

- Data processing inequality

$$
I(X ; Y) \geq I(X ; Z)
$$

Information

Information

- Originate from random process X

Processing / Calculating

- Deterministic processes can only reduce information
- Probabilistic processes can add information, but cannot add information on original X
- Bijections (invertible maps) do not change anything

Probabilistic Evolution of Information

Example

- Trajectory of a projectile
- Imprecision due to limited knowledge (wind)
- If motion was deterministic
- No information loss: $\forall t \geq 0$: $H\left(X_{t}\right)=H\left(X_{0}\right)$
- Physics is reversible (\equiv bijective)
- But we have incomplete knowledge

Probabilistic Evolution of Information

With random perturbations

- Old information gradually replaced by new randomness
- Loss: X_{t} cannot be fully reconstructed from X_{t+1}
- Gain: X_{t} not fully predictable from X_{t-1} (new random info.)
- Information is probabilistic
- Available knowledge reduces entropy of $P\left(X_{t}\right)$

In one sentence

Information in machine learning

Being able to predict (e.g., the future) means
reducing the uncertainty/entropy
(of the probability distribution of the outcome)

$$
\begin{aligned}
& \text { So - What is } \\
& \text { Information? }
\end{aligned}
$$

What is Information?

Frequentist Information

Bayesian Information?
Bayesian Probabilities \rightarrow Information

- One time-events
- Model uncertainty \& subjective knowledge
- Information = "I learned something new"

Summary

Divergences: Comparing Distributions

Divergences

- Cross entropy (a.k.a. relative entropy)
- KL divergence \& JS divergence
- Mutual Information

Computation

- Analytical solution
- Numerics: very expensive
- Linear/quadratic in $|\Omega|$ usually means exponential in input
- There are many dirty tricks / approximations

Divergences: Comparing Distributions

What do they do?

- Measure differences in distributions wrt. information
- Pure "information"
- Every bit of random noise counts

X-Entropy, KL/JS-Divergence

- Compare information of corresponding outcomes

Mutual Information

- MI is fully bijection invariant (XE/KL/JS are not!)

Use with care

- Pure information is not always what you want!

