Modelling 2

STATISTICAL DATA MODELLING

Chapter 1

 Knowledge \& UncertaintyIntroduction

What is the topic of this lecture?

Topic of This Lecture

Statistical Data Modeling

- Extracting knowledge from data
- Algorithmic inductive reasoning
- Statistical machine learning

Focus

- Self-organizing ML systems
- Algorithmic: Deep Networks
- "Emergent" structure
- Complex system modeling techniques

Motivation: "Artificial Intelligence"

Renewed interest

- Every 20 years?
- There is no AI (yet)

Research

- What is intelligence?
- Old question, unresolved
- Philosophy, Physics, Biology
- If we want to rebuild it, we have to find out
- Algorithmic formalization of intelligence

"Artificial Intelligence"

Statistical Data Modeling

- Perspective: Intelligence
- Make sense of the data around us
- Uncertainty leads to statistics
- Machine learning: algorithmic statistics

Artificial Intelligence

Statistical Data Modeling

- Perspective: Intelligence
- Make sense of the data around us
- Uncertainty leads to statistics
- Machine learning: algorithmic statistics
- Tool of the day: Deep Networks
- Remarkable performance
- Remarkably simple
- Why do they work?

Mndziliing

Statictingl naía ivivuieliling
Theoretical Deep Learning

Artificial Intelligence

Statistical Data Modeling

- Perspective: Modeling
- Model structure in data
- Data can be cognitive system itself
- Reverse engineering of deep networks
- Connections to neuroscience
- Complex systems
- How can we describe (aspects of) complex systems?
- Emergent structure / order
- Relation to natural science

Knowledge?

How do we know things?

Epistemology ("Erkenntnistheorie")

- How do we get to know things
- And be reasonable to be reasonably sure about them

How do we know things?

Socrates

- Skepticism: "I know that I know nothing"
- Basis of all science (but clearly insufficient on its own...)

How do we know things?

Descartes

- "Cogito ergo sum" - I think, therefore I am
- Consciousness: Important, but not our topic

The Science of Knowing

To make progress

- Need "philosophically" strong assumptions
- Not "strong" in an everyday-sense

Historic: Enlightment

- Let’s be reasonable
- But what is reasonable?

The Scientific Method

Assumptions

- Math \& Logic
- Occasionally non-trivial
- See e.g. debate on "axiom of choice"
- Symmetry
- Repeatability of experiments
- Spatio-temporal persistence of knowledge
- Simplicity
- How the world works can be condensed to a few "simple" rules
- "Reductionism"

The Scientific Method

Gaining objective knowledge

- Various formulations
- Discussing my personal take here
- Skepticism as default

Two main techniques

- Logical reasoning (deduction)
- Empirical observation (induction)

(At least)
 Two Schools of Thought

(At least)
 Two Schools of Thought

Deduction

(At least)
 Two Schools of Thought

Deductive Reasoning

Deductive Reasoning

- Start from assumptions
. "Axioms"
- Derive consequences

₹"Mathematics"

Deductive Reasoning

Structure

- Sequence of invocations of assumed facts yields new facts
- Can be complex
- Variables (and sets)
- Higher-order logic

Example

Peano Axioms for \mathbb{N} (excerpt)

- 0 is a natural number
- For each $n \in \mathbb{N}$ there is a successor $S(n)$
- If $n=m$ then $S(n)=S(m)$

Complexity: Use of variables

- Making statements over variables from larger sets
- Expressive power depends on types of sets permitted
- E.g. sets of sets vs. single elements

Deductive Reasoning

Computational Structure

- Axioms and proofs can be encoded as bit-strings
- Countably many proofs

Automatic proving

- Algorithmic deduction (part of AI, but not our topic)
- We can search for proofs

- Undecidable: no exclusion of existence in finite time
- Means: very, very expensive search in practice

It gets worse...

Gödel's incompleteness

- Axioms strong enough to describe \mathbb{N}
" „All facts" are not recursively enumerable, but proofs are

Consequence

- There are "true" facts without a proof
- For classic binary logic

- Emergent complexity: You cannot understand an axiom system from within itself

Speaking of Static Logic...

Emergent complexity in algorithms

- "Dynamically" executed algorithms face the same problem

Unpredictable behavior

- Turing-capable program

```
// good night & good luck.
int f(int n) {
    if (n <= 1) return 0;
    if (n % 2 == 0) {
        return f(n / 2);
    } else {
        return f(3*n + 1);
    }
}
```

- E.g. arithmetics, assignment, repetition, condition
- Discrete, finite (but unbound) sequence of statements
- No finitely-sized algorithms can decide non-trivial properties of the algorithms behavior

Emergent Complexity

Emergent Complexity

$$
\mathrm{re}(c) \rightarrow
$$

Mandelbrot Set

Iteration
$z \rightarrow z^{2}+c$
$z, c \in \mathbb{C}$
color $=$ number of iterations until value >2

Emergent Complexity

Penrose Tilings

Principle

- Put tiles together
- Can fill whole 2D plane
- Globally aperiodic (no repetitions)

Tiling is Turing-capable \rightarrow Programming by designing tiles (quadratic "Wang-Domino" bricks sufficient)

Emergent Complexity

Conway's „Game of Life"

- Binary lableing for „cells": dead or alive
- "Living" cells with <2 or >3 neighbors "die"
- "Living" cells with 2... 3 neighbors remain "alive"
- "Dead" cells with exactly 3 neighbors come back to live

Turing-capable machine

(At least)
 Two Schools of Thought

Induction*)

Induction: Generalization from examples

- Observe examples
- Try to derive model
- Observe more (independent) examples
- Verify or falsify model

Black-Box Model

Repeatable / reproducible experiment

- Define/find/observe experiment that is repeatable
- Same behavior each time (rest "randomness")
- Independent (no influence, also not in randomness)
- Make multiple observations
- Gain information on how likely outcomes are

Induction Recipe

How to learn knowledge inductively

- Set up model
- Might contains unknown parameters
- Find repeatable experiment ("training data")
- Measure n outcomes
- Determine
- If the model is able to explain the experiment
- Which parameters are likely

realm of ideas
 Models,
 Model of Heinrich Hertz (1894)

Imagination

realm of ideas
Models, Imagination

-Imagination

Model of Hes simplified Hertz (1894)

natural (real)
consequence

object

(consequence)

Formalization

Inductive / predictive reasoning

- "State of nature": $x \in \Omega$
- "State of model": $y \in M$
- Observation: $\quad o: \Omega \rightarrow \mathrm{M}$
- Experiment:

$$
e: \Omega \rightarrow \Omega
$$

- Model prediction: m: M \rightarrow M

Commuting diagram / homomorphism

- Chose m such that $\forall \mathbf{x} \in \Omega: m \circ o=o \circ e$

Formalization

Learning

- Chose m such $\forall \mathrm{x} \in \Omega: m \circ 0 \approx 0 \circ e$

Inference (using knowledge)

- Find $y^{\prime} \in M$ such $y^{\prime}=m(o(\mathbf{x}))=m(y)$

What Could Possibly Go Wrong?

Is this model sufficient?

- Assume perfectly predictive model
- Is this model "correct"?

$2 \frac{1}{2}$ Problems
- The model might be too complex
- The model might be (overly) simplified bad
- Information is probabilistic

What Could Possibly Go Wrong?

(1) Too simple

- Observation / model might loose information
- Model y does not describe all of x

"In principle ok"

- No model is comprehensive
- Abstraction needed
- Need to keep the "right" / "relevant" information
- Model design problem
- Example: image reconstruction vs. pattern recognition

Model might leave out details...

Autoencoder
(PCA in latent space)

WGAN-GP (generative adversarial network)

What Could Possibly Go Wrong?

(2) Too complex

- Observation (model) has too much information
- Model might add information

- Model might not remove enough information

Usually: Very bad

- Additional information is nonsense
- "Made-up stuff", "Fairytale"
- Predictive power might be compromised
- If not careful, we might not recognize it

Example: Mythology of Seasons

Example of "too complex" [see Ref. below]

- The sun is a goddess. Shines warm.
- (Note: latent sexism in mythology)
- There is a winter god. He is evil and moody.
- Why? This is how bad guys are in mythology!
- When the winter good gets in a bad mood, he chases the sun in senseless wrath.
- The sun has to hide.
- It happens periodically.

Model too Complex

Good model?

- Explains seasons very accurately

$$
\|m(o(x))-o(e(x))\| \rightarrow \text { small }
$$

- All predictions match very well

Model too Complex

Good model?

- Unverifiable model aspects
- „Winter god" \rightarrow "guys next town release poisonous gas into the air"
- Unreliable information

Model too Complex

Rule: Falsifiable models

- Remove all information that is independent of experiment-observation-cycle
- Anything that can be changed without changing the outcome is "no information"

Model too Complex

What we do not know

- Let T be a change to the model
- Anything change that does not change the observations yields an equally predictive model
- All the information subject to change are "not established" (unknown)

Symmetry in overly complex models

Formally: Symmetry

- Transformation $T \in \mathcal{T}$ leave experiments unchanged

$$
\begin{gathered}
T: M \rightarrow M \\
\mathcal{T}=\{T: M \rightarrow M \mid \forall \mathrm{x} \in \Omega: m \circ T \circ o \approx T \circ o \circ e\}
\end{gathered}
$$

- \mathcal{T} : symmetry group of the model under observations
- We do not know y, only y $\bmod \mathcal{J}$

Symmetry in overly complex models

$\mathcal{T}=$ set of all

 permutations of M :$$
\begin{aligned}
& \forall y_{1}, y_{2} \in M: \\
& y_{1} \equiv y_{2} \bmod \mathcal{T}
\end{aligned}
$$

Socrates: Do not believe anything

- My thinking might be delusional
- Observations might be hallucinations
- No knowledge: All models equal

Unreliable Models

Another example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- $k=6$ fits any data
- Unique model
- But no predictive power
- $k=5,4,3 \ldots$? fits any data
- More or less reliable

Unreliable Models

Another example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- $k=6$ fits any data

- Unique model
- But no predictive power
- $k=5,4,3$...? fits any data
- More or less reliable

Unreliable Models

Another example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- $k=6$ fits any data
- Unique model
- But no predictive power
- $k=5,4,3 \ldots$? fits any data
- More or less reliable

Unreliable Models

We need to quantify

- How reliable is our model?
- How complex can we make it?

"Occam's razor"

- Do not make overly complex
- We will see a quantitative version soon

Unreliable Models

Remark

- The basics can still go wrong
- Repeatability / time symmetry

Examples

- Financial crisis 2008 partially attributed to bad risk modeling for credit default correlations
- "Unlikely that everybody defaults on home loans"
- Simple model, but fitted to data from growth period
- "Experiment" not independently repeatable
- Social media 2021 starts discussing stock trades

Back to our 3 Problems

Is this model sufficient?

$2 \frac{1}{2}$ Problems

- The model might be too complex
- The model might be (overly) simplified bad
- Information is probabilistic

Probabilistic Nature of Induction

(3) Inductive reasoning is always probabilistic

- Same outcome in 1000 experiments?
- Slim chance of a change the 1001st time
- Cannot make accurate predictions?
- Random influence on outcome
- Example:
- Sometimes the medicine works, sometimes it does not
- Physiology highly complex
- Unmodeled effects are "random"

Probabilistic Nature of Induction

(3) Inductive reasoning is always probabilistic

- This is not a fundamental problem
- Models can be probabilistic
- But we need the right tools to capture uncertainty

\rightarrow Stastistical Data Modeling

Probability!

Probability

Discrete probability measure

- "Sample space" $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$
- Outcome $\omega_{i} \in \Omega$ has probability

$$
0 \leq P\left(\omega_{i}\right) \leq 1
$$

- The sum of all probabilities is 1

$$
\sum_{i=1}^{n} P\left(\omega_{i}\right)=1
$$

- "If we repeat the experiment n times (often), we will observe ω_{i} roughly $n \cdot P\left(\omega_{i}\right)$ times."

Ω

Stochastic Convergence

Probability: model of uncertainty

- Motivated by repeating experiment
- Let $h_{n}(\omega)$ be the frequency (a random outcome) at which ω was observed in n concrete trials
- $h_{n}(\omega)$ does not converge to $P(\omega)$ in a classic sense
- Instead: a "hidden" process makes it unlikely to deviate far
- Precise: probability of deviation converges to zero

$$
\forall \epsilon>0: \lim _{n \rightarrow \infty}\left(P\left(\left|h_{n}(\omega)-P(\omega)\right|>\epsilon\right)\right) \rightarrow 0
$$

How to Create Knowledge?

(1) Building probabilistic models

- (1a) Theoretical model (class)
- Prior knowledge (e.g. symmetries)
- Might contain unknown parameters
- (1b) Knowledge from experiments
- Fill in parameter values
- Statistics / machine learning
- Prior knowledge always required

(2) Predictions: using probabilistic models
- New (partial) data / observations
- Infer predictions from models

consider model only
theoretical model (class)

data in, model predicts, prediction out

Summary

Summary

Gaining knowledge

- Observations \rightarrow inductive reasoning
- Logical conclusions \rightarrow deductive reasoning

Algorithmic induction

- Information from observations
- Finite examples \rightarrow uncertainty
- Statistics models knowledge gain

Will look at probability theory next

