Modelling 2 STATISTICAL DATA MODELLING

Chapter 2

 Uncertainty
Statistical Data Modeling

This lecture is about:

- ...understanding inductive reasoning
- ...done algorithmically / systematically

Our School of Thought

Empirical modeling

- Model for reality
- Rely on observation
- Good models are
- Predictive
- Falsifiable

Learning from data

- Probabilistic
- Always comes with uncertainty

Probability Theory Recap

(skip ahead if familiar)

Modeling Uncertainty

Recap: Finite probability space (Ω, P)

- "Sample space" $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$
- "Outcomes" $\omega \in \Omega$
- Exactly one $\omega \in \Omega$ will happen
- Probability $P(\omega) \in[0,1]$ for each $\omega \in \Omega$
- The sum of all probabilities is 1 .

Events

Event: Set of outcomes

- Sample space $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ (finite)
- Any subset $A \subseteq \Omega$ is called an "event"
- Rule: sum up

$$
P(A)=\sum_{\omega \in A} P(\omega)
$$

Example: Dice

$$
\text { " } \begin{aligned}
P(\text { "odd" }) & =P(\text { " } 1 \text { " })+P(\text { "3") }+P(\text { "5" }) \\
& =3 \times \frac{1}{6}=\frac{1}{2}
\end{aligned}
$$

Summary: Probability Measure

Basic Idea

- Every outcome has a likelihood
- Complex events: Sum up likelihoods

"Learning" model from data

$$
P(" 1 \text { " })=\ldots=P\left({ }^{\prime} 6 \text { " }\right)=\frac{1}{6}
$$

- Determine likelihood of outcomes
"Inferring" likelihood of events
- Sum up likelihoods of outcomes that lead to event

Formal Definition

Probability

Technical Complications

Basic stochastic lecture >> 5 slides

- Problems if Ω infinite
- Particularly relevant:
- Real numbers as outcome
- Real vectors as outcome
- Power set $\mathcal{P}(\mathbb{R})$ is not "measurable"
- Cannot define consistent "sum" of probabilities

Technical Complications

Mathematical definition

- Replace set of all subset $\mathcal{P}(\Omega)$ by "set of reasonable subsets"
- σ-Algebra of Ω
- "Event space" \mathcal{F}
- Define P (event) as normed, non-negative, additive measure on that algebra

Intuition

- Same intuition: Summing up / integrating "probability mass" on domain

Kolmogorov's Axioms

Probability space

- Sample space:
- Event space:
- Events:
- Probability measure: $P: \mathcal{F} \rightarrow \mathbb{R}$

Axioms: Please behave like discrete case!

- Positive: $P(A) \geq 0$
- Additive: $[A \cap B=\emptyset] \Rightarrow[P(A)+P(B)=P(A \cup B)]$
- Normed: $P(\Omega)=1$

Other Properties Follow

Derived from Kolmogorov's axioms

$$
\begin{aligned}
& \text { - } P(\overline{\mathrm{~A}}) \in[0 . .1] \\
& \text { - } P(\mathrm{~A})=P(\Omega \backslash \mathrm{~A})=1-P(\mathrm{~A}) \\
& \text { - } P(\varnothing)=0 \\
& \text { - } P(\mathrm{~A} \cup \mathrm{~B})=P(\mathrm{~A})+P(\mathrm{~B})-P(\mathrm{~A} \cap \mathrm{~B})
\end{aligned}
$$

We are still "summing up" density

Discrete vs. General Model

Consistent with discrete model

Continuous Density

Major Motivation: Density model

- No elementary probabilities
- Instead: density $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\geq 0}$

Probability Densities

Setup

- Domain $\Omega \subseteq \mathbb{R}^{d}$, outcomes $\mathrm{x} \in \mathbb{R}^{d}$
- Probability density

$$
p: \Omega \rightarrow \mathbb{R} \quad \text { (integrable) }
$$

- Properties

$$
\begin{aligned}
& \forall \mathrm{x} \in \Omega: p(\mathrm{x}) \geq 0 \\
& \int_{\mathrm{x} \in \Omega} p(\mathrm{x}) d \mathrm{x}=1
\end{aligned}
$$

- Events

$$
\begin{array}{r}
P(A):=\int_{\mathbf{x} \in A} p(\mathrm{x}) d \mathbf{x} \quad(\text { for } A \in \mathcal{B}(\Omega)) \tag{17}\\
(\mathcal{B}=\text { Borel } \sigma \text {-algebra })
\end{array}
$$

Continuous Density

Intuition

- Just "very small" outcome "buckets"

Probability Densities

Remarks

- Densities vs. probability
- $P(A)$ to denote probability of events/outcomes
- $p(\mathrm{x})$ to denote probability densities
- Only integrals of p are probabilities

Probability Densities

Remarks

- Remark: $p(\mathrm{x})>1$ is possible as long as $\int p=1$
- $p(\mathbf{x})$ are not probabilities, but densities

Probability Densities

discrete model

continuous model

Dirac-Delta pulses

$p(x)=\Sigma_{i} \delta\left(x-\omega_{i}\right) P\left(\omega_{i}\right)$
Intuition: (Modeling 1)

$$
\int_{\mathbb{R}^{d}} \delta(x) d x=1
$$

$\delta(x)$ „very large close to x^{\prime}
$\delta(x)=0$ everywhere else

Remarks

- Discrete models through Dirac densities
- We will use this as much as possible to unify notation

Random Variables

Naming convention

- Sample space Ω with probability measure P
- Mapping $X: \Omega \rightarrow \mathbb{R}^{d}$ is called "random variable"
- Often equivalent to $\Omega=\mathbb{R}^{d}$
- $X=\mathrm{x}$ can be an "elementary" outcome, but does not have to

Description with densities

- We describe random variables with densities

$$
p(\mathrm{x})=\text { probability density for " } X=\mathrm{x} \text { " }
$$

Marginals

Example

- Random variables $X, Y \in[0,1]$
- Joint distribution $p(x, y)$
- We do not know y (could by anything)
- What is the distribution of x ?

$$
p(x):=\int_{0}^{1} p(x, y) d y
$$

Marginals

General rule

- Marginal probability
- Integrate / sum over all unspecified
- Specified variables
- What we care about
- Often: observed / measured
- Unspecified variables
- Not relevant in this context
- Might be "latent" (unobservable)
- Might be model parameters (more later)

Summary

What we have seen so far...

Probability space

- Density on some domain, sums up to 100\%

Probability densities

- Continuous elementary outcomes

Events

- Subsets (that can be measured)

Marginal distributions

- Distribution for events (subsets) where we have only partial information:

$$
p(\mathbf{x}, \mathrm{y}) \rightarrow p(\mathbf{x})
$$

$$
\begin{aligned}
& \text { Statistical } \\
& \text { Dependency }
\end{aligned}
$$

Conditional Probability (Rnd-Var.)

Conditional Probability

- $\mathrm{P}(A \mid B)=$ Probability of A given B [is true]
- Definition

$$
\mathrm{P}(A \cap B)=\mathrm{P}(A \mid B) \cdot \mathrm{P}(B)
$$

Corollary

- If $P(B) \neq 0$:

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}
$$

Conditional Probability

Statistical Independence

- Definition

$$
\begin{aligned}
& A \text { and } B \text { independent } \\
\Leftrightarrow & \mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)
\end{aligned}
$$

- Knowing the value of A does not yield information about B
- And vice versa
- Also: $\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)(=\mathrm{P}(A \mid B) \cdot \mathrm{P}(B))$ means that $\mathrm{P}(A \mid B)=\mathrm{P}(A)$, and $\mathrm{P}(B \mid A)=\mathrm{P}(B)$

Random Variables

Conditional Probability

- $p(\mathbf{x} \mid \mathbf{y})=$ Probability density of x given y [has occured]
- Definition $p(\mathbf{x}, \mathbf{y})=p(\mathbf{x} \mid \mathbf{y}) \cdot p(\mathbf{y})$

Corollary

- If $p(\mathrm{y}) \neq 0$:
$p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})}$

Conditional Probability

Statistical Independence

- Definition:
\mathbf{x} and \mathbf{y} independent
$\Leftrightarrow p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) \cdot p(\mathbf{y})$
- Knowing the value of x does not yield information about y (and vice versa)

$$
\begin{aligned}
& \text { - } p(\mathbf{x} \mid \mathbf{y})=p(\mathbf{x}) \\
& \text { - } p(\mathbf{y} \mid \mathbf{x})=p(\mathbf{y})
\end{aligned}
$$

Factorization

Independence = Density Factorization

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) \times p\left(x_{2}\right)
$$

Factorization

Not Independence \rightarrow No Factorization

$$
=p\left(x_{1}, x_{2}\right)
$$

Factorization

Independence $=$ Density Factorization

$$
\begin{gathered}
p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) \times p\left(x_{2}\right) \\
O\left(k^{d}\right) \quad O(d \cdot k)
\end{gathered}
$$

Complexity

Curbing complexity

- n pieces of information (bits)
\rightarrow up to 2^{n} different combinations
\rightarrow up to 2^{n} different probabilities
- Statistical dependencies
- Arbitrary structure: all combinations might matter
- Fully independent: linear
$2 n$ instead of 2^{n}
- Truth is "in between"

Restricted dependencies make model feasible

More Drastic Example

Random Images

- 100×100 pixel
- 8 bit (256 grey values)

Independent Pixels

- $256 \times 100^{2}=2560000$ probability values

Arbitrary Dependencies

- $256^{100^{2}}=2.51 \times 10^{24082}$ possible images / probabilities

Modeling Examples

How to build a probability space?

Statistics appears unintuitive

- Often: Choice of Ω major problem
- Looking at events can be misleading
- Often: higher dimensionality needed

How to build a probability space?

Example: Weather in Mainz

- Interesting events: \{rain, sunshine, cloudy\}

Model 1: Low-level

- Sample space: $\Omega=$ Set of all states of the earth's atmosphere
- ICON weather model: 265M grid cells, 10 (major) variables
- Define events by thresholds
- Water / ice content
- Very expensive (too expensive?)

- But captures the situation quite comprehensively

How to build a probability space?

Example: Weather in Mainz

- Interesting events: \{rain, sunshine, cloudy\}

Model 2a: Event-level

- Problematic: $\Omega=\{$ rain, sunshine, cloudy $\}$
- Not mutually exclusive
- Sun can shine during rain
- Complex dependencies need to be captured
- Not suitable for reasoning about the weather

How to build a probability space?

Example: Weather in Mainz

- Interesting events: \{rain, sunshine, cloudy\}

Model 2b: Event-level

- All combinations: $\Omega=\{r s c, s c, r c, r z, y, s, c, \varnothing\}$
- All possible combinations of events
- Some might be impossible, i.e., $P=0$
- Exponential costs
- 2^{n} outcomes for n Boolean variables
- Not uncommon, if dependency structure is not known

How to build a probability space?

Example: Weather in Mainz

- Random variables:
- rainfall [mm] (R)
- windspeed $[\mathrm{m} / \mathrm{s}](\mathbb{R})$
- cloudcover [\%] (R)

Model 3: 3D Density

- Naïve discretization: Histogram/bins
- Again, exponential in number of variables
- k different values, n variables: k^{n} outcomes

How to build a probability space

Rules of thumb

- Define "experiment" clearly
- Collect variables
- Observables \& unobserved / latent parameters
- Assume all combinations have likelihood (densities)
- Unless you know better
- Model assigns probability for all relevant combinations
- If you know better
- Restrict dependencies
- Only then you can build a complex model

Summary

What we have seen so far...

Statistical independence

- Probability/density factorizes

$$
p(x, y)=p(x) \cdot p(y)
$$

- Dependency: potentially complex function structure

$$
p(x, y)
$$

Conditional probability

- Conditional density „ x given $y^{\prime \prime}: p(x \mid y)=\frac{p(x, y)}{p(y)}$
- Take joint density $p(x, y)$
- Renormalize by $p(y)$ (because y has happened already)

Complexity

- Unrestricted dependencies lead to exponential model size

Calculus with Densities

Summary

tl;dw: Calculus

- Discussing functions $p: \Omega \rightarrow \mathbb{R}$
- Understanding them better:
- Switch the basis / project on test-functions

Moments of Distributions

Density Function (1D)

- $p: \mathbb{R} \rightarrow \mathbb{R}^{\geq 0}$

Expected Value / Mean:

$$
\begin{aligned}
E(p) & =\mu:=\langle p, x\rangle \\
& =\int_{\mathbb{R}} p(x) \cdot x d x
\end{aligned}
$$

Variance:

- $\operatorname{Var}(p)=\sigma^{2}:=\left\langle p,(x-\mu)^{2}\right\rangle$

$$
=\int_{\mathbb{R}} p(x) \cdot(x-\mu)^{2} d x
$$

Standard Deviation

Bounds on spread

- Standard deviation

$$
\sigma=\sqrt{\operatorname{Var}(p)}
$$

- Expected range of variation

Moments of Distributions

Multi-variate density function

- Density $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\geq 0}$
- $E(p)=\mu:=\langle p, \mathbf{x}\rangle=\int_{\mathbb{R}^{d}} p(\mathbf{x}) \cdot \mathbf{x} d x$
- $\operatorname{Cov}\left(x_{i}, x_{j}\right):=\left\langle p,\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right\rangle$

$$
p\left(x_{1}, x_{2}\right)
$$

$=\int_{\mathbb{R}^{d}} p(\mathbf{x})\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) d x$

Properties

Expected value

- $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$
- $E(\lambda X)=\lambda E(X)$

Variance

- $\operatorname{Var}(\lambda \mathrm{X})=\lambda^{2} \operatorname{Var}(\mathrm{X})$
- Let X, Y be independent, then: $\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})$

Entropy

(There will be a whole video on this)

Entropy

Entropy: How random?

$$
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right)
$$

Model

- Binary coding
- $\mathcal{O}\left(\log \frac{1}{p}\right)$ bits for...
- ...events with probability p

Examples

$$
H=-\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}=\log n
$$

$H=0$

Limits:
 Repeating Experiments

Law of Large Numbers

Repeated experiment

- Experiment, outcome $x \in \mathbb{R}$
- Repeated n times

We look at the mean

$$
\bar{X}_{n}=\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)
$$

(Weak) law of large numbers

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0
$$

Stochastic Convergence

Averaging of independent trials

- Convergence rate is $\frac{1}{\sqrt{n}}$
- Lousy convergence rate

Proof

Proof: weak law of large numbers

- Additionally assumption: finite variance $\operatorname{Var}\left(\mathrm{X}_{i}\right)=\sigma^{2}$
- The theorem then follows from
- Additivity of variances
- Chebyshev's bound

$$
\begin{aligned}
& \operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)\right)=\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)\right)=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n} \\
& \quad \Rightarrow \sigma\left(\bar{X}_{n}\right)=\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

- Chebyshev: $\operatorname{Pr}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$

Algebra with
 Random Variables

Random Variable Vector Algebra

Vector algebra

- Given independent random variables X, Y
- Look at operation $Z=f(X, Y)$ with $\Omega_{Z}=\Omega_{X} \times \Omega_{Y}$

Scaling random variables

- Scaling variable: $Z=\lambda X$ (Factor λ not random)
- Scaling variable: $\quad p_{\mathrm{z}}(\mathrm{z})=p_{\mathrm{x}}\left(\frac{1}{\lambda} \mathrm{z}\right)$

Adding independent random variables

- Adding variables: $Z=X+Y$
- Convoling densities: $p_{\mathrm{z}}(\mathrm{z})=p_{\mathrm{x}}(\mathrm{x}) \otimes p_{\mathrm{y}}(\mathrm{y})$

Convolution Example

Uniform distribution on [0,1]:

- "Box" function
- Auto-convolution yields "triangle" function
- Remark: Increases smoothness by one order

Illustration

Remarks

Repeated auto-convolution

- Of a uniform distribution
- Yields increasingly smooth functions
- Called "B-splines of order k " (for k-fold convolution)
- Converges to Gaussian normal distribution
- Of general distributions
- Converges to special limit distributions
- Gaussian if mean and variance exist
- Even if distributions are different (but independent)
- "Central limit theorem"

Central Limit Theorem

Why are so many phenomena normal-distributed?

- Let X_{1}, \ldots, X_{n} be real (1D) random variables with means μ_{i} and finite variances σ_{i}^{2}.
- Then the distribution of the mean

$$
\frac{\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \mu_{i}}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}} \rightarrow \mathcal{N}(0,1)
$$

converges to a normal distribution.
Multi-dimensional variant

- Similar result for multi-dimensional case

Common

 Parametric Distributions
Well-known probability distributions

Important distributions

- Uniform distribution
- Only defined for finite domains
- Maximum entropy among all distributions
- Binomial distribution
- Coin-flipping
- (one bit at a time)

Well-known probability distributions

Important distributions

- Gaussian / normal distribution
- Infinite domains
- Maximizes entropy for fixed variance

- Heavy tail distributions
- "Outlier robust"
- Example: Exponential/Laplace/L1
- Drops-off "slower than Gaussian"

Uniform distribution

What should we say?

- Fixed domain Ω with...
- ...finite area $|\Omega|=\int_{\Omega} 1 d x<\infty$
- Density

$$
p(x)=\frac{1}{|\Omega|}
$$

Attention

- No uniform distribution on infinite domains
- No "uniform distribution on \mathbb{R}^{\prime}

Binomial Distriubution

Binomial Distribution

- Two possible outcomes "1","0"
- Probabilities p, $(1-p)$
- Repeated n times i.i.d.

Formulas

- $p(k$ times " 1 " $)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- $\mu=n p$
- $\sigma^{2}=n p(1-p)$
- Asymptotically ($n \rightarrow \infty$) Gaussian (CLT)

Gaussians

Gaussian Normal Distribution

- Two parameters: μ, σ
- Density:

$$
\mathcal{N}_{\mu, \sigma}(x):=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Mean: μ
- Variance: σ^{2}

Log Space

Neg-log-density

$$
\begin{aligned}
\log \mathcal{N}_{\mu, \sigma}(x) & :=\frac{(x-\mu)^{2}}{2 \sigma^{2}}+\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right) \\
& \sim \frac{1}{2 \sigma^{2}}(x-\mu)^{2}
\end{aligned}
$$

Calculations in log-space

- Densities of products of Gaussians are Sums of quadratic polynomials
- Calculations simplified in log-space
- Attention: Sum of Gaussians do not simplify!
\rightarrow Modelling 1

Multi-Variate Gaussians

Gaussian normal distribution in d dimensions

- Two parameters
- Mean $\boldsymbol{\mu}$ (d-dim-vector)
- Covariance matrix $\sum(d \times d$ matrix $)$
- Density

$$
\mathcal{N}_{\mu, \Sigma}(\mathrm{x}):=\left(\frac{1}{(2 \pi)^{-\frac{d}{2}} \operatorname{det}(\Sigma)^{-\frac{1}{2}}}\right) e^{-\frac{1}{2}(\mathrm{x}-\mu)^{\mathrm{T}} \Sigma^{-1}(\mathrm{x}-\mu)}
$$

Log Space

Neg-Log Density

- $\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)+$ const
- Quadratic multivariate polynomial

Consequences

- Optimization (maximum density) \rightarrow linear system
- Gaussians are ellipsoids
- Eigenvectors of Σ are main axes
- Eigenvalues are extremal variances

Example: A "Heavy Tail"-Distribution

More spread out than Gaussian

- Exponential distribution

$$
\begin{gathered}
p(x):=\lambda e^{-\lambda|x|} \\
x \geq 0
\end{gathered}
$$

- Mean: λ^{-1}
- Variance: λ^{-2}
- Laplace distribution

$$
\begin{gathered}
p(x):=\frac{1}{2} \lambda e^{-\lambda|x-\mu|} \\
x \in \mathbb{R}
\end{gathered}
$$

Gaussian vs Laplace distribution
(height normalized)

- Mean: μ
- Variance: $2 \lambda^{-2}$

Summary

What we have seen so far...

Moments

- Mean, variance, etc...
- Project density on polynomials

Limits

- Weak law of large numbers
- Central limit theorem (finite variance)
(Some) Standard distributions
- Binomial distribution
- Gaussian normal distribution
- Exponential / Laplace distribution

