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Statistical Data Modeling

This lecture is about:

▪ …understanding inductive reasoning

▪ …done algorithmically / systematically

(2)
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Empirical modeling

Learning from data

▪ Probabilistic

▪ Always comes
with uncertainty

▪ Model for reality

▪ Rely on observation

▪ Good models are

▪ Predictive

▪ Falsifiable

(3)



Probability Theory 
Recap

(skip ahead if familiar)



Modeling Uncertainty

Recap: Finite probability space Ω, 𝑃

▪ “Sample space” Ω = {𝜔1, … , 𝜔𝑛}

▪ “Outcomes” 𝜔 ∈ Ω

▪ Exactly one 𝜔 ∈ Ω will happen

▪ Probability 𝑃 𝜔 ∈ [0,1] for each 𝜔 ∈ Ω

▪ The sum of all probabilities is 1.

(5)



Events

Event: Set of outcomes

▪ Sample space  Ω = {𝜔1, … , 𝜔𝑛} (finite)

▪ Any subset 𝐴 ⊆ Ω is called an “event”

▪ Rule: sum up

𝑃 𝐴 = 

𝜔∈𝐴

𝑃 𝜔

Example: Dice

▪ 𝑃("odd") = 𝑃("1") + 𝑃("3") + 𝑃("5")

= 3 ×
1

6
=

1

2

(7)



Summary: Probability Measure

Basic Idea

▪ Every outcome has a likelihood

▪ Complex events: Sum up likelihoods

“Learning” model from data

▪ Determine likelihood of outcomes

“Inferring” likelihood of events

▪ Sum up likelihoods of outcomes
that lead to event

(8)

P(“odd”) = 
1

2

P(“1”) = … = P(“6”) = 
1

6



Formal Definition
Probability



Technical Complications

Basic stochastic lecture ≫ 5 slides

▪ Problems if Ω infinite

▪ Particularly relevant: 

▪ Real numbers as outcome

▪ Real vectors as outcome

▪ Power set 𝒫 ℝ is not “measurable”

▪ Cannot define consistent “sum” of probabilities

(10)



Technical Complications

Mathematical definition

▪ Replace set of all subset 𝒫(Ω) by
“set of reasonable subsets”

▪ 𝜎-Algebra of Ω

▪ “Event space” ℱ

▪ Define 𝑃(event) as normed, non-negative, additive 
measure on that algebra

Intuition

▪ Same intuition: Summing up / integrating
“probability mass” on domain

(11)



Kolmogorov’s Axioms

Probability space

▪ Sample space: 

▪ Event space: ℱ  ⊆ 𝒫  (ℱ is a 𝜎-algebra)

▪ Events: 𝐴 ∈ S 

▪ Probability measure: 𝑃: ℱ → ℝ

Axioms: Please behave like discrete case!

▪ Positive: 𝑃 𝐴 ≥ 0

▪ Additive: [𝐴 ∩ 𝐵 = ∅]  [𝑃(𝐴) + 𝑃(𝐵) = 𝑃(𝐴 ∪ 𝐵)]

▪ Normed: 𝑃 Ω = 1
(12)



Other Properties Follow

Derived from Kolmogorov’s axioms

▪ P(A)  [0..1]

▪ P(A) = P( \ A) = 1 – P(A)

▪ P() = 0

▪ P(A B) = P(A) + P(B) – P(A B)

▪ …

We are still “summing up” density
counted twice

(13)



Discrete vs. General Model

Consistent with discrete model

(15)
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36 37 38
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168 … …

64

A is an event

P(A) = iA p(wi)

= p(w21) + p(w22) + p(w23)
+ p(w29) + p(w30) + p(w31)
+ p(w36) + p(w37) + p(w38)Ω

p as “density” on Ω



Continuous Density

Major Motivation: Density model

▪ No elementary probabilities

▪ Instead: density 𝑝: ℝ𝑑 → ℝ≥0

A is an event

P(A) =  ∫A p(x) dx

Density p(x) with

p(x)  0  and ∫ p(x) dx = 1

(16)

𝑝Ω



Probability Densities

Setup

▪ Domain Ω ⊆ ℝ𝑑 , outcomes 𝐱 ∈ ℝ𝑑

▪ Probability density
𝑝: Ω → ℝ (integrable)

▪ Properties
∀𝐱 ∈ Ω: 𝑝 𝐱 ≥ 0

න
𝐱∈Ω

𝑝 𝐱 𝑑𝐱 = 1

▪ Events

𝑃 𝐴 ≔ න
𝐱∈𝐴

𝑝 𝐱 𝑑𝐱 (for 𝐴 ∈ ℬ Ω )

(17)
(ℬ = Borel 𝜎-algebra)



Continuous Density

Intuition

▪ Just  “very small” outcome “buckets”

(18)

𝑛 → ∞



Probability Densities

Remarks

▪ Densities vs. probability

▪ 𝑃(𝐴) to denote probability of events/outcomes

▪ 𝑝 𝐱 to denote probability densities

▪ Only integrals of 𝑝 are probabilities

(19)
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Probability Densities

Remarks

▪ Remark: 𝑝 𝐱 > 1 is possible as long as ∫ 𝑝 = 1

▪ 𝑝 𝐱 are not probabilities, but densities

(20)
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Probability Densities

Remarks

▪ Discrete models through Dirac densities

▪ We will use this as much as possible
to unify notation

(21)

P(𝜔𝑖), 𝜔𝑖  {1,...,9}

𝜔𝑖

1 2 3 4 5 6 7 8 9

discrete model

p(𝑥), 𝑥 ℝ

𝑥

continuous model

1 3 5 9

Dirac-Delta pulses

𝑝(𝑥) = Σi𝛿(𝑥 – 𝜔𝑖) P(𝜔𝑖)

Intuition: (Modeling 1)

∫ℝd𝛿 𝑥 𝑑𝑥 = 1

𝛿(𝑥) „very large close to 𝑥“

𝛿(𝑥) = 0 everywhere else



Random Variables

Naming convention

▪ Sample space Ω with probability measure 𝑃

▪ Mapping 𝑋: Ω → ℝ𝑑 is called “random variable”

▪ Often equivalent to Ω = ℝ𝑑

▪ 𝑋 = 𝐱 can be an “elementary” outcome,
but does not have to

Description with densities

▪ We describe random variables with densities

𝑝 𝐱 = probability density for “𝑋 = 𝐱”

(22)



Marginals

Example

▪ Random variables 𝑋, 𝑌 ∈ [0,1]

▪ Joint distribution 𝑝 𝑥, 𝑦

▪ We do not know 𝑦
(could by anything)

▪ What is the distribution of 𝑥?

𝑝 𝑥 ≔ න

0

1

𝑝 𝑥, 𝑦 𝑑𝑦

𝑝 𝑥, 𝑦

𝑥0 1
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න 𝑑𝑦

“Marginal Probability”

𝑝 𝑥



Marginals

General rule

▪ Marginal probability

▪ Integrate / sum over all unspecified

▪ Specified variables

▪ What we care about

▪ Often: observed / measured

▪ Unspecified variables

▪ Not relevant in this context

▪ Might be “latent” (unobservable)

▪ Might be model parameters
(more later)

𝑝 𝑥, 𝑦

𝑥0 1

y

0

1

𝑥0 1

න 𝑑𝑦

“Marginal Probability”

𝑝 𝑥



Summary



(26)

Ω

𝑃(𝐴)

𝑃(𝐴)

What we have seen so far…

Probability space

▪ Density on some domain, sums up to 100%

Probability densities

▪ Continuous elementary outcomes

Events

▪ Subsets (that can be measured)

Marginal distributions

▪ Distribution for events (subsets) where 
we have only partial information:

𝑝 𝐱, 𝐲 → 𝑝(𝐱)

y

0

1

𝑥0 1

𝑝 𝑥



Statistical 
Dependency



Conditional Probability (Rnd-Var.)

Conditional Probability

▪ P(𝐴|𝐵) = Probability of 𝐴 given 𝐵
[is true]

▪ Definition
P 𝐴 ∩ 𝐵 = P 𝐴 𝐵 ⋅ P 𝐵

Corollary

▪ If 𝑃(𝐵) ≠ 0:

P 𝐴 𝐵 =
P 𝐴∩𝐵

P 𝐵

Ω



Conditional Probability

Statistical Independence

▪ Definition

𝐴 and 𝐵 independent

⇔ P(𝐴 ∩ 𝐵) = P(𝐴) · P(𝐵)

▪ Knowing the value of 𝐴 does not yield
information about 𝐵

▪ And vice versa

▪ Also: P 𝐴 ∩ 𝐵 = P 𝐴 · P 𝐵 ( = P 𝐴 𝐵 ⋅ P 𝐵 )

means that P 𝐴 𝐵 = P(𝐴), and P 𝐵 𝐴 = P(𝐵)

Ω



Random Variables

Conditional Probability

▪ 𝑝 𝐱 𝐲 = Probability density of
𝐱 given 𝐲 [has occured]

▪ Definition
𝑝 𝐱, 𝐲 = 𝑝 𝐱 𝐲 ⋅ 𝑝 𝐲

Corollary

▪ If 𝑝(𝐲) ≠ 0:

𝑝 𝐱 𝐲 =
𝑝 𝐱, 𝐲

𝑝 𝐲

Ω

𝐱

𝐲
𝑝 𝐲

𝑝 𝐱

𝑝 𝐱, 𝐲

𝑝 𝐱 𝐲 =
𝑝 𝐱, 𝐲

𝑝 𝐲



Conditional Probability

Statistical Independence

▪ Definition:

𝐱 and 𝐲 independent

⇔ 𝑝(𝐱, 𝐲) = 𝑝(𝐱) · 𝑝(𝐲)

▪ Knowing the value of 𝐱
does not yield information
about 𝐲 (and vice versa)

▪ 𝑝 𝐱 𝐲 = 𝑝 𝐱

▪ 𝑝(𝐲|𝐱) = 𝑝(𝐲)

Ω

𝐱

𝐲
𝑝 𝐲

𝑝 𝐱

𝑝 𝐱, 𝐲

𝑝 𝐱 𝐲 =
𝑝 𝐱, 𝐲

𝑝 𝐲



Factorization

Independence = Density Factorization

x1

x2 = 

x1

x2

𝑝(𝑥1, 𝑥2) = 𝑝(𝑥1)  𝑝(𝑥2)

𝑝(𝑥1, 𝑥2) 𝑝(𝑥1) 𝑝(𝑥2)



Factorization

Not Independence → No Factorization

𝑥1

𝑥2

𝑝(𝑥1, 𝑥2)

= 𝑝(𝑥1, 𝑥2)



Factorization

Independence = Density Factorization

x1

x2 = 

x1

x2

𝑝(𝑥1, 𝑥2) = 𝑝(𝑥1)  𝑝(𝑥2)

𝑂(𝑘 𝑑) 𝑂(𝑑 ⋅ 𝑘)

1 2 ... k

k
...

1 1 2 ... k

1
2

...
k

2

𝑝(𝑥1, 𝑥2) 𝑝(𝑥1) 𝑝(𝑥2)



Complexity

Curbing complexity

▪ 𝑛 pieces of information (bits)

→ up to 2𝑛 different combinations

→ up to 2𝑛 different probabilities

▪ Statistical dependencies

▪ Arbitrary structure:
all combinations might matter

▪ Fully independent: linear
2𝑛 instead of 2𝑛

▪ Truth is “in between”
Restricted dependencies make model feasible

(35)



More Drastic Example

Random Images

▪ 100 x 100 pixel

▪ 8 bit (256 grey values)

Independent Pixels

▪ 256 × 100² = 2560000 
probability values

Arbitrary Dependencies

▪ 256100² = 2.51 × 1024082

possible images / probabilities

(36)

independent

complex dependency
(M-GAN)



Modeling
Examples



How to build a probability space?

Statistics appears unintuitive

▪ Often: Choice of Ω major problem

▪ Looking at events can be misleading

▪ Often: higher dimensionality needed

(38)



How to build a probability space?

Example: Weather in Mainz

▪ Interesting events: {rain, sunshine, cloudy}

Model 1: Low-level

▪ Sample space: Ω = Set of all states of the earth’s
atmosphere

▪ ICON weather model: 265M grid cells, 10 (major) variables

▪ Define events by thresholds

▪ Water / ice content

▪ Very expensive (too expensive?)

▪ But captures the situation quite comprehensively

(39)

2949120 × 87 cells



How to build a probability space?

Example: Weather in Mainz

▪ Interesting events: {rain, sunshine, cloudy}

Model 2a: Event-level

▪ Problematic: Ω = {rain, sunshine, cloudy}

▪ Not mutually exclusive

▪ Sun can shine during rain

▪ Complex dependencies need to be captured

▪ Not suitable for reasoning about the weather

(40)



How to build a probability space?

Example: Weather in Mainz

▪ Interesting events: {rain, sunshine, cloudy}

Model 2b: Event-level

▪ All combinations:
Ω = {rsc, sc, rc, rs, r, s, c, ∅}

▪ All possible combinations of events

▪ Some might be impossible, i.e., 𝑃 = 0

▪ Exponential costs

▪ 2𝑛 outcomes for 𝑛 Boolean variables

▪ Not uncommon, if dependency structure is not known

(41)

∅

rsc
scrc

rsr s

c

more knowledge:
no rain without clouds



How to build a probability space?

Example: Weather in Mainz

▪ Random variables:

▪ rainfall [mm] (ℝ)

▪ windspeed [m/s] ℝ

▪ cloudcover [%] (ℝ)

Model 3: 3D Density

▪ Naïve discretization: Histogram/bins

▪ Again, exponential in number of variables

▪ 𝑘 different values, 𝑛 variables: 𝑘𝑛 outcomes

(42)

ra
in

fa
ll

windspeed



How to build a probability space

Rules of thumb

▪ Define “experiment” clearly

▪ Collect variables

▪ Observables & unobserved / latent parameters

▪ Assume all combinations have likelihood (densities)

▪ Unless you know better

▪ Model assigns probability for all relevant combinations

▪ If you know better

▪ Restrict dependencies

▪ Only then you can build a complex model

(43)



Summary



(45)

What we have seen so far…

Statistical independence

▪ Probability/density factorizes

𝑝 𝑥, 𝑦 = 𝑝 𝑥 ⋅ 𝑝(𝑦)

▪ Dependency: potentially complex function structure
𝑝 𝑥, 𝑦

Conditional probability

▪ Conditional density „x given y“: 𝑝 𝑥|𝑦 =
𝑝 𝑥,𝑦

𝑝 𝑦

▪ Take joint density 𝑝 𝑥, 𝑦

▪ Renormalize by 𝑝 𝑦 (because y has happened already)

Complexity

▪ Unrestricted dependencies lead to exponential model size



Calculus with 
Densities



Summary

tl;dw: Calculus

▪ Discussing functions 𝑝: Ω → ℝ

▪ Understanding them better:

▪ Switch the basis /
project on test-functions

(47)



Moments of Distributions

Density Function (1D)

▪ p: ℝ →ℝ0 

Expected Value / Mean:

▪ 𝐸 𝑝 = 𝜇 ∶= 𝑝, 𝑥

= ∫
ℝ

𝑝(𝑥) ∙ 𝑥 𝑑𝑥

Variance:
▪ 𝑉𝑎𝑟 𝑝 = 𝜎2 ∶= 𝑝, (𝑥 − 𝜇)2

= ∫ℝ
𝑝 𝑥 ∙ (𝑥 − 𝜇)2 𝑑𝑥

p(x)

x

p(x)

x

x

p(x)

x

(x – )2

 



Standard Deviation

Bounds on spread

▪ Standard deviation

𝜎 = 𝑉𝑎𝑟 𝑝

▪ Expected range of variation

p(x)

x

(x – )2

 



x1

x2
 Σ

Moments of Distributions

Multi-variate density function

▪ Density p: ℝd→ℝ0 

▪ 𝐸 𝑝 = 𝜇 ∶= 𝑝, 𝐱 = ∫
ℝ𝑑 𝑝(𝐱) ∙ 𝐱 𝑑𝑥

▪ Cov 𝑥𝑖 , 𝑥𝑗 ≔ 𝑝, (𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)

= න

ℝ𝑑

𝑝 𝐱 (𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗) 𝑑𝑥

▪ σ =
⋱ ⋮ ⋰
⋯ Cov(𝑥𝑖 , 𝑥𝑗) ⋯

⋰ ⋮ ⋱

p(x1, x2)

x1

p(x1, x2)

x2



Properties

Expected value

▪ E(X+Y) = E(X) + E(Y)

▪ E(X) = E(X)

Variance

▪ Var(X) = 2Var(X)

▪ Let X, Y be independent, then:
Var(X + Y) = Var(X) + Var(Y)



Entropy
(There will  be a whole video on this)



Entropy

Entropy: How random?

𝐻 𝑋 = − 

𝑖=1

𝑛

𝑝 𝑥𝑖 log2 𝑝(𝑥𝑖)

Model

▪ Binary coding

▪ 𝒪 log
1

𝑝
bits for…

▪ …events with probability 𝑝

p(x)

x

p(x)

x

p(x)

xa b



Examples

p(x)

x

p(x)

x

p(x)

x

p(x)

x

𝐻 = − 

𝑖=1

𝑛
1

𝑛
log

1

𝑛
= log 𝑛

𝐻 = 0



Limits:

Repeating Experiments



Law of Large Numbers

Repeated experiment

▪ Experiment, outcome 𝑥 ∈ ℝ

▪ Repeated 𝑛 times

We look at the mean

ത𝑋𝑛 =
1

𝑛


𝑖=1

𝑛

𝑋𝑖

(Weak) law of large numbers

lim
𝑛→∞

Pr ത𝑋𝑛 − 𝜇 > 𝜖 = 0



Stochastic Convergence

Averaging of independent trials

▪ Convergence rate is 
1

𝑛

▪ Lousy convergence rate

𝑛



Proof

Proof: weak law of large numbers

▪ Additionally assumption: finite variance Var(Xi) = σ 2

▪ The theorem then follows from

▪ Additivity of variances

▪ Chebyshev’s bound

Var ത𝑋𝑛 = Var
1

𝑛


𝑖=1

𝑛

𝑋𝑖 =
1

𝑛2 

𝑖=1

𝑛

Var(𝑋𝑖 ) =
𝑛𝜎 2

𝑛2 =
𝜎 2

𝑛

⇒ 𝜎 ത𝑋𝑛 =
𝜎

𝑛

▪ Chebyshev:  Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2



Algebra with 
Random Variables



Random Variable Vector Algebra

Vector algebra

▪ Given independent random variables 𝑋, 𝑌

▪ Look at operation 𝑍 = 𝑓 𝑋, 𝑌 with Ω𝑍 = Ω𝑋 × Ω𝑌

Scaling random variables

▪ Scaling variable: 𝑍 = 𝜆𝑋 (Factor 𝜆 not random)

▪ Scaling variable: 𝑝𝐳 𝐳 = 𝑝𝐱
1

𝜆
𝐳

Adding independent random variables

▪ Adding variables: 𝑍 = 𝑋 + 𝑌

▪ Convoling densities: 𝑝𝐳 𝐳 = 𝑝𝐱 𝐱 ⊗ 𝑝𝐲 𝐲
(61)



Convolution Example

Uniform distribution on [0,1]:

▪ “Box” function

▪ Auto-convolution yields “triangle” function

▪ Remark: Increases smoothness by one order

1

1 20-1

p0

1

1 20-1

p0

(62)



Illustration

b1

b1

1

1 20-1

b1

1

1 20-1

1

1 20-1

b0

1

0 1-1-2

1

0 1-1-2

1

0 1-1-2

b0

b0

(63)



Remarks

Repeated auto-convolution

▪ Of a uniform distribution

▪ Yields increasingly smooth functions

▪ Called “B-splines of order 𝑘” (for 𝑘-fold convolution)

▪ Converges to Gaussian normal distribution

▪ Of general distributions

▪ Converges to special limit distributions

▪ Gaussian if mean and variance exist

– Even if distributions are different (but independent)

– “Central limit theorem”

(64)



Central Limit Theorem

Why are so many phenomena normal-distributed?

▪ Let 𝑋1, … , 𝑋𝑛 be real (1D) random variables

with means 𝜇𝑖 and finite variances 𝜎𝑖
2.

▪ Then the distribution of the mean 

σ𝑖=1
𝑛 𝑋𝑖 − σ𝑖=1

𝑛 𝜇𝑖

σ𝑖=1
𝑛 𝜎𝑖

2

→ 𝒩(0,1)

converges to a normal distribution.

Multi-dimensional variant

▪ Similar result for multi-dimensional case

(65)



Common
Parametric Distributions



Well-known probability distributions

Important distributions

▪ Uniform distribution

▪ Only defined for finite domains

▪ Maximum entropy 
among all distributions

▪ Binomial distribution

▪ Coin-flipping

▪ (one bit at a time)

p(x)

xa b

p(x)

x



Well-known probability distributions

Important distributions

▪ Gaussian / normal distribution

▪ Infinite domains

▪ Maximizes entropy 
for fixed variance

▪ Heavy tail distributions

▪ “Outlier robust”

▪ Example: Exponential/Laplace/L1

▪ Drops-off “slower than Gaussian”

p(x)

x

p(x)

xa b



Uniform distribution

What should we say?

▪ Fixed domain Ω with… 

▪ …finite area Ω = ∫
Ω

1𝑑𝐱 < ∞

▪ Density

𝑝 𝑥 =
1

Ω

Attention

▪ No uniform distribution on infinite domains

▪ No “uniform distribution on ℝ”

(69)

like
it!

hate
that!



Binomial Distriubution

Binomial Distribution

▪ Two possible outcomes “1”,”0”

▪ Probabilities 𝑝, (1 − 𝑝)

▪ Repeated 𝑛 times i.i.d.

Formulas

▪ 𝑝(𝑘 times "1") =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

▪ 𝜇 = 𝑛𝑝

▪ 𝜎2 = 𝑛𝑝 1 − 𝑝

▪ Asymptotically (𝑛 → ∞) Gaussian (CLT)
(70)



Gaussians

Gaussian Normal Distribution

▪ Two parameters: 𝜇, 𝜎

▪ Density:

𝒩𝜇,𝜎 𝑥 ≔
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2

▪ Mean: 𝜇

▪ Variance: 𝜎2

Gaussian normal distribution



Log Space

Neg-log-density

log 𝒩𝜇,𝜎 𝑥 ≔
𝑥 − 𝜇 2

2𝜎2
+

1

2
ln 2𝜋𝜎2

~
1

2𝜎2
𝑥 − 𝜇 2

Calculations in log-space

▪ Densities of products of Gaussians are
Sums of quadratic polynomials

▪ Calculations simplified in log-space

▪ Attention: Sum of Gaussians do not simplify!

→ Modelling 1



Multi-Variate Gaussians

Gaussian normal distribution in 𝒅 dimensions

▪ Two parameters

▪ Mean 𝛍 (d-dim-vector)

▪ Covariance matrix Σ (dd matrix)

▪ Density

𝒩𝛍,𝚺 𝐱 ≔
1

2𝜋 −
𝑑
2 det Σ −

1
2

𝑒−
1
2 𝐱−𝛍 TΣ−1 𝐱−𝛍

x1

x2

p(x1, x2)

 Σ



Log Space

Neg-Log Density

▪
1

2
𝐱 − 𝛍 TΣ−1 𝐱 − 𝛍 + 𝑐𝑜𝑛𝑠𝑡

▪ Quadratic multivariate polynomial

Consequences

▪ Optimization (maximum density)
→ linear system

▪ Gaussians are ellipsoids

▪ Eigenvectors of Σ are main axes 

▪ Eigenvalues are extremal variances



σ1
σ2



Example: A “Heavy Tail”-Distribution

More spread out than Gaussian

▪ Exponential distribution

𝑝 𝑥 ≔ 𝜆𝑒−𝜆 𝑥

𝑥 ≥ 0

▪ Mean: 𝜆−1

▪ Variance: 𝜆−2

▪ Laplace distribution

𝑝 𝑥 ≔
1

2
𝜆𝑒−𝜆 𝑥−𝜇

𝑥 ∈ ℝ

▪ Mean: 𝜇

▪ Variance: 2𝜆−2

Gaussian vs Laplace
distribution

(height normalized)

Mod-I:
L2 vs. L1-norm

fitting



Summary



(77)

What we have seen so far…

Moments

▪ Mean, variance, etc…

▪ Project density on polynomials

Limits

▪ Weak law of large numbers

▪ Central limit theorem (finite variance)

(Some) Standard distributions

▪ Binomial distribution

▪ Gaussian normal distribution

▪ Exponential / Laplace distribution


