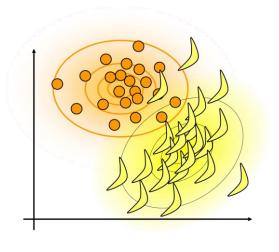
Modelling 2 STATISTICAL DATA MODELLING



Chapter 4 Statistics and Machine Learning

Recap: Previous Video

Probability Theory

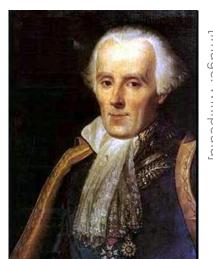
- Mathematical Axioms
 - Basis for all modeling of uncertainty
- Frequentist Interpretation / Application
 - Repeatable experiments
- Bayesian Interpretation / Application
 - General believes
 - Might be subjective

[image: Wikipedia

Hertzman's Principle #1

Laplace (1814)

"Probability theory is nothing more than common sense reduced to calculation"



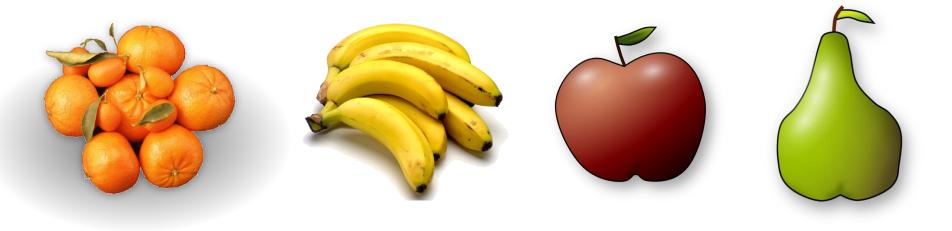
Pierre-Simon Laplace (1749 - 1827)

Video #04

Statistics & Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning & Inference

Machine Learning & Bayesian Statistics



Machine Learning & Statistics

What is machine learning?

- Derive solution from examples (data)
 - "Data driven" computer science
 - Given a task and examples
- Statistical ML: Use statistical techniques
 - "Real world" data such as photos, sound, etc., rather than curated data bases
 - Algorithmic induction

Machine learning

Typical Tasks

Regression

learn function $f: X \to Y$

Classification

special case -B is a set of categories

Density reconstruction

learn probability distribution $p(\mathbf{x}), \mathbf{x} \in X$

Machine learning

Typical Tasks

- Compression / simplification / structure discovery
 - Dimensionality reduction
 - Clustering
 - Latent (unobserved) variable discovery
 - ...and the similar

Control

- Learn decision making
 - Steer some agent, or self-driving car
 - Play chess, GO, Robo-Soccer
- Several actions, long term consequences
- There are probably more

Training Data

How / which data is provided?

- Supervised learning
 - Full "example solutions"
 - Example: Regression from pairs $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1..n}$
- Unsupervised learning
 - Unannotated data, infer solution from structure
 - Example: Density reconstruction from points $\{x_i\}_{i=1..n}$
- Semi-supervised learning
 - Only some examples are "full solutions"
 - Ex.: Classification from $\{\mathbf x_i\}_{i=1..n}$ and $\{(\mathbf x_i,\mathbf y_i)\}_{i=1..m}$, usually $m \ll n$
- Reinforcement learning:
 - Qualitative feedback, only after a while

Statistical Approach

Meta-Algorithm

- Obtain training data
- Fit probabilistic model to the data
- Use probabilistic model to solve problem
 - Inferring solutions: Minimize risk of errors / loss

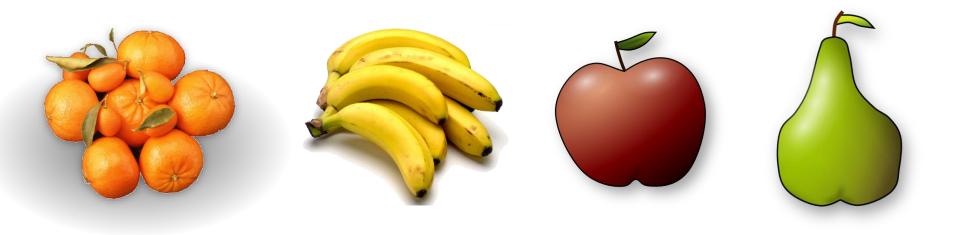
Statistical Approach

Goals

- Objective: Generalizability
 - Learned model should work on non-training data
 - of the same statistics as the training data
- Usual approach
 - Practical objective: "Fit model well to training data"
 - Control for "overfitting" (being "too specific")

Machine Learning & Bayesian Statistics

Example: Classification



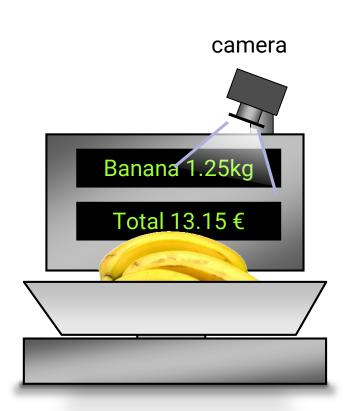
Example Application

Machine Learning Example

Classification

Application Example

- Automatic scales at supermarket
- Detect type of fruit using a camera



Learning Probabilities

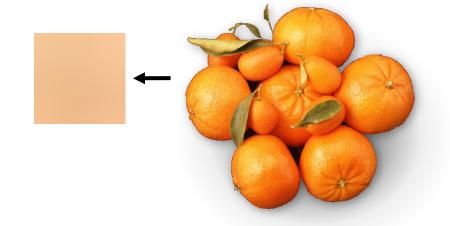
Toy Example

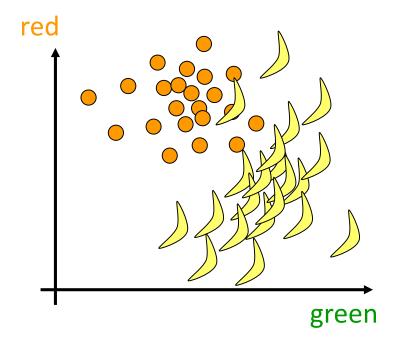
- Distinguish pictures of oranges and bananas
- 100 training pictures each
- Find rule to distinguish pictures

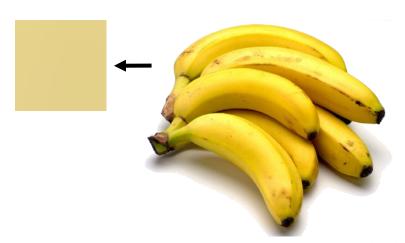
Learning Probabilities

Very simple approach

- Compute average color
- Learn distribution

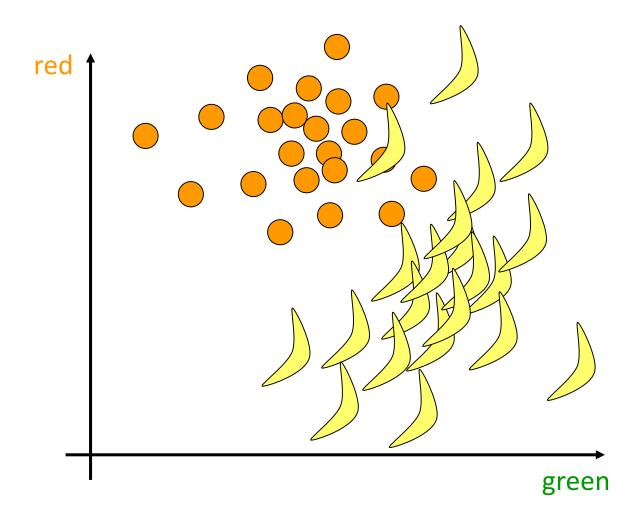




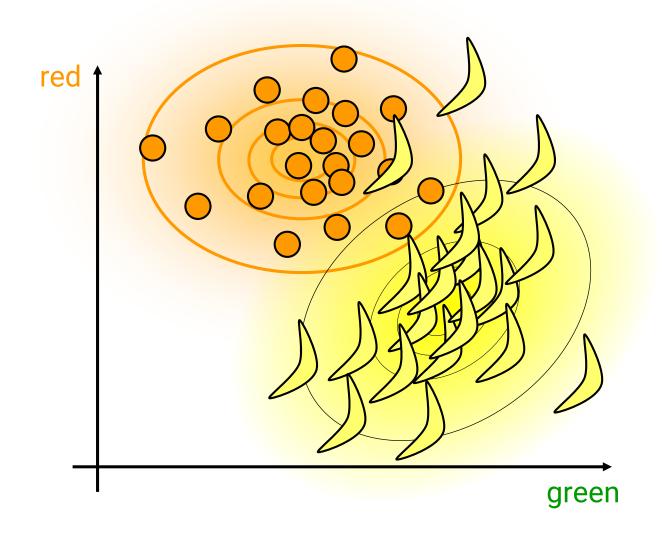


Machine Learning: "Generative Models"

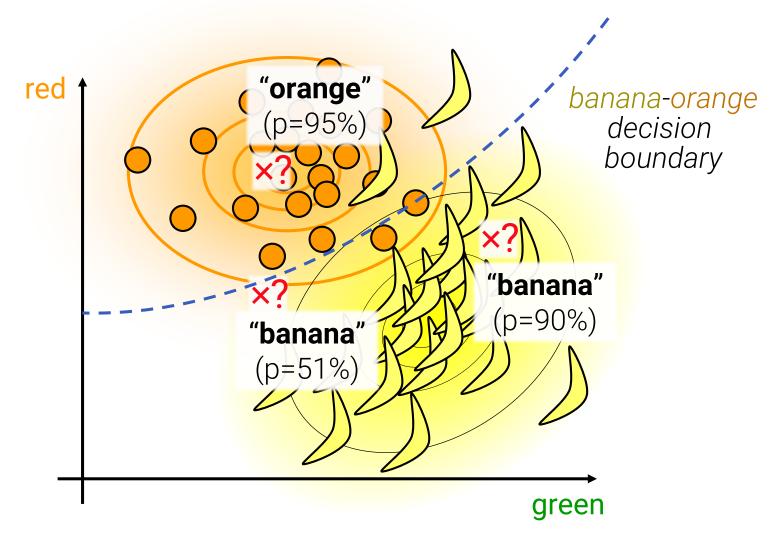
Learning Probabilities



Density Reconstruction



Bayesian Risk Minimization



Generative Learning

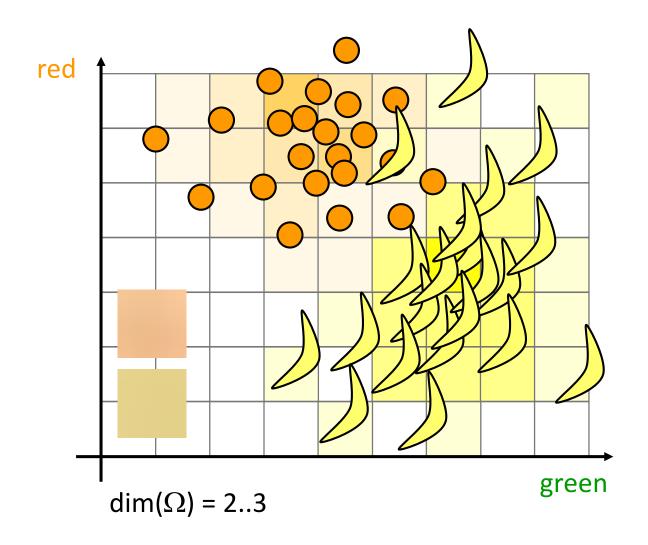
Very simple idea

- Collect data
- Estimate probability distribution
- Use learned probabilities for classification
- Always decide for the most likely case (largest probability)

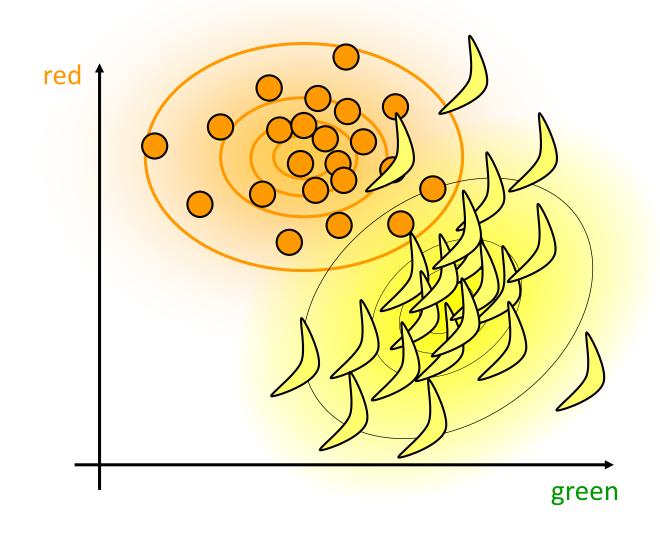
Easy to see

- If probability distributions is known exactly: decision is optimal (in expectation)
- "Minimal Bayesian risk classifier"

Simple Algorithm: Histograms

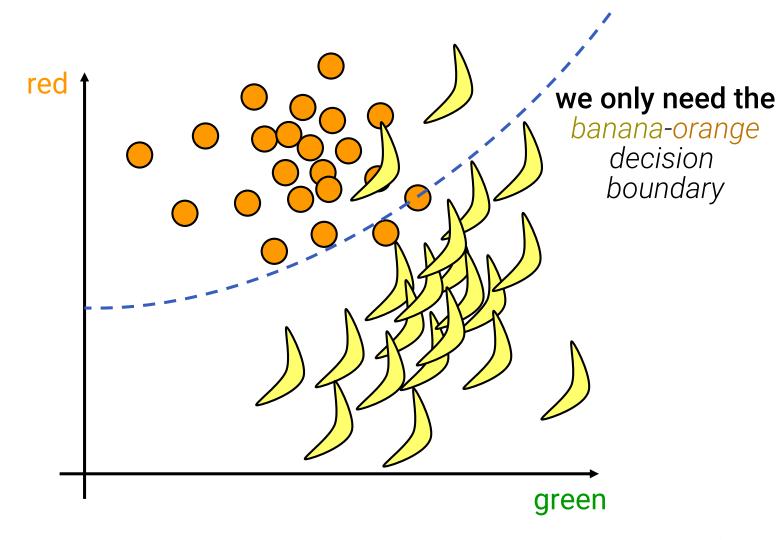


Simple Algorithm: Fit Gaussians

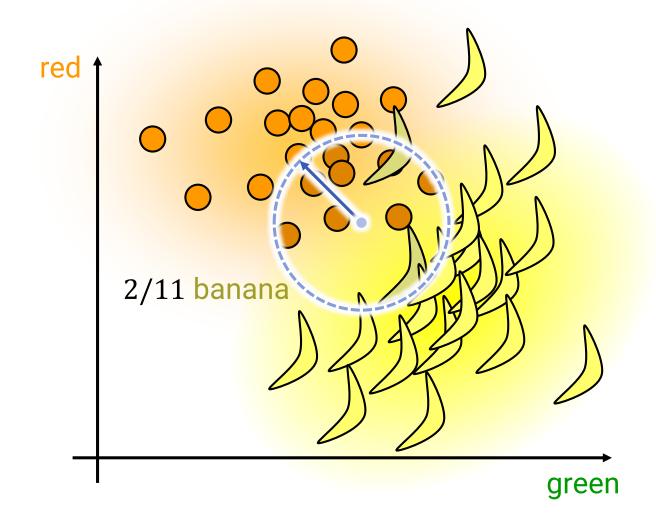


Machine Learning: "Discriminative Models"

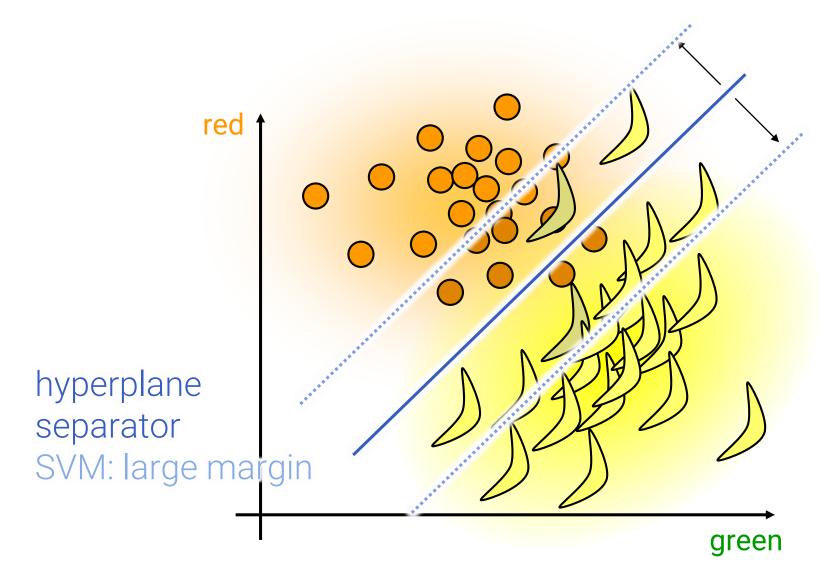
Idea: Why all the fuss?



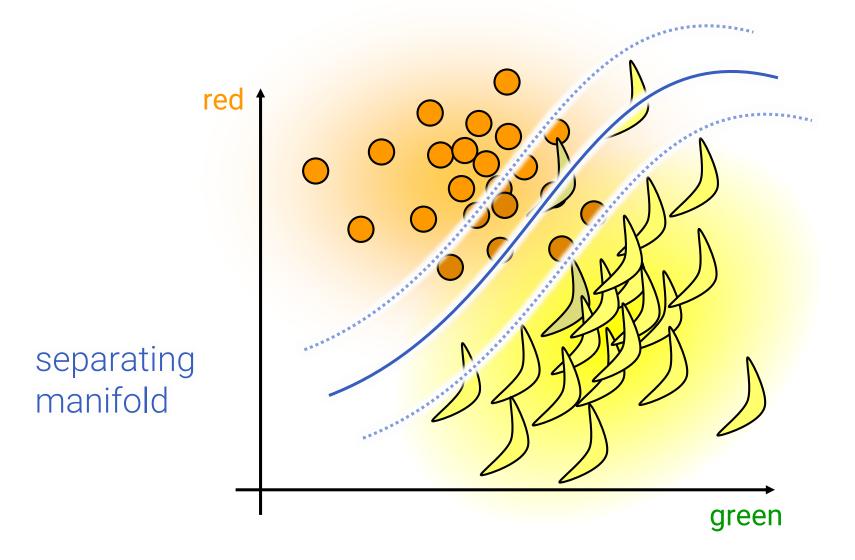
k-Nearest Neighbors



Linear Classifier (e.g. SVM)



General Classifiers



Generalization

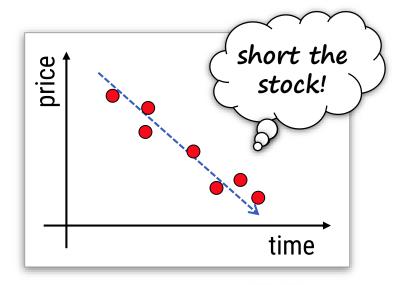
Unreliable Models

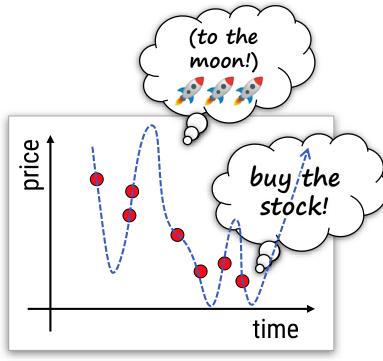
Previous example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- k = 6 fits any data
 - Unique model
 - But no predictive power
- k = 5,4,3 ...? fits any data
 - More or less reliable





We Care (Only) About Generalization

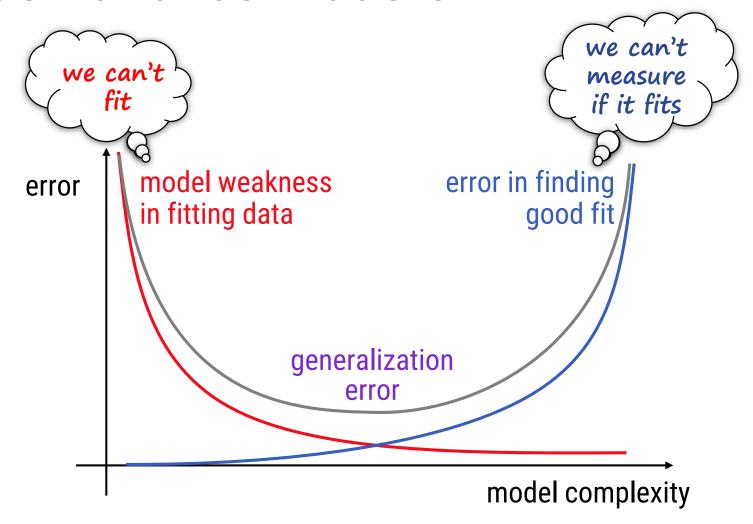
Performance on Training Data

- Might be misleading
- For example:
 - High degree polynomial fits perfectly
 - Very unlikely to fit in general

Problem

- How indicative is training performance for general performance (off-training data)?
 - Big error for complex models, small error for small models
 - We will make this quantitative soon

Bias Variance Trade-Off



Video #04a Summary

Summary

Machine Learning

- Inductive reasoning: Learn solutions from examples
- Training vs. generalization: Beware of overfitting

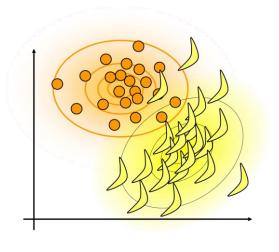
Machine Learning & Statistics

- Build suitable probabilistic model
- Determine probability distributions from examples

Two main approaches

- Generative: model statistics of everything
- Discriminative: Focus on task (classification)

Modelling 2 STATISTICAL DATA MODELLING



Chapter 4 Statistics and Machine Learning

Video #04

Statistics & Machine Learning

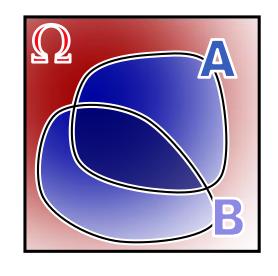
- Machine Learning Basics
- Bayesian Inference for ML
- Learning & Inference

Bayes' Rule

Derivation of Bayes' rule

Bayes' rule

$$Pr(A \mid B) = \frac{Pr(B \mid A) \cdot Pr(A)}{Pr(B)}$$



Derivation

$$Pr(A \cap B) = Pr(A|B) \cdot Pr(B)$$

$$Pr(A \cap B) = Pr(B|A) \cdot Pr(A)$$

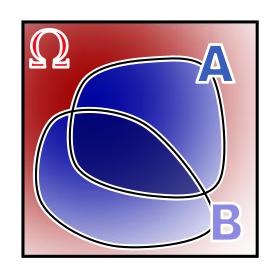
$$\Rightarrow$$
 Pr(A|B) \cdot Pr(B) = Pr(B|A) \cdot Pr(A)

Bayes for Densities

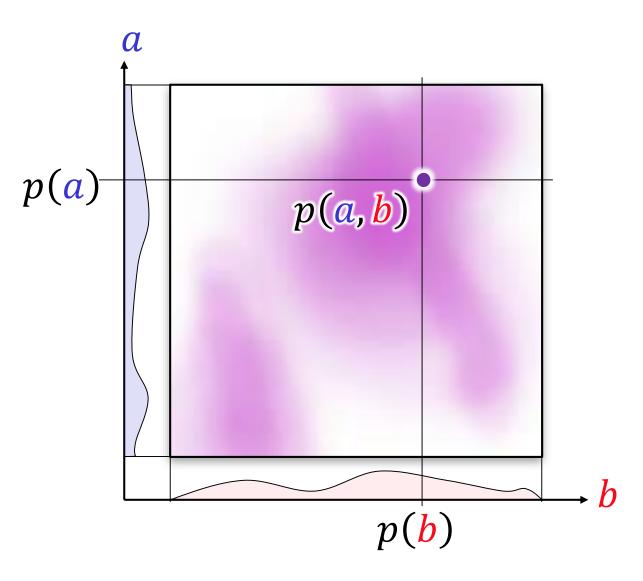
Bayes' rule for densities

$$p(x|y) = \frac{p(y|x) \cdot p(x)}{p(y)}$$

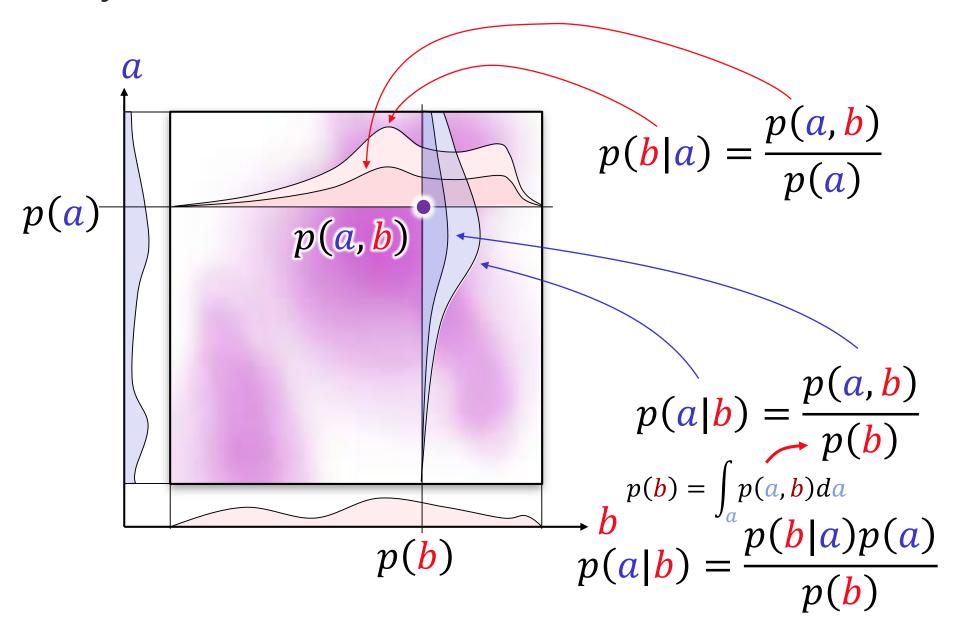
$$= \frac{p(y|x) \cdot p(x)}{\int_{x \in \Omega(X)} p(x) dy}$$



Bayes Rule for Densities: Visualization



Bayes Rule for Densities: Visualization



Bayesian Statistics for ML A Practical How-To

Rules

Normalization

$$\int_{\Omega} p(\mathbf{x}) d\mathbf{x} = 1, \qquad \int_{\Omega} p(\mathbf{x}|\mathbf{y}) d\mathbf{x} = 1$$

Marginalization

$$p(\mathbf{x}) = \int_{\Omega} p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

More rules...

Product rule

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y}) \cdot p(\mathbf{y})$$

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x}|\mathbf{y}, \mathbf{z}) \cdot p(\mathbf{y}, \mathbf{z})$$

$$= p(\mathbf{x}|\mathbf{y}, \mathbf{z}) \cdot p(\mathbf{y}|\mathbf{z}) \cdot p(\mathbf{z})$$

Product rule: condition on any (sub-) tuple(s)

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x}, \mathbf{y}|\mathbf{z}) \cdot p(\mathbf{z})$$
$$= p(\mathbf{x}|\mathbf{y}, \mathbf{z}) \cdot p(\mathbf{y}|\mathbf{z}) \cdot p(\mathbf{z})$$

Rules

Marginalization (e.g. "nuisance" parameters)

$$p(\mathbf{x}) = \int_{\Omega(\varphi)} p(\mathbf{x}, \varphi) d\varphi$$

- Integrate over everything you do not care about
- If too costly: maximize with well-designed prior
- Direct observation

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{y})}$$

- We have seen / we know y
- Divide joint pd $p(\mathbf{x}, \mathbf{y})$ by $p(\mathbf{y})$ to obtain conditional pd

When to use what?

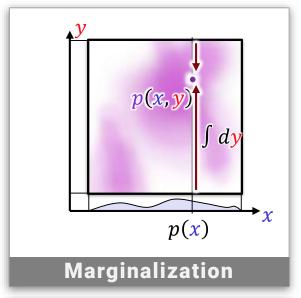
Marginalization

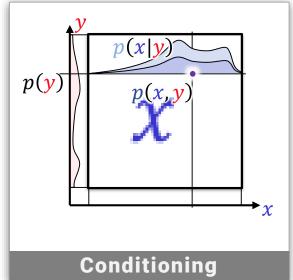
$$p(\mathbf{x}) = \int_{\Omega(\mathbf{y})} p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

- y could be anything
- Want likelihood for x (overall, any y)
- Conditioning

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{y})}$$

- We have seen / we know y!
- y is fixed, we want to update (renormalize) distribution





Bayes' Rule

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})}{p(\mathbf{y})}$$

- "Inverse" problem
 - We know conditional & marginal probabilities
 - We want to know the inverse conditional
 - Determine $p(\mathbf{x}|\mathbf{y})$ from $p(\mathbf{y}|\mathbf{x})$, $p(\mathbf{x})$

Bayes vs. simple conditioning

- We do not have $p(\mathbf{x}, \mathbf{y})$ directly
- But we can model / observe p(y|x), p(x)

Example

Measurement device

- State of measured object: X
- Measured data: D

What is \mathbf{X} given data \mathbf{D} ? $p(\mathbf{X}|\mathbf{D})$

We can model how device works

• "Likelihood" $p(\mathbf{D}|\mathbf{X})$

We have a rough idea how X looks like

"Prior" p(X)

With this, we can compute inverse p(X|D)

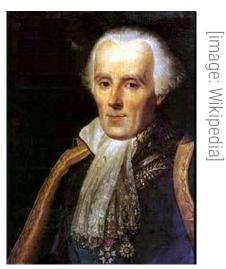
Hertzman's Principles

Laplace (1814)

"Probability theory is nothing more than common sense reduced to calculation"

Further principles

- Build complete model
- Infer knowledge (given observations)
- Bayes' Rule to infer from observation
- Marginalize to remove unknown parameters



Pierre-Simon Laplace (1749–1827)

Likelihoods & Priors Merging Information

Scenario

- Customer picks banana (X = 0) or orange (X = 1)
- Object X creates image D

Modeling

Given image D (observed), what was X (latent)?

$$P(X|D) = \frac{P(D|X)P(X)}{P(D)}$$

$$P(X|D) \sim P(D|X)P(X)$$

Relation

Easy to confuse

• p(x|y) and p(x,y) with y fixed

Difference

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(x,y)}{\int_{\Omega(x)} p(x,y) dx}$$

- Conditional probability is normalized
 - Integrates to one
- Careful for varying y!
 - $p(x|y) \not\sim p(x,y)$ (not proportional in 2D!)
 - Normalization varies with y!

Bayes Rule for ML

Variables: Explanation X, data D, model θ

Learning θ given training pairs (D, X)

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

Inferring X from data D given model θ

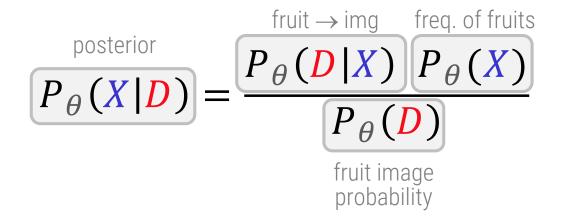
$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)} \cdot \text{independent of } X$$

$$P_{\theta}(X|D) \sim P_{\theta}(D|X)P(X)$$

Statistical Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$
posterior
$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$
evidence

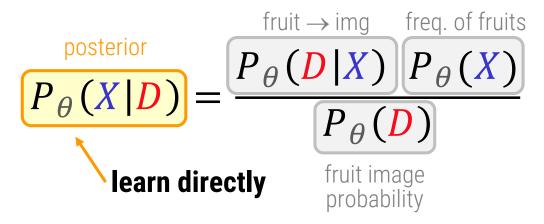
Our Classifier



Generative Model learn learn freq. of fruits fruit \rightarrow ima posterior fruit image probability compute / ignore **Properties** (compute from learned likelihood)

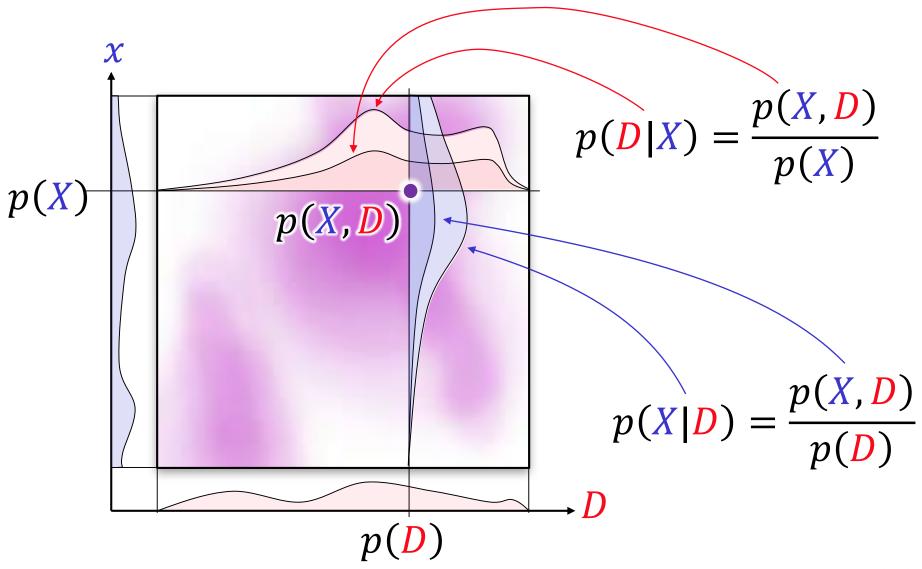
- Comprehensive model:
 Full description of how data is created
- Might be complex (how to create images of fruit?)

Discriminative Model

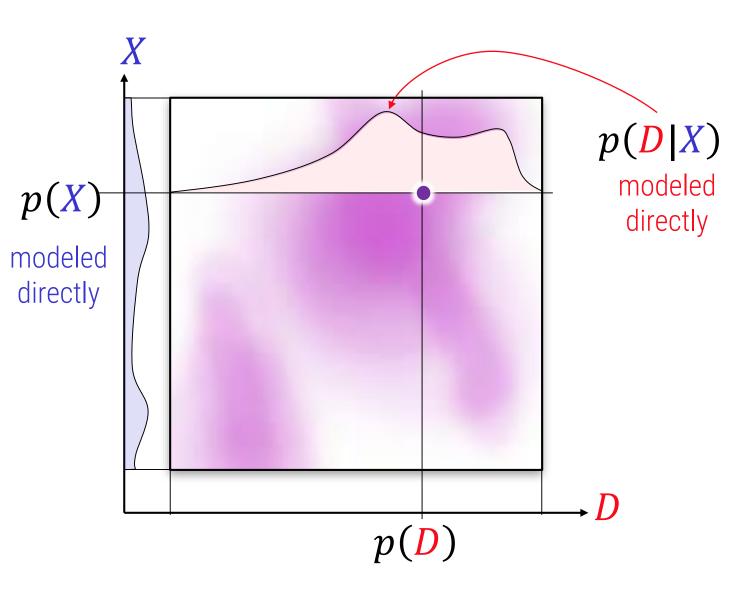


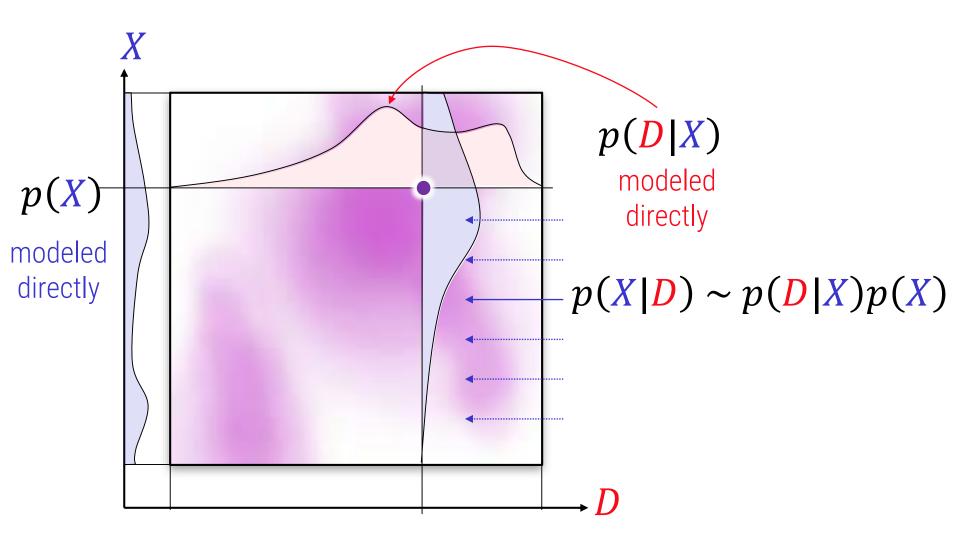
Often easier to learn

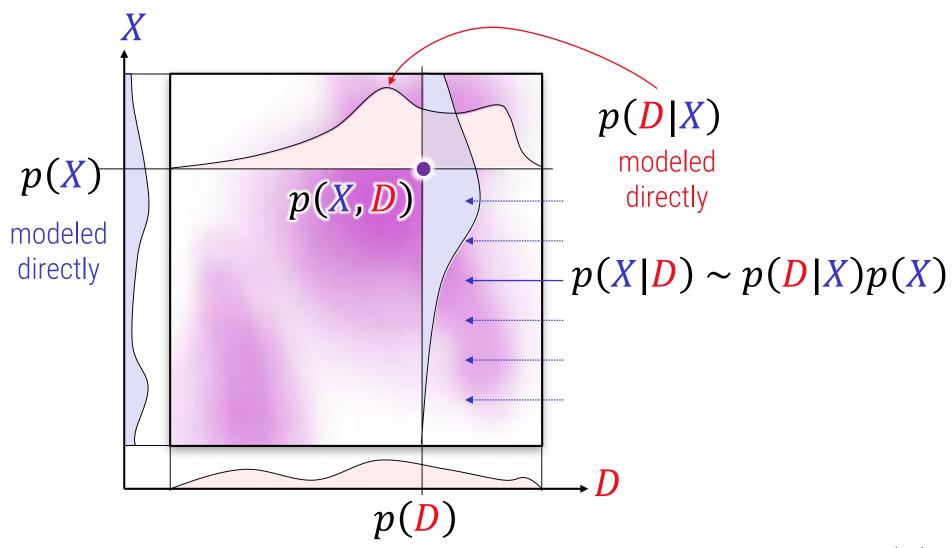
- Learn mapping from phenomenon to explanation
 - Less "powerful": needs less data
- Not trying to explain the whole phenomenon
 - Can use reduced representation / features



(57)

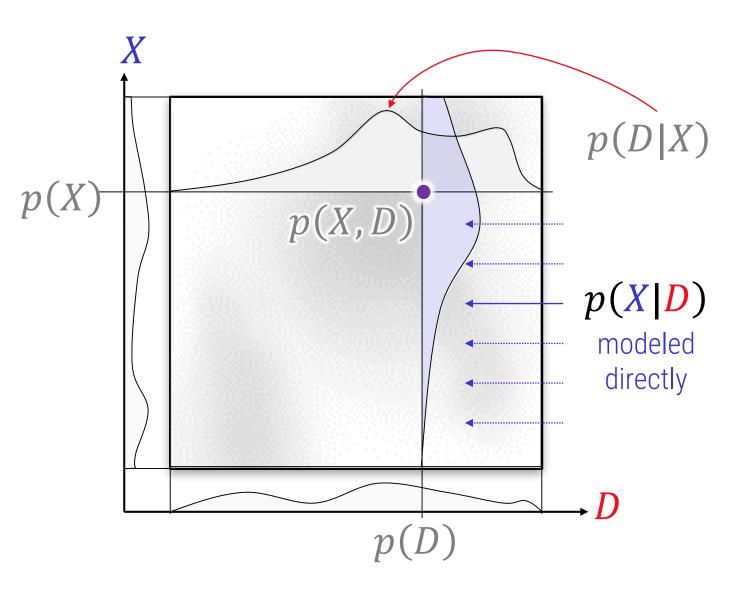




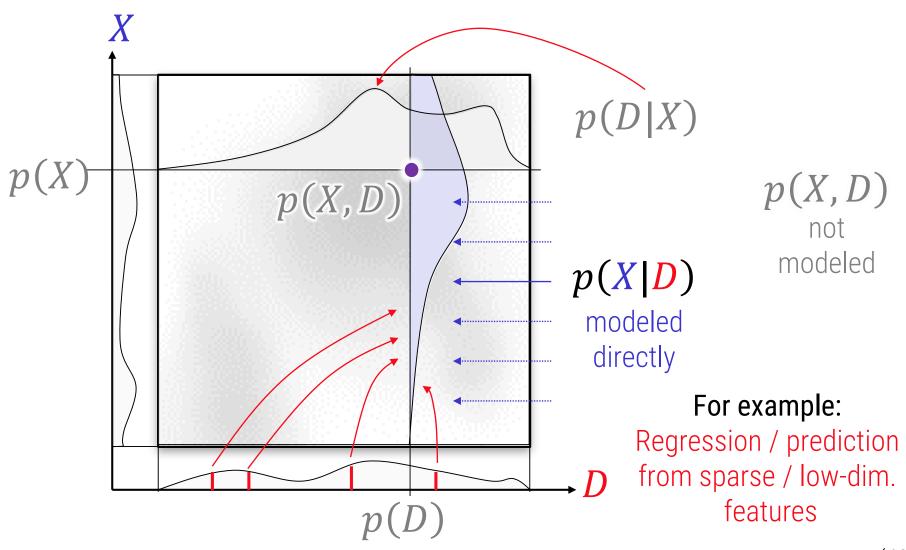


(60)

Discriminative Model



Discriminative Model

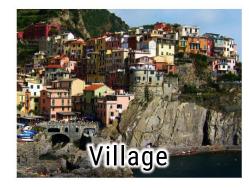


Example: Generative Models

Autoencoder (PCA in latent space)

WGAN-GP (generative adversarial network)

Discriminative Models



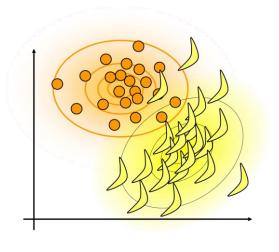
Video #04b Summary

Summary

Bayesian Toolset

- Conditioning: We know something
- Marginalization: We disregard something
 - "Bayesian inference":
 Got a question, marginalize over everything not asked for
- Chain rule: Joint density from conditional & marginal
 - Build p(x, y) from p(x|y), p(x)
 - Stepwise modeling
- Bayes rule: Flip conditional
 - Build p(y, x) from p(x|y), p(y)
 - Interpret measurement/observation

Modelling 2 STATISTICAL DATA MODELLING



Chapter 4 Statistics and Machine Learning

Video #04

Statistics & Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning & Inference

Let's say we have a model already... Inference

Inference

Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

Situation

- We know the model parameters θ (e.g. classifier par.)
 - Fixed during inference
 - Determined during learning
- We have observed data D (e.g. photo of fruit)
- We want to infer X (e.g. class of fruit)

Three Variants

Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

Inference Schemes

- Maximum Likelihood (simplest)
- Maximum-a-posteriori (with prior)
- Bayesian inference (most fancy, but often intractable)

Maximum Likelihood Estimation

Maximum Likelihood

Fixed Parameters θ

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

$$\sim P_{\theta}(D|X)P_{\theta}(X)$$

$$= P_{\theta}(D|X)$$

ML-Estimation (MLE)

- Only data likelihood, maximize for best X
 - Ignore prior, or uniform (pseudo-) prior
 - Model must be from restrictive family

Maximum-A-Posteriori (MAP) Estimation

Maximum-A-Posteriori (MAP)

Fixed model parameters θ

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

$$\sim P_{\theta}(D|X)P_{\theta}(X)$$

$$\hat{X} = \underset{X \in \Omega(X)}{\operatorname{arg max}} P_{\theta}(D|X)P_{\theta}(X)$$

$$\underset{\text{(unnormalized)}}{\hat{P}_{\theta}(D|X)}$$

MAP-Estimation

- Maximize for best X
 - Prior $P_{\theta}(X)$ non-trivial: X can be from overly flexible family
- Prior will fill in missing information
 - Can solve ill-posed problems, weak data term $P_{\theta}(D|X)$

Inference

Numerical trick for MAP/MLE

Obtain X by maximizing

$$P(X|D) \sim P(D|X)P(X)$$

• Neg-log likelihoods: $E(\cdot) = -\ln P(\cdot)$

$$E(X|D) \sim E(D|X) + E(X) \leftarrow \text{notation } E(\cdot)$$

notation E(·)
 used in Mod-1
 (variational modeling)

Useful for i.i.d. data

$$P(\mathbf{D}|X) = \prod_{i=1}^{n} P(\mathbf{d}_{i}|X) \rightarrow E(\mathbf{D}|X) = \sum_{i=1}^{n} E(\mathbf{d}_{i}|X)$$

Marginalization: Solution is the mean

$$\bar{X} = \mathbb{E}_{X \sim P_{\theta}(X|D)}[X]$$

$$= \int_{\mathbf{x} \in \Omega(X)} \mathbf{x} \cdot \frac{P_{\theta}(D|\mathbf{x})P_{\theta}(\mathbf{x})}{P_{\theta}(D)} d\mathbf{x}$$

Determine $X = \overline{X}$ by marginalization

- Average all solutions (can be expensive)
 - Weight by posterior
 - Same as estimation for simple posteriors (e.g., Gaussian)
- Requires "proper" normalization; no neg-log tricks

ML & MAP Learning (ML/MAP Parameter Estimation)

Maximum Likelihood

Maximum likelihood parameter estimation

$$P_{\theta}(X, D) = P_{\theta}(D|X)P_{\theta}(X)$$

$$\hat{\theta} = \arg \max_{\theta \in \Omega(\theta)} P_{\theta}(X)P_{\theta}(X)$$
properly normalized,
$$\int_{\theta \in \Omega(\theta)} P_{\theta}(X)P_{\theta}(X)$$

Idea

- Maximize likelihood of observed data under model
 - Attention: Need properly normalized densities!
 - Normalization usually depends on heta
 - Thus, cannot be neglected
 - Often serious computational problem
- Optional prior on X, no prior on θ

Maximum A Posteriori

Maximum a posteriori parameter estimation

$$P(\theta|(X,D)) = \frac{P((X,D)|\theta)P(\theta)}{P((X,D))}$$

$$\hat{\theta} = \arg \max_{\theta \in \Omega(\theta)} P((X, D)|\theta) P(\theta)$$

$$properly normalized,$$

Idea

• Add a prior on θ

often $P(X, D|\theta) = P(D|X, \theta)P(X|\theta)$ is used

 $\int = 1$

- Use Bayes' rule to determine posterior on θ
- Again, $P((X, D)|\theta)$ must be normalized correctly
 - Scale factor usually depends on θ

Learning via Bayesian Inference

Bayesians just ask simple*) questions:

$$\bar{\theta} = \mathbb{E}[\theta \cdot P(\theta|D)]$$

If you wanted Bayesian estimates:

$$\hat{\theta} = \arg\max_{\theta} \left(P(\theta | D) \right)$$

- This is not the same as "simple" MAP
 - We will see later why / how this works differently

^{*)} Computational costs might skyrocket. Terms and limitations apply.

Bayesians just ask simple*) questions:

$$P(\theta|D) = P(D|\theta)P(\theta)/P(D)$$
"marginal likelihood" prior on θ
(given θ)

^{*)} Computational costs might skyrocket. Terms and limitations apply.

Bayesians just ask simple*) questions:

$$P(\theta|D) \sim P(\theta)$$

$$\int_{\Omega(X)} P(D,X|\theta) dX$$
marginalization
of latent variable X
 $P(D,X|\theta) dX$

Bayesians just ask simple*) questions:

$$P(\theta|D) \sim P(\theta) \int_{\Omega(X)} P(D,X|\theta) dX$$

$$chain rule \qquad likelihood \qquad prior on X$$

$$\sim P(\theta) \int_{\Omega(X)} P(D|X,\theta) P(X|\theta) dX$$

$$prior on \theta \qquad Marginal Likelihood$$

Pros & Cons

- Good: Improved generalization behavior (more later)
- Bad: Integral over inferred model X might be infeasible

Remark: Break in Notation

Break in Naming

No longer looking for a probabilistic mapping

$$D \rightarrow X$$
, i.e. learn $P(X|D)$

- In the discussion of Bayesian learning, only D is data
 - We have computed

$$P(\theta|D) \sim P(\theta) \int_{\Omega(X)} P(D, X|\theta) dX$$

- So X is not fixed
- Only *D* is training data
 - Otherwise, substitute training data D by pairs (D, X)
 - Likelihood must measure the fit

So, again

Simple question:

$$P(\theta|(D,X)) \sim P(\theta) \left| \int_{\Omega((D,X))} P((D,X),(D',X')|\theta) d(D',X') \right|$$

Marginal Likelihood

Calculation (notation tedious):

$$P(\theta|(D,X)) \sim P(\theta) \int_{\Omega((D,X))} P((D,X),(D',X')|\theta) d(D',X')$$

$$= P(\theta) \int_{\Omega(X)} P((D', X') | (D, X), \theta) P((D', X') | \theta) d(D', X')$$

Looks awful, but is actually simple

Integrate over likelihood of predictions

Video #04c Summary

Summary

Answers to questions

- Maximum Likelihood Estimation (MLE)
- Maximum A Priori (MAP) Estimation
- Bayesian inference

Two modes

- Inference (fixed model parameters θ)
- Training/learning (of θ)

Computational Hurdles

General Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

MLE/MAP Inference (θ fixed)

- Can ignore denominator
- Can use unnormalized densities

MLE / MAP

Maximum search on log-density

MLE/MAP Learning (θ fixed)

- Denominator counts (usually depends on θ)
- Careful with normalization (dependence on θ)

Computational Hurdles

General Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

Bayesian Inference of X/θ

Bayesian Inference

Integration

- Need high-dimensional integration
- Need to be careful to weight everything correctly
 - Normalization of numerator affects weight
- Log-space computations usually do not help
- Learning: Again be careful with dependencies on θ