Modelling 2 STATISTICAL DATA MODELLING

Chapter 2 Uncertainty

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Statistical Data Modeling

This lecture is about:

- ...understanding inductive reasoning
- ...done algorithmically / systematically

Our School of Thought

Empirical modeling

- Model for reality
 - Rely on observation
- Good models are
 - Predictive
 - Falsifiable

Learning from data

- Probabilistic
- Always comes with uncertainty

Probability Theory Recap

(skip ahead if familiar)

Modeling Uncertainty

Recap: Finite probability space (Ω, P)

- "Sample space" $\Omega = \{\omega_1, \dots, \omega_n\}$
- "Outcomes" $\omega \in \Omega$
 - Exactly one $\omega \in \Omega$ will happen
- Probability $P(\omega) \in [0,1]$ for each $\omega \in \Omega$
 - The sum of all probabilities is 1.

Events

Event: Set of outcomes

- Sample space $\Omega = \{\omega_1, \dots, \omega_n\}$ (finite)
- Any subset $A \subseteq \Omega$ is called an "event"
- Rule: sum up

$$P(A) = \sum_{\omega \in A} P(\omega)$$

Example: Dice

•
$$P("odd") = P("1") + P("3") + P("5")$$

= $3 \times \frac{1}{6} = \frac{1}{2}$

Summary: Probability Measure

Basic Idea

- Every outcome has a likelihood
- Complex events: Sum up likelihoods

"Learning" model from data

Determine likelihood of outcomes

"Inferring" likelihood of events

 Sum up likelihoods of outcomes that lead to event

Formal Definition Probability

Technical Complications

Basic stochastic lecture \gg 5 slides

- Problems if Ω infinite
- Particularly relevant:
 - Real numbers as outcome
 - Real vectors as outcome
- Power set $\mathcal{P}(\mathbb{R})$ is not "measurable"
 - Cannot define consistent "sum" of probabilities

Technical Complications

Mathematical definition

- Replace set of all subset P(Ω) by "set of reasonable subsets"
 - σ -Algebra of Ω
 - "Event space" ${\cal F}$
- Define P(event) as normed, non-negative, additive measure on that algebra

Intuition

 Same intuition: Summing up / integrating "probability mass" on domain

Kolmogorov's Axioms

Probability space

- Sample space:
- Event space: $\mathcal{F}(\Omega) \subseteq \mathcal{P}(\Omega)$ (\mathcal{F} is a σ -algebra)

Ω

- Events: $A \in S(\Omega)$
- Probability measure: $P: \mathcal{F} \to \mathbb{R}$

Axioms: Please behave like discrete case!

- Positive: $P(A) \ge 0$
- Additive: $[A \cap B = \emptyset] \Rightarrow [P(A) + P(B) = P(A \cup B)]$
- Normed: $P(\Omega) = 1$

Other Properties Follow

Derived from Kolmogorov's axioms

- $P(\bar{A}) \in [0..1]$
- $P(\mathbf{A}) = P(\mathbf{\Omega} \setminus \mathbf{A}) = 1 P(\mathbf{A})$
- $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

We are still "summing up" density

counted twice

Discrete vs. General Model

Consistent with discrete model

Continuous Density

Major Motivation: Density model

- No elementary probabilities
- Instead: density $p: \mathbb{R}^d \to \mathbb{R}^{\geq 0}$

Setup

- Domain $\Omega \subseteq \mathbb{R}^d$, outcomes $\mathbf{x} \in \mathbb{R}^d$
- Probability density

 $p: \Omega \rightarrow \mathbb{R}$ (integrable)

Properties

 $\forall \mathbf{x} \in \Omega : p(\mathbf{x}) \ge 0$ $\int_{\mathbf{x} \in \Omega} p(\mathbf{x}) d\mathbf{x} = 1$

Events

$$P(A) \coloneqq \int_{\mathbf{x} \in A} p(\mathbf{x}) d\mathbf{x} \quad (\text{for } A \in \mathcal{B}(\Omega))$$
$$(\mathcal{B} = \text{Borel } \sigma\text{-algebra})$$

Continuous Density

Intuition

Just "very small" outcome "buckets"

Remarks

- Densities vs. probability
 - P(A) to denote probability of events/outcomes
 - $p(\mathbf{x})$ to denote probability densities
- Only integrals of p are probabilities

Remarks

- Remark: $p(\mathbf{x}) > 1$ is possible as long as $\int p = 1$
 - $p(\mathbf{x})$ are not probabilities, but densities

Remarks

- Discrete models through Dirac densities
- We will use this as much as possible to unify notation

Random Variables

Naming convention

- Sample space Ω with probability measure P
- Mapping $X: \Omega \to \mathbb{R}^d$ is called "random variable"
 - Often equivalent to $\Omega = \mathbb{R}^d$
 - X = x can be an "elementary" outcome, but does not have to

Description with densities

We describe random variables with densities

 $p(\mathbf{x}) =$ probability density for " $X = \mathbf{x}$ "

Marginals

Example

- Random variables $X, Y \in [0,1]$
- Joint distribution p(x, y)
- We do not know y

 (could by anything)
- What is the distribution of x?

$$p(x) \coloneqq \int_{0}^{1} p(x, y) dy$$

"Marginal Probability"

Marginals

General rule

- Marginal probability
 - Integrate / sum over all unspecified
- Specified variables
 - What we care about
 - Often: observed / measured
- Unspecified variables
 - Not relevant in this context
 - Might be "latent" (unobservable)
 - Might be model parameters (more later)

"Marginal Probability"

Summary

What we have seen so far...

Probability space

Density on some domain, sums up to 100%

Probability densities

Continuous elementary outcomes

Events

Subsets (that can be measured)

Marginal distributions

• Distribution for events (subsets) where we have only partial information: $p(\mathbf{x}, \mathbf{y}) \rightarrow p(\mathbf{x})$

Statistical Dependency

Conditional Probability (Rnd-Var.)

Conditional Probability

- P(A|B) = Probability of A given B [is true]
- Definition $P(A \cap B) = P(A|B) \cdot P(B)$

Corollary

• If
$$P(B) \neq 0$$
:
 $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Conditional Probability

Statistical Independence

Definition

A and B independent $\Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$

- Knowing the value of A does not yield information about B
 - And vice versa
- Also: $P(A \cap B) = P(A) \cdot P(B) (= P(A|B) \cdot P(B))$ means that P(A|B) = P(A), and P(B|A) = P(B)

Random Variables

Conditional Probability

- p(x|y) = Probability density of x given y [has occured]
- Definition

 $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y}) \cdot p(\mathbf{y})$

Corollary

• If
$$p(\mathbf{y}) \neq 0$$
:
 $p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})}$

Conditional Probability

Statistical Independence

Definition:

x and **y** independent $\Leftrightarrow p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}) \cdot p(\mathbf{y})$

- Knowing the value of x does not yield information about y (and vice versa)
 - $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$
 - $p(\mathbf{y}|\mathbf{x}) = p(\mathbf{y})$

Factorization

Independence = Density Factorization

 $p(x_1, x_2) = p(x_1) \times p(x_2)$

Factorization

Not Independence \rightarrow No Factorization

$$= p(x_1, x_2)$$

Factorization

Independence = Density Factorization

 $p(x_1, x_2) = p(x_1) \times p(x_2)$ $O(k^d) \qquad O(d \cdot k)$

Complexity

Curbing complexity

- *n* pieces of information (bits)
 - \rightarrow up to 2^{*n*} different combinations
 - \rightarrow up to 2^{*n*} different probabilities
- Statistical dependencies
 - Arbitrary structure: all combinations might matter
 - Fully independent: linear
 2n instead of 2ⁿ
 - Truth is "in between" Restricted dependencies make model feasible

More Drastic Example

Random Images

- 100 x 100 pixel
- 8 bit (256 grey values)

Independent Pixels

 256 × 100² = 2560000 probability values

Arbitrary Dependencies

256^{100²} = 2.51 × 10²⁴⁰⁸²
 possible images / probabilities

independent

complex dependency (M-GAN)

Modeling Examples

How to build a probability space?

Statistics appears unintuitive

- Often: Choice of Ω major problem
- Looking at events can be misleading
- Often: higher dimensionality needed

Example: Weather in Mainz

Interesting events: {rain, sunshine, cloudy}

Model 1: Low-level

- Sample space: Ω = Set of all states of the earth's atmosphere
 - ICON weather model: 265M grid cells, 10 (major) variables
- Define events by thresholds
 - Water / ice content
- Very expensive (too expensive?)
 - But captures the situation quite comprehensively

Example: Weather in Mainz

Interesting events: {rain, sunshine, cloudy}

Model 2a: Event-level

- Problematic: $\Omega = \{rain, sunshine, cloudy\}$
- Not mutually exclusive
 - Sun can shine during rain
 - Complex dependencies need to be captured
- Not suitable for reasoning about the weather

Example: Weather in Mainz

Interesting events: {rain, sunshine, cloudy}

Model 2b: Event-level

- All combinations:
 Ω = {rsc, sc, rc, 1/2, 1/2, s, c, Ø}
- All possible combinations of events
 - Some might be impossible, i.e., P = 0
- Exponential costs
 - 2^n outcomes for n Boolean variables
 - Not uncommon, if dependency structure is not known

more knowledge: no rain without clouds

Example: Weather in Mainz

- Random variables:
 - rainfall [mm] (ℝ)
 - windspeed [m/s] (ℝ)
 - cloudcover [%] (ℝ)

Model 3: 3D Density

- Naïve discretization: Histogram/bins
- Again, exponential in number of variables
- k different values, n variables: k^n outcomes

Rules of thumb

- Define "experiment" clearly
- Collect variables
 - Observables & unobserved / latent parameters

Assume all combinations have likelihood (densities)

- Unless you know better
- Model assigns probability for all relevant combinations
- If you know better
 - Restrict dependencies
 - Only then you can build a complex model

Summary

What we have seen so far...

Statistical independence

Probability/density factorizes

 $p(x, y) = p(x) \cdot p(y)$

• Dependency: potentially complex function structure p(x, y)

Conditional probability

- Conditional density "x given y": $p(x|y) = \frac{p(x,y)}{p(y)}$
 - Take joint density p(x, y)
 - Renormalize by p(y) (because y has happened already)

Complexity

Unrestricted dependencies lead to exponential model size

Calculus with Densities

Summary

tl;dw: Calculus

- Discussing functions $p: \Omega \to \mathbb{R}$
- Understanding them better:
 - Switch the basis / project on test-functions

Moments of Distributions

Density Function (1D)

• $p: \mathbb{R} \to \mathbb{R}^{\geq 0}$

Expected Value / Mean:

•
$$E(p) = \mu := \langle p, x \rangle$$

 $=\int_{\mathbb{R}}p(x)\cdot x\,dx$

Variance:

•
$$Var(p) = \sigma^2 := \langle p, (x - \mu)^2 \rangle$$
$$= \int_{\mathbb{R}} p(x) \cdot (x - \mu)^2 dx$$

Standard Deviation

Bounds on spread

Standard deviation

$$\sigma = \sqrt{Var(p)}$$

Expected range of variation

Moments of Distributions

Multi-variate density function

• Density
$$p: \mathbb{R}^d \to \mathbb{R}^{\geq 0}$$

•
$$E(p) = \mu := \langle p, \mathbf{x} \rangle = \int_{\mathbb{R}^d} p(\mathbf{x}) \cdot \mathbf{x} \, dx$$

•
$$\operatorname{Cov}(x_i, x_j) \coloneqq \langle p, (x_i - \mu_i)(x_j - \mu_j) \rangle$$

$$= \int_{\mathbb{R}^d} p(\mathbf{x}) (x_i - \mu_i)(x_j - \mu_j) dx$$
• $\sum = \begin{pmatrix} \ddots & \vdots & \ddots \\ \cdots & \operatorname{Cov}(x_i, x_j) & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$

*x*₂

*x*₂

 X_1

Properties

Expected value

- E(X+Y) = E(X) + E(Y)
- $E(\lambda X) = \lambda E(X)$

Variance

- $Var(\lambda X) = \lambda^2 Var(X)$
- Let X, Y be *independent*, then:
 Var(X + Y) = Var(X) + Var(Y)

Entropy (There will be a whole video on this)

Entropy

Entropy: How random? $H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$

Model

Binary coding

•
$$\mathcal{O}\left(\log\frac{1}{p}\right)$$
 bits for...

...events with probability p

Examples

Limits: Repeating Experiments

Law of Large Numbers

Repeated experiment

- Experiment, outcome $x \in \mathbb{R}$
- Repeated n times

We look at the mean

$$\bar{X}_n = \frac{1}{n} \left(\sum_{i=1}^n X_i \right)$$

20

(Weak) law of large numbers

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mu| > \epsilon) = 0$$

Stochastic Convergence

Averaging of independent trials

- Convergence rate is $\frac{1}{\sqrt{n}}$
- Lousy convergence rate

Proof

Proof: weak law of large numbers

- Additionally assumption: finite variance $Var(X_i) = \sigma^2$
- The theorem then follows from
 - Additivity of variances
 - Chebyshev's bound

$$\operatorname{Var}(\bar{X}_n) = \operatorname{Var}\left(\frac{1}{n}\left(\sum_{i=1}^n X_i\right)\right) = \frac{1}{n^2}\left(\sum_{i=1}^n \operatorname{Var}(X_i)\right) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$
$$\Rightarrow \sigma(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$

• Chebyshev: $\Pr(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$

Algebra with Random Variables

Random Variable Vector Algebra

Vector algebra

- Given independent random variables X, Y
- Look at operation Z = f(X, Y) with $\Omega_Z = \Omega_X \times \Omega_Y$

Scaling random variables

• Scaling variable: $Z = \lambda X$ (Factor λ not random)

• Scaling variable:
$$p_{\mathbf{z}}(\mathbf{z}) = p_{\mathbf{x}}\left(\frac{1}{\lambda}\mathbf{z}\right)$$

Adding independent random variables

- Adding variables: Z = X + Y
- Convoling densities: $p_z(z) = p_x(x) \otimes p_y(y)$

Convolution Example

Uniform distribution on [0,1]**:**

- "Box" function
- Auto-convolution yields "triangle" function
- Remark: Increases smoothness by one order

Illustration

Remarks

Repeated auto-convolution

- Of a uniform distribution
 - Yields increasingly smooth functions
 - Called "B-splines of order k" (for k-fold convolution)
 - Converges to Gaussian normal distribution
- Of general distributions
 - Converges to special limit distributions
 - Gaussian if mean and variance exist
 - Even if distributions are different (but independent)
 - "Central limit theorem"

Central Limit Theorem

Why are so many phenomena normal-distributed?

- Let $X_1, ..., X_n$ be real (1D) random variables with means μ_i and *finite* variances σ_i^2 .
- Then the distribution of the mean

$$\frac{\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mu_{i}}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}} \rightarrow \mathcal{N}(0,1)$$

converges to a normal distribution.

Multi-dimensional variant

Similar result for multi-dimensional case

Common Parametric Distributions

Well-known probability distributions

Important distributions

- Uniform distribution
 - Only defined for finite domains
 - Maximum entropy among all distributions

Binomial distribution

- Coin-flipping
- (one bit at a time)

X

Well-known probability distributions

Important distributions

- Gaussian / normal distribution
 - Infinite domains
 - Maximizes entropy for fixed variance
- Heavy tail distributions
 - "Outlier robust"
 - Example: Exponential/Laplace/L1
 - Drops-off "slower than Gaussian"

Uniform distribution

What should we say?

- Fixed domain Ω with...
- ...finite area $|\Omega| = \int_{\Omega} 1 d\mathbf{x} < \infty$
- Density

$$p(x) = \frac{1}{|\Omega|}$$

hate

that!

Attention

- No uniform distribution on infinite domains
- No "uniform distribution on \mathbb{R} "

Binomial Distriubution

Binomial Distribution

- Two possible outcomes "1","0"
- Probabilities p, (1 p)
- Repeated *n* times i.i.d.

Formulas

- $p(k \text{ times "1"}) = \binom{n}{k} p^k (1-p)^{n-k}$
- $\mu = np$
- $\sigma^2 = np(1-p)$
- Asymptotically $(n \rightarrow \infty)$ Gaussian (CLT)

Gaussians

Gaussian Normal Distribution

- Two parameters: μ , σ
- Density:

$$\mathcal{N}_{\mu,\sigma}(x) \coloneqq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Gaussian normal distribution

- Mean: μ
- Variance: σ^2

Log Space

Neg-log-density

$$\log \mathcal{N}_{\mu,\sigma}(x) \coloneqq \frac{(x-\mu)^2}{2\sigma^2} + \frac{1}{2}\ln(2\pi\sigma^2)$$
$$\sim \frac{1}{2\sigma^2}(x-\mu)^2$$

Calculations in log-space

- Densities of products of Gaussians are Sums of quadratic polynomials
- Calculations simplified in log-space
 - Attention: Sum of Gaussians do not simplify!
- → Modelling 1

Multi-Variate Gaussians

Gaussian normal distribution in *d* dimensions

- Two parameters
 - Mean µ (*d*-dim-vector)
 - Covariance matrix $\sum (d \times d \text{ matrix})$

$$\mathcal{N}_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) \coloneqq \left(\frac{1}{(2\pi)^{-\frac{d}{2}} \det(\boldsymbol{\Sigma})^{-\frac{1}{2}}}\right) e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Log Space

Neg-Log Density

- $\frac{1}{2}(\mathbf{x} \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} \boldsymbol{\mu}) + const$
- Quadratic multivariate polynomial

Consequences

- Optimization (maximum density)
 → linear system
- Gaussians are ellipsoids
 - Eigenvectors of Σ are main axes
 - Eigenvalues are extremal variances

Example: A "Heavy Tail"-Distribution

More spread out than Gaussian

- Exponential distribution $p(x) \coloneqq \lambda e^{-\lambda |x|}$ $x \ge 0$
 - Mean: λ⁻¹
 - Variance: λ⁻²
- Laplace distribution $p(x) \coloneqq \frac{1}{2} \lambda e^{-\lambda |x-\mu|}$ $x \in \mathbb{R}$
 - Mean: µ
 - Variance: 2λ⁻²

Summary

What we have seen so far...

Moments

- Mean, variance, etc...
- Project density on polynomials

Limits

- Weak law of large numbers
- Central limit theorem (finite variance)

(Some) Standard distributions

- Binomial distribution
- Gaussian normal distribution
- Exponential / Laplace distribution