

Chapter 3 Classical and Bayesian Statistics

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

What happened so far...

Probability model

- Additive probability mass / density
- Empirical frequency approaches density with high likelihood

Now: Empirical sciences

- What can we learn from observations?
- How? (Algorithms)

How can we use Probability?

Again, (at least) two schools of though.

What is Probability?

Question

What is probability?

Example

- A bin with 50 red and 50 blue balls
- Person A takes a ball
- Question to Person B: What is the probability for red?

What happened

- Person A took a blue ball
- Not visible to person B

|--|

Philosophical Debate...

An old philosophical debate

- What does "probability" actually mean?
- Can we use probabilities for
 - Events with fixed, already determined outcome?
 - But we do not know it for sure
 - Events in the future that will happen only once?

Philosophical Debate...

"Fixed outcome" examples

- Probability for: life on mars
- Probability that the code you wrote is correct

In the future, but not repeatable

- Probability for: rainfall tomorrow
- Probability for: Next season of SciFi-series canceled

Two Camps

Frequentists' (traditional) view

- Well defined experiment
- Probability = relative number of positive outcomes
- Only meaningful as a mean of many experiments

Bayesian view

- Probability expresses a degree of belief
- Mathematical model of uncertainty
- Can be subjective

[https://en.wikipedia.org/wiki/Thomas_Bayes]

Mathematical Point of View

Mathematical definition of probability

- Properties of probability measures
 - Defines rules for computing with probabilities
 - Consistent with both views
- Model building is not math
 - Which original probabilities to set/choose?
 - Question arises when performing empirical science

We will use both

- Bayesian approaches for algorithms
- Frequentist arguments for "objective" error bounds

Operational Perspective

Mathematics

- Same rules, but different models
- Bayesian view is "more liberal": fewer restrictions

Operational Perspective

What Bayesian statistics permits (in addition)

- Everything can be a random variable
 - Models / model parameter
 - Facts & single outcomes ("does Mars harbor live?")
- Probabilities can be subjective
 - But must be consistent (Kolmogorov Axioms)
 - (Fairly general: Kolmogorov follow from Cox Axioms)

Frequentist: only experimental results "random"

 "Likelihood that a model is correct" not permitted (strictly speaking)

Learning from Data

(Maybe in its simplest possible form)

Example: Coin flipping

We found a coin

Want to determine if/how fair it is

Probabilistic model

- Throw it once: Bernoulli experiment (binary outcome) $\Omega = \{0,1\}, \quad \theta = P(1)$
- Throw it n times (independently):

Binomial distribution $P(k) = \binom{n}{k} \theta^{k} (1 - \theta)^{n-k}$

Determine *θ* from experiment

Note: Quite General

Structurally important example

- Similar
 - Effectivity of medication
 - Likelihood of failure of a mechanical part
- Structure
 - Gaining one bit of information
 - Can repeat independently often

Learn p from Data \mathcal{D}

Experiment

- We collect data $\mathcal{D} = (x_1, \dots, x_n) \in \{0, 1\}^n$
 - Data is i.i.d. ("independently identically distributed")
- Model

$$k = \sum_{i=1}^{n} x_i$$
, $P(k) = {n \choose k} p^k (1-p)^{n-k}$

Experimental Result

We observe 58 "1"s for 100 coin tosses

Learning from Data

Part I: (Classical) Frequentist statistics in action

Fair Coin Toss: What to expect

P(k) for varying k

Baseline

- n = 100
- $\theta = 0.5$ (fair)

Experiment

- n = 100
- *k* = 58

Frequentist Model

Possible questions

- Is the coin asymmetric (yes/no)?
 - "Two sided test"
- Has the coin been tampered with towards "1"?
 - "One sided test"

Null hypothesis

- The coin is fair ($\theta = 0.5$)
- How likely are different deviations?
 - We look at the two-sided test

Two Sided Test

How often do we observe deviations $\Delta k \ge 8$? $P(|k-50| \ge K) = 2 \cdot \sum_{k=K}^{100} {\binom{100}{k}} \theta^k (1-\theta)^{n-k}$ $\approx 13\%$

"Conclusion"

Assuming the coin was fair

- Seeing the result we got will happen (on average) to 13% of scientists ("p = 0.13")
 - Likely enough that we usually will not reject fairness
 - Rather insufficient evidence for an unfair coin
- Traditional cut-offs: Likelihood of null-hypothesis
 - *p* = 0.05 ("significant")
 - p = 0.01 ("highly significant")
 - $p = 2.7 \times 10^{-7}$ ("discovery" in fundamental physics)

"Conclusion"

Important

- The state of the world is unknown but fixed
 - Never talk about the likelihood of the coin being fair/unfair
 - "Reality" is objective, not probabilistic
- Outcomes of experiments are random
 - Not the "probability of coin is unfair"
 - But: "probability of observing such an outcome"

Of course

- Want to know the likelihood of the "coin unfair"
- What does p = 13% (or p = 1%) tell us about it?

Example

Slightly more involved example

- Person feels unwell
 - Doctor runs several tests for rare (and "bad") disease
- Test outcome "positive". Statistically,
 - Sick person: Test always gives the correct answer
 - Healthy person: False positive with p = 1%
- But, we also know
 - Disease is rare, only 1 in 10.000 patients has it
 - ...of patients seeing a doctor...
 - ...with these symptoms...
 - ...not looking at any testing.

Intuition

How to Combine Likelihoods?

Bayes' rule

$$Pr(A | B) = \frac{Pr(B | A) \cdot Pr(A)}{Pr(B)}$$

Derivation

Pr(A \cap B) = Pr(A|B) · Pr(B)
Pr(A \cap B) = Pr(B|A) · Pr(A)

 $\Rightarrow \Pr(A|B) \cdot \Pr(B) = \Pr(B|A) \cdot \Pr(A)$

Joint Probabilistic Model

Dise	ase Characteristics
0.9999	$\leftarrow P(sick)$
0.0001	$\leftarrow P(\overline{sick})$
	0.9999

Joint Model

 $P(test, sick) = P(test|sick) \cdot P(sick)$

Joint Probabilistic Model

Applying Bayes' rule

 $P(\text{sick}|\text{testPos}) = \frac{P(\text{testPos}|\text{sick}) \cdot P(\text{sick})}{P(\text{testPos})}$

 $P(\text{testPos}|\text{sick}) \cdot P(\text{sick})$

 $= \frac{1}{P(\text{testPos}|\text{sick})P(\text{sick}) + P(\text{testPos}|\overline{\text{sick}})P(\overline{\text{sick}})}$

 1.0×0.0001

 $= \frac{1.0 \times 0.0001 + 0.01 \times 0.9999}{1.0 \times 0.9999}$

 $=\frac{0.0001}{0.0001+0.009999}\approx 0,009902$

 $\approx 0,01 \leftarrow most likely healthy$

New Conclusion

What did we do?

- Better model
 - Larger, more realistic probability space
 - Full model p(test, disease)
- Conclude that disease is unlikely even p = 0.01 test
 - Avoid "prosecutor's fallacy"

Still Frequentist

- This is still a frequentist model
- We just modeled correctly how experiments "repeat"

When does this turn Bayesian?

Other cases

- Test results: (all at *p* ≤ 0.05)
 - Customers prefer green gummy bears over red
 - There is a new elementary particle
 - There is live on mars
 - There is live on mars, and it loves watching our sitcoms
- We cannot assign prior probabilities here
 - p("live on mars") is not frequentist

When does this turn Bayesian?

"Sagan principle"

- "Extraordinary claims need extraordinary evidence"
 - Plausibility goes into judgement
 - P("live on mars") is "very low"
 - P("live on mars watches Alf") is even lower
- This is Bayesian now
 - Subjective
 - Probability for "facts"
 - They are true or false, strictly speaking
 - We only model our "believe"

Back to... Learning from Data

Part I: (Classical) Frequentist statistics in action

Coin Toss Experiment

Baseline

- n = 100
- $\theta = 0.5$ (fair)
- P(k) for varying k

Experiment

- n = 100
- *k* = 58

Coin Toss Experiment

Maximum Likelihood Estimator

- Estimate model parameter
- MLE: highest likelihood for observation: $\theta = 0.58$
- 95% "confidence interval" $k \in [48,68]$

Coin Toss Experiment

Maximum Likelihood Estimator

- 95% "confidence interval" $k \in [48,68]$
- Assuming $\theta = 0.58$ is the true model, 95% of experiments will see outcomes $k \in [48,68]$
 - Not likelihood or spread of true value

Learning from Data

Part II: Bayesian statistics in action

Bayesian Variant

We now redo everything

- Bayesian framework
- Parameter " θ " is a random variable
 - Reminder: θ is the probability of "1"

Bayesian model

$$P(k|\boldsymbol{\theta}) = \binom{n}{k} \boldsymbol{\theta}^{k} (1-\boldsymbol{\theta})^{n-k}$$

- No fundamental change
- Just consider θ as random variable now

Bayesian Variant

Inference Model

This is how it looks like

Bayesian approach

- Yields probability density over parameters
 - Allows to use uncertainty
- Principle: Keep uncertainty as long as possible!

This is how it looks like

Bayesian approach

- Yields probability density over parameters
 - Allows to use uncertainty
- Principle: Keep uncertainty as long as possible!

This is how it looks like

Bayesian approach

- Yields probability density over parameters
 - Allows to use uncertainty
- Principle: Keep uncertainty as long as possible!

Two Types of Inference

"Estimation"

- Output most likely parameters
 - Maximum density
 - "Maximum likelihood"
 - "Maximum a posteriori"
 - Mean of the distribution

"Bayesian inference"

- Output probability density
 - Distribution for parameters
 - More information
- Marginalize to reduce dimension

Bayesian Variant

In our example

2

$$= \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

- Point of maximum density = expectation = 0.58
 - Simple binomial distribution
 - No priors used

MLE? MAP? BI?

Maximum likelihood vs. a posteriori

- Prior needed if problem is ill-posed
 - Not enough information from data
 - And vice-versa: MLE ok for highly constrained models

Marginalization vs. Maximum A Posteriori

- No difference for simple distributions (Gauss, Binom)
 - Pronounced differences possible in complex models
- "Full Bayesian" inference usually reduces overfitting
 - Integrating over models favors simple models
 - Unfortunately, it is often very (too) costly

Fair Coin Toss: What to expect

Baseline

- n = 100
- $\theta = 0.5$ (fair)

Experiment

- *n* = 100
- *k* = 58

Conclusion

• $\theta = 0.58 \text{ most likely} (MLE/MAP/Mean same in this case)$

Uncertainty!

Principle

Keep uncertainty as long as possible!

Summary

Bayesian & Frequentist Statistics

Bayesian features

- Any knowledge can be probabilistic
 - Also: models & model parameters (" $p(\theta)$ ")
 - No need for repeatable experiment
- Knowledge can be subjective
 - Hand-crafted "priors", not learned from data

Disadvantages

- Model parameters as random variables " $p(\theta)$ " implies the use of priors
 - Explicit or implicit no way around knowledge modeling
- Frequentist: use "only" knowledge from data

What is it good for?

Bayesian vs. classical (frequentist)

- No "subjective" priors: Often same results
 - But Bayesian approach lets us keep uncertainty along
 - "Feels easier to use"
- Bayesian: general prior knowledge
 - Different results if we had assumed coin "likely fair" or "likely biased towards 1" or the similar

What is it good for?

My personal / subjective impression

- Bayesian vs. frequentist techniques all plausible
- Differences arise for subjective priors
 - Unavoidable when modeling distributions over parameters
 - "Uninformative priors" are not always (never?) possible

When frequentist?

- Prove objective effect
 - E.g.: Show that result in a scientific paper is "significant"
 - E.g.: Measure accuracy of a (ML-) model
- Subjective probabilities harm credibility

What is it good for?

When Bayesian?

- Modeling knowledge
 - Of a subjective agent
 - Learn knowledge from data (over time)
 - Quantify and encode uncertainty

III-posed problems

- When data cannot provide all the information
- Regularization needed!
- Regularly the case in ML-applications
 - Try explaining "cat images" without prior assumptions
- "AI" and "machine learning"
 - Any complex result impossible without priors

#goBayesian HOW dO we do it?

Bayesian Principles

Model building

- Specify a complete model $p(x_1, ..., x_d)$ $(\Omega = \mathbb{R}^d)$
 - Always needed not specifically Bayesian
 - We can in principle compute any event probability
- Use Bayes' rule to fuse probabilistic knowledge
 - Combine observations and prior knowledge

Use statistical priors to encode "helpful" information

- If there is not enough data, you need priors
 - In ML, we always need priors!
- Btw: This is also true for frequentism
 - Priors are build implicitly into the parametrization
 - But do not distort "confidence" values

Bayesian Principles

Inferring knowledge

- "Learning" models
- Inferring "predictions" from fixed models

What to do

- Marginalize over all irrelevant variables
 - This might include model parameters
 - Reduces potential for overfitting
- Result is the function or value that remains
 - Function: free variables of interest remain
 - Value: expectation of the model over "everything"

If too costly,

orior

More to come

We will practice this in the next video.

