

Chapter 1 Knowledge & Uncertainty

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Introduction

What is the topic of this lecture?

Topic of This Lecture

Statistical Data Modeling

- Extracting knowledge from data
- Algorithmic inductive reasoning
- Statistical machine learning

Focus

- Self-organizing ML systems
- Algorithmic: Deep Networks
- "Emergent" structure
- Complex system modeling techniques

Motivation: "Artificial Intelligence"

Renewed interest

- Every 20 years?
- There is no AI (yet)

Research

- What is intelligence?
- Old question, unresolved
 - Philosophy, Physics, Biology
 - If we want to rebuild it, we have to find out
- Algorithmic formalization of intelligence

"Artificial Intelligence"

Statistical Data Modeling

- Perspective: Intelligence
 - Make sense of the data around us
 - Uncertainty leads to statistics
 - Machine learning: algorithmic statistics

Artificial Intelligence

Statistical Data Modeling

- Perspective: Intelligence
 - Make sense of the data around us
 - Uncertainty leads to statistics
 - Machine learning: algorithmic statistics

Tool of the day: Deep Networks

- Remarkable performance
- Remarkably simple
- Why do they work?

Statistical Data Modelling

Theoretical Deep Learning

Artificial Intelligence

Statistical Data Modeling

- Perspective: Modeling
 - Model structure in data
 - Data can be cognitive system itself
 - Reverse engineering of deep networks
 - Connections to neuroscience

Complex systems

- How can we describe (aspects of) complex systems?
- Emergent structure / order
- Relation to natural science

STRUCTURE

Knowledge?

How do we know things?

Epistemology ("Erkenntnistheorie")

- How do we get to know things
- And be reasonable to be reasonably sure about them

How do we know things?

Socrates

- Skepticism: "I know that I know nothing"
- Basis of all science (but *clearly* insufficient on its own...)

How do we know things?

Descartes

- "Cogito ergo sum" I think, therefore I am
- Consciousness: Important, but not our topic

[https://commons.wikimedia.org/wiki/File:Frans_Hals_-_Portret_van_Ren%C3%A9_Descartes.jpg]

The Science of Knowing

To make progress

- Need "philosophically" strong assumptions
- Not "strong" in an everyday-sense

Historic: Enlightment

- Let's be reasonable
 - But what is reasonable?

The Scientific Method

Assumptions

Math & Logic

- Occasionally non-trivial
- See e.g. debate on "axiom of choice"

Symmetry

- Repeatability of experiments
- Spatio-temporal persistence of knowledge

Simplicity

- How the world works can be condensed to a few "simple" rules
- "Reductionism"

The Scientific Method

Gaining objective knowledge

- Various formulations
 - Discussing my personal take here
- Skepticism as default

Two main techniques

- Logical reasoning (deduction)
- Empirical observation (induction)

Deductive Reasoning

Deductive Reasoning

- Start from assumptions
 "Axioms"
- Derive consequences
- \approx "Mathematics"

Deductive Reasoning

Structure

- Sequence of invocations of assumed facts yields new facts
- Can be complex
 - Variables (and sets)
 - Higher-order logic

Example

Peano Axioms for \mathbb{N} (excerpt)

- Ø is a natural number
- For each $n \in \mathbb{N}$ there is a successor S(n)

• If
$$n = m$$
 then $S(n) = S(m)$

Complexity: Use of variables

- Making statements over variables from larger sets
 - Expressive power depends on types of sets permitted
 - E.g. sets of sets vs. single elements

Deductive Reasoning

Computational Structure

- Axioms and proofs can be encoded as bit-strings
- Countably many proofs

Automatic proving

- Algorithmic deduction (part of AI, but not our topic)
- We can search for proofs
 - Undecidable: no exclusion of existence in finite time
 - Means: very, very expensive search in practice

It gets worse...

Gödel's incompleteness

- Axioms strong enough to describe N
 - "All facts" are not recursively enumerable, but proofs are

Consequence

- There are "true" facts without a proof
 - For classic binary logic

- Axiom 1 Axiom 3 Axiom 2 Axiom 4 Axioms Axiom 1 Axiom 4 Axiom 4 Theorem 1 Th. 2 Th. 3 Model
- Emergent complexity: You cannot understand an axiom system from within itself

Speaking of Static Logic...

Emergent complexity in algorithms

 "Dynamically" executed algorithms face the same problem

Unpredictable behavior

- Turing-capable program
 - E.g. arithmetics, assignment, repetition, condition
 - Discrete, finite (but unbound) sequence of statements
- No finitely-sized algorithms can decide non-trivial properties of the algorithms behavior

Mandelbrot Set

Iteration $z \rightarrow z^2 + c$ $z, c \in \mathbb{C}$

 $re(c) \rightarrow$

color = number of iterations until value > 2

[Animation: Wikipedia contributor "Simpsons contributor"]

Penrose Tilings

Principle

- Put tiles together
- Can fill whole 2D plane
- Globally aperiodic (no repetitions)

Tiling is Turing-capable → Programming by designing tiles (quadratic "Wang-Domino" bricks sufficient)

Conway's "Game of Life"

- Binary lableing for "cells": dead or alive
- "Living" cells with <2 or >3 neighbors "die"
- "Living" cells with 2...3 neighbors remain "alive"
- "Dead" cells with exactly 3 neighbors come back to live

Turing-capable machine

[right image: Jan Disselhof]

Induction*)

Induction: Generalization from examples

- Observe examples
- Try to derive model
- Observe more (independent) examples
- Verify or falsify model

*) advisory: do not mix up with "proof by induction"

Repeatable / reproducible experiment

- Define/find/observe experiment that is repeatable
 - Same behavior each time (rest "randomness")
 - Independent (no influence, also not in randomness)
- Make multiple observations
- Gain information on how likely outcomes are

Induction Recipe

How to learn knowledge inductively

Set up model

- Might contains unknown parameters
- Find repeatable experiment ("training data")
- Measure n outcomes
- Determine
 - If the model is able to explain the experiment
 - Which parameters are likely

real world (objective & unknown)

real world (objective & unknown)

Formalization

Inductive / predictive reasoning

- "State of nature": $\mathbf{x} \in \Omega$
- "State of model": $\mathbf{y} \in \mathbf{M}$
- Observation:
- Experiment:

 $o: \Omega \to M$

 $e:\Omega \to \Omega$

• Model prediction: $m: M \rightarrow M$

Commuting diagram / homomorphism

• Chose m such that $\forall \mathbf{x} \in \Omega: m \circ o = o \circ e$

Formalization

Learning

• Chose m such $\forall \mathbf{x} \in \Omega: m \circ o \approx o \circ e$

Inference (using knowledge)

• Find $y' \in M$ such $y' = m(o(\mathbf{x})) = m(y)$

unkown

What Could Possibly Go Wrong?

Is this model sufficient?

- Assume perfectly predictive model
- Is this model "correct"?

$2\frac{1}{2}$ Problems

- The model might be too complex
- The model might be (overly) simplified
- Information is probabilistic

What Could Possibly Go Wrong?

(1) Too simple

- Observation / model might loose information
- Model y does not describe all of x

"In principle ok"

- No model is comprehensive
 - Abstraction needed
 - Need to keep the "right" / "relevant" information⁶
- Model design problem
 - Example: image reconstruction vs. pattern recognition

(no free lunch

Model might leave out details...

Autoencoder (PCA in latent space)

WGAN-GP (generative adversarial network)

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

(41)

What Could Possibly Go Wrong?

(2) Too complex

- Observation (model) has too much information
 - Model might add information
 - Model might not remove enough information

Usually: Very bad

- Additional information is nonsense
 - "Made-up stuff", "Fairytale"
- Predictive power might be compromised
 - If not careful, we might not recognize it

Example: Mythology of Seasons

Example of "too complex" [see Ref. below]

- The sun is a goddess. Shines warm.
 - (Note: latent sexism in mythology)
- There is a winter god. He is evil and moody.
 - Why? This is how bad guys are in mythology!
- When the winter good gets in a bad mood, he chases the sun in senseless wrath.
 - The sun has to hide.
 - It happens periodically.

Adapted from David Deutsch: "A new way to explain explanation" (Ted Talk 2009) [https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation]

Good model?

Explains seasons very accurately

 $\left\| m(o(x)) - o(e(x)) \right\| \rightarrow small$

All predictions match very well

Adapted from David Deutsch: "A new way to explain explanation" (Ted Talk 2009) [https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation]

Good model?

- Unverifiable model aspects
 - "Winter god" → "guys next town release poisonous gas into the air"

Unreliable information

Adapted from David Deutsch: "A new way to explain explanation" (Ted Talk 2009) [https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation]

(44)

Rule: Falsifiable models

- Remove all information that is independent of experiment-observation-cycle
- Anything that can be changed without changing the outcome is "no information"

Adapted from David Deutsch: "A new way to explain explanation" (Ted Talk 2009) [https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation]

What we do not know

- Let T be a change to the model
- Anything change that does not change the observations yields an equally predictive model
- All the information subject to change are "not established" (unknown)

Symmetry in overly complex models

Formally: Symmetry

• Transformation $T \in \mathcal{T}$ leave experiments unchanged

 $T: M \to M$

 $\mathcal{T} = \{T: M \to M \mid \forall \mathbf{x} \in \Omega: m \circ T \circ o \approx T \circ o \circ e\}$

- *T*: *symmetry group* of the *model* under *observations*
- We do not know \mathbf{y} , only $\mathbf{y} \mod \mathcal{T}$

Symmetry in overly complex models

 $\mathcal{T} = \text{set of all}$ permutations of *M*: $\forall y_1, y_2 \in M:$ $y_1 \equiv y_2 \mod \mathcal{T}$

Socrates: Do not believe anything

- My thinking might be delusional
- Observations might be hallucinations
- No knowledge: All models equal

Another example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- k = 6 fits any data
 - Unique model
 - But no predictive power
- k = 5,4,3 ...? fits any data
 - More or less reliable

Another example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- k = 6 fits any data
 - Unique model
 - But no predictive power
- k = 5,4,3 ...? fits any data
 - More or less reliable

Another example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- k = 6 fits any data
 - Unique model
 - But no predictive power
- k = 5,4,3 ...? fits any data
 - More or less reliable

We need to quantify

- How reliable is our model?
- How complex can we make it?

"Occam's razor"

- Do not make overly complex
- We will see a quantitative version soon

Remark

- The basics can still go wrong
- Repeatability / time symmetry

prepare outcome experiment (black box)

Examples

- Financial crisis 2008 partially attributed to bad risk modeling for credit default correlations
 - "Unlikely that everybody defaults on home loans"
 - Simple model, but fitted to data from growth period
 - "Experiment" not independently repeatable
- Social media 2021 starts discussing stock trades *#*

Back to our 3 Problems

Is this model sufficient?

$2\frac{1}{2}$ Problems

- The model might be too complex
- The model might be (overly) simplified
- Information is probabilistic

Probabilistic Nature of Induction

(3) Inductive reasoning is always probabilistic

- Same outcome in 1000 experiments?
 - Slim chance of a change the 1001st time
- Cannot make accurate predictions?
 - Random influence on outcome
 - Example:
 - Sometimes the medicine works, sometimes it does not
 - Physiology highly complex
 - Unmodeled effects are "random"

Probabilistic Nature of Induction

(3) Inductive reasoning is always probabilistic

- This is not a fundamental problem
 - Models can be probabilistic
- But we need the right tools to capture uncertainty

→ Stastistical Data Modeling

Probability!

Probability

Discrete probability measure

- "Sample space" $\Omega = \{\omega_1, \dots, \omega_n\}$
- Outcome $\omega_i \in \Omega$ has probability

 $0 \le P(\omega_i) \le 1$

- The sum of all probabilities is 1 $\sum_{i=1}^{n} P(\omega_i) = 1$
- "If we repeat the experiment n times (often), we will observe ω_i roughly n · P(ω_i) times."

Stochastic Convergence

Probability: model of uncertainty

- Motivated by repeating experiment
 - Let $h_n(\omega)$ be the frequency (a random outcome) at which ω was observed in n concrete trials

• $h_n(\omega)$ does not converge to $P(\omega)$ in a classic sense

- Instead: a "hidden" process makes it unlikely to deviate far
- Precise: probability of deviation converges to zero

$$\forall \epsilon > 0: \lim_{n \to \infty} (P(|h_n(\omega) - P(\omega)| > \epsilon)) \to 0$$

How to Create Knowledge?

(1) Building probabilistic models

- (1a) Theoretical model (class)
 - Prior knowledge (e.g. symmetries)
 - Might contain unknown parameters

(1b) Knowledge from experiments

- Fill in parameter values
- Statistics / machine learning
- Prior knowledge always required

(2) Predictions: using probabilistic models

- New (partial) data / observations
- Infer predictions from models

Summary

Summary

Gaining knowledge

- Observations \rightarrow inductive reasoning
- Logical conclusions \rightarrow deductive reasoning

Algorithmic induction

- Information from observations
- Finite examples → uncertainty
- Statistics models knowledge gain

Will look at probability theory next

