Modelling 2

STATISTICAL DATA MODELLING

Chapter 3

Classical and Bayesian Statistics

What happened so far...

Probability model

- Additive probability mass / density
- Empirical frequency approaches density with high likelihood

Now: Empirical sciences

- What can we learn from observations?
- How? (Algorithms)

How can we use Probability?

Again, (at least) two schools of though.

What is Probability?

Question

- What is probability?

Example

- A bin with 50 red and 50 blue balls
- Person A takes a ball
- Question to Person B: What is the probability for red?

What happened

- Person A took a blue ball
- Not visible to person B

Philosophical Debate...

An old philosophical debate

- What does "probability" actually mean?
- Can we use probabilities for
- Events with fixed, already determined outcome?
- But we do not know it for sure
- Events in the future that will happen only once?

Philosophical Debate...

"Fixed outcome" examples

- Probability for: life on mars
- Probability that the code you wrote is correct

In the future, but not repeatable

- Probability for: rainfall tomorrow
- Probability for: Next season of SciFi-series canceled

Two Camps

Frequentists' (traditional) view

- Well defined experiment
- Probability = relative number of positive outcomes

experiment
- Only meaningful as a mean of many experiments

Bayesian view

- Probability expresses a degree of belief
- Mathematical model of uncertainty
- Can be subjective

Mathematical Point of View

Mathematical definition of probability

- Properties of probability measures
- Defines rules for computing with probabilities
- Consistent with both views
- Model building is not math
- Which original probabilities to set/choose?
- Question arises when performing empirical science

We will use both

- Bayesian approaches for algorithms
- Frequentist arguments for "objective" error bounds

Operational Perspective

Mathematics

- Same rules, but different models
- Bayesian view is "more liberal": fewer restrictions

Operational Perspective

What Bayesian statistics permits (in addition)

- Everything can be a random variable
- Models / model parameter
- Facts \& single outcomes ("does Mars harbor live?")
- Probabilities can be subjective
- But must be consistent (Kolmogorov Axioms)
- (Fairly general: Kolmogorov follow from Cox Axioms)

Frequentist: only experimental results "random"

- "Likelihood that a model is correct" not permitted
(strictly speaking)

Learning from Data

(Maybe in its simplest possible form)

Example: Coin flipping

We found a coin

- Want to determine if/how fair it is

Probabilistic model

- Throw it once: Bernoulli experiment (binary outcome)

$$
\Omega=\{0,1\}, \quad \theta=P(1)
$$

- Throw it n times (independently):

Binomial distribution

$$
P(k)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}
$$

- Determine θ from experiment

Note: Quite General

Structurally important example

- Similar
- Effectivity of medication
- Likelihood of failure of a mechanical part
- Structure
- Gaining one bit of information
- Can repeat independently often

Learn p from Data \mathcal{D}

Experiment

- We collect data $\mathcal{D}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$
- Data is i.i.d. ("independently identically distributed")
- Model

$$
k=\sum_{i=1}^{n} x_{i}, \quad P(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Experimental Result

- We observe 58 " 1 "s for 100 coin tosses

Learning from Data

Part I: (Classical) Frequentist statistics in action

Fair Coin Toss: What to expect

$P(k)$ for varying k

Baseline

- $n=100$
- $\theta=0.5$ (fair)

Experiment

- $n=100$
- $k=58$

Frequentist Model

Possible questions

- Is the coin asymmetric (yes/no)?
- "Two sided test"
" Has the coin been tampered with towards " 1 "?
- "One sided test"

Null hypothesis

- The coin is fair $(\theta=0.5)$
- How likely are different deviations?
- We look at the two-sided test

Two Sided Test

How often do we observe deviations $\Delta k \geq 8$?

$$
\begin{aligned}
P(|k-50| \geq K) & =2 \cdot \sum_{k=K}^{100}\binom{100}{k} \theta^{k}(1-\theta)^{n-k} \\
& \approx 13 \%
\end{aligned}
$$

"Conclusion"

Assuming the coin was fair

- Seeing the result we got will happen (on average) to 13% of scientists (" $p=0.13$ ")
- Likely enough that we usually will not reject fairness
- Rather insufficient evidence for an unfair coin
- Traditional cut-offs: Likelihood of null-hypothesis
- $p=0.05$ („significant")
- $p=0.01$ ("highly significant")
" $p=2.7 \times 10^{-7}$ ("discovery" in fundamental physics)

"Conclusion"

Important

- The state of the world is unknown but fixed
- Never talk about the likelihood of the coin being fair/unfair
- "Reality" is objective, not probabilistic
- Outcomes of experiments are random
- Not the "probability of coin is unfair"
- But: "probability of observing such an outcome"

Of course

- Want to know the likelihood of the "coin unfair"
- What does $p=13 \%$ (or $p=1 \%$) tell us about it?

Example

Slightly more involved example

- Person feels unwell
- Doctor runs several tests for rare (and "bad") disease
- Test outcome "positive". Statistically,
- Sick person: Test always gives the correct answer
- Healthy person: False positive with $p=1 \%$
- But, we also know
- Disease is rare, only 1 in 10.000 patients has it
- ...of patients seeing a doctor...
- ... with these symptoms...
- ...not looking at any testing.

Intuition

How to Combine Likelihoods?

Bayes' rule

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

Derivation

$$
\begin{array}{ll}
=\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B) \\
\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)
\end{array}
$$

$$
\Rightarrow \operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})
$$

Joint Probabilistic Model

Test Characteristics

test neg test pos

| not sick | 0.99 | 0.01 | $\leftarrow P($ test $\mid \overline{\text { sick }})$ |
| :---: | :---: | :---: | :---: | :---: |
| sick | 0.0 | 1.0 | $\leftarrow P($ test \mid sick $)$ |

Disease Characteristics

$$
\begin{array}{cl}
\text { not sick } & 0.9999 \\
\text { sick } & 0.0001 \leftarrow P(\text { sick }) \\
\hline P(\overline{\text { sick }})
\end{array}
$$

Joint Model
$P($ test, sick $)=P($ test \mid sick $) \cdot P($ sick $)$

Joint Probabilistic Model

Applying Bayes' rule

$P($ sick \mid testPos $)=\frac{P(\text { testPos } \mid \text { sick }) \cdot P(\text { sick })}{P(\text { testPos })}$

$$
\begin{aligned}
& =\frac{P(\text { testPos } \mid \text { sick }) \cdot P(\text { sick })}{P(\text { testPos } \mid \text { sick }) P(\text { sick })+P(\text { testPos } \mid \overline{\text { sick }) P(\overline{\text { sick }})}} \\
& =\frac{1.0 \times 0.0001}{1.0 \times 0.0001+0.01 \times 0.9999} \\
& =\frac{0.0001}{0.0001+0.009999} \approx 0,009902 \\
& \approx 0,01 \leftarrow \text { most likely healthy }
\end{aligned}
$$

New Conclusion

What did we do?

- Better model
- Larger, more realistic probability space
- Full model p (test, disease)
- Conclude that disease is unlikely even $p=0.01$ test
- Avoid "prosecutor's fallacy"

Still Frequentist

- This is still a frequentist model
- We just modeled correctly how experiments "repeat"

When does this turn Bayesian?

Other cases

- Test results: (all at $p \leq 0.05$)
- Customers prefer green gummy bears over red
- There is a new elementary particle
- There is live on mars
- There is live on mars, and it loves watching our sitcoms
- We cannot assign prior probabilities here
- p("live on mars") is not frequentist

When does this turn Bayesian?

"Sagan principle"

- "Extraordinary claims need extraordinary evidence"
- Plausibility goes into judgement
- P("live on mars") is "very low"
- P("live on mars watches Alf") is even lower
- This is Bayesian now
- Subjective
- Probability for "facts"
- They are true or false, strictly speaking
- We only model our "believe"

Back to...

Part I: (Classical) Frequentist statistics in action

Coin Toss Experiment

Baseline

- $n=100$
- $\theta=0.5$ (fair)
- $P(k)$ for varying k

Experiment

- $n=100$
- $k=58$

Coin Toss Experiment

Maximum Likelihood Estimator

- Estimate model parameter
- MLE: highest likelihood for observation: $\theta=0.58$
- 95\% "confidence interval" $k \in[48,68]$

Coin Toss Experiment

Maximum Likelihood Estimator

- 95\% "confidence interval" $k \in[48,68]$
- Assuming $\theta=0.58$ is the true model, 95% of experiments will see outcomes $k \in[48,68]$
- Not likelihood or spread of true value

Learning from Data

Part II: Bayesian statistics in action

Bayesian Variant

We now redo everything

- Bayesian framework
- Parameter " θ " is a random variable
- Reminder: θ is the probability of " 1 "

Bayesian model

$$
P(k \mid \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}
$$

- No fundamental change
- Just consider θ as random variable now

Bayesian Variant

Inference Model

- Use Bayes rule "likelihood" "prior"

$$
\begin{aligned}
& \underbrace{P(\theta \mid k)}_{\text {"posteriou" }}=\frac{\overparen{P(k \mid \theta) \cdot \overparen{P(\theta)}}}{\underbrace{P(k)}} \\
& \text { "evidence" } \\
& \text { ("marginal likelihood") }
\end{aligned}
$$

This is how it looks like

Bayesian approach

- Yields probability density over parameters
- Allows to use uncertainty
- Principle: Keep uncertainty as long as possible!

This is how it looks like

Bayesian approach

- Yields probability density over parameters
- Allows to use uncertainty
- Principle: Keep uncertainty as long as possible!

This is how it looks like

Bayesian approach

- Yields probability density over parameters
- Allows to use uncertainty
- Principle: Keep uncertainty as long as possible!

But we want a value!

Inference

- Maximum à posteriori

$$
\theta_{\text {est }}=\underset{\theta}{\arg \max } P(\theta \mid k)
$$

- "True Bayesian": Marginalization

$$
\theta_{\mathrm{est}}=\int_{\theta=0}^{\theta=1} \theta \cdot P(\theta \mid k) d \theta=\mathbb{E}_{\theta}[P(\theta \mid k)]
$$

Two Types of Inference

"Estimation"

- Output most likely parameters ${ }^{p(x)}$
maximum
- Maximum density
- "Maximum likelihood"
- "Maximum a posteriori"
- Mean of the distribution

"Bayesian inference"

- Output probability density
- Distribution for parameters
- More information

- Marginalize to reduce dimension

Bayesian Variant

In our example

- Use Bayes rule

$$
\begin{aligned}
P(\theta \mid k) & \sim \frac{\underbrace{P(k \mid \theta) \overbrace{P(\theta)}^{P(k)}}_{\begin{array}{c}
\text { constant } \\
\text { (after experiment) }
\end{array}}}{}
\end{aligned}
$$

- Point of maximum density $=$ expectation $=0.58$
- Simple binomial distribution
- No priors used

MLE? MAP? BI?

Maximum likelihood vs. a posteriori

- Prior needed if problem is ill-posed
- Not enough information from data
- And vice-versa: MLE ok for highly constrained models

Marginalization vs. Maximum A Posteriori

- No difference for simple distributions (Gauss, Binom)
- Pronounced differences possible in complex models
- "Full Bayesian" inference usually reduces overfitting
- Integrating over models favors simple models
- Unfortunately, it is often very (too) costly

Fair Coin Toss: What to expect

Baseline

- $n=100$
- $\theta=0.5$ (fair)

Experiment

- $n=100$
- $k=58$

Conclusion

- $\theta=0.58$ most likely (MLE/MAP/Mean same in this case)

Uncertainty!

Principle

- Keep uncertainty as long as possible!

Summary

Bayesian \& Frequentist Statistics

Bayesian features

- Any knowledge can be probabilistic
- Also: models \& model parameters (" $p(\theta)$ ")
- No need for repeatable experiment
- Knowledge can be subjective
- Hand-crafted "priors", not learned from data

Disadvantages

- Model parameters as random variables " $p(\theta)$ " implies the use of priors
- Explicit or implicit - no way around knowledge modeling
- Frequentist: use "only" knowledge from data

What is it good for?

Bayesian vs. classical (frequentist)

- No "subjective" priors: Often same results
- But Bayesian approach lets us keep uncertainty along
- "Feels easier to use"
- Bayesian: general prior knowledge
- Different results if we had assumed coin "likely fair" or "likely biased towards 1" or the similar

What is it good for?

My personal / subjective impression

- Bayesian vs. frequentist techniques all plausible
- Differences arise for subjective priors
- Unavoidable when modeling distributions over parameters
- "Uninformative priors" are not always (never?) possible

When frequentist?

- Prove objective effect
- E.g.: Show that result in a scientific paper is "significant"
- E.g.: Measure accuracy of a (ML-) model
- Subjective probabilities harm credibility

What is it good for?

When Bayesian?

- Modeling knowledge
- Of a subjective agent
- Learn knowledge from data (over time)
- Quantify and encode uncertainty
- III-posed problems
- When data cannot provide all the information
- Regularization needed!
- Regularly the case in ML-applications
- Try explaining "cat images" without prior assumptions
- "Al" and "machine learning"
- Any complex result impossible without priors

\#goBayesian How do we do it?

Bayesian Principles

Model building

- Specify a complete model $p\left(x_{1}, \ldots, x_{d}\right)\left(\Omega=\mathbb{R}^{d}\right)$
- Always needed - not specifically Bayesian
- We can - in principle - compute any event probability
- Use Bayes' rule to fuse probabilistic knowledge
- Combine observations and prior knowledge
- Use statistical priors to encode "helpful" information
- If there is not enough data, you need priors
- In ML, we always need priors!
- Btw: This is also true for frequentism
- Priors are build implicitly into the parametrization
- But do not distort "confidence" values

Bayesian Principles

Inferring knowledge

- "Learning" models
- Inferring "predictions" from fixed models

What to do

- Marginalize over all irrelevant variables
- This might include model parameters
- Reduces potential for overfitting
- Result is the function or value that remains
- Function: free variables of interest remain
- Value: expectation of the model over "everything"

More to come

We will practice this in the next video.

