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Introduction
What is the topic of this lecture?



Topic of This Lecture

Statistical Data Modeling

▪ Extracting knowledge from data

▪ Algorithmic inductive reasoning

▪ Statistical machine learning

Focus

▪ Self-organizing ML systems

▪ Algorithmic: Deep Networks

▪ “Emergent” structure

▪ Complex system modeling techniques



Motivation: “Artificial Intelligence”

Renewed interest

▪ Every 20 years?

▪ There is no AI (yet)

Research

▪ What is intelligence?

▪ Old question, unresolved

▪ Philosophy, Physics, Biology

▪ If we want to rebuild it, we have to find out

▪ Algorithmic formalization of intelligence

(4)



“Artificial Intelligence”

Statistical Data Modeling

▪ Perspective: Intelligence

▪ Make sense of the data around us

▪ Uncertainty leads to statistics

▪ Machine learning:
algorithmic statistics

(5)



Artificial Intelligence

Statistical Data Modeling

▪ Perspective: Intelligence

▪ Make sense of the data around us

▪ Uncertainty leads to statistics

▪ Machine learning:
algorithmic statistics

▪ Tool of the day: Deep Networks

▪ Remarkable performance

▪ Remarkably simple

▪ Why do they work?

class 1 class 2

data

(6)



Modelling 2

Statistical Data Modelling

Theoretical Deep Learning



Artificial Intelligence

Statistical Data Modeling

▪ Perspective: Modeling

▪ Model structure in data

▪ Data can be cognitive system itself

▪ Reverse engineering of deep networks

▪ Connections to neuroscience

▪ Complex systems

▪ How can we describe (aspects of)
complex systems?

▪ Emergent structure / order

▪ Relation to natural science

(8)





Knowledge?



How do we know things?

Epistemology (“Erkenntnistheorie”)

▪ How do we get to know things

▪ And be reasonable to be
reasonably sure about them

(11)



How do we know things?

Socrates

▪ Skepticism: “I know that I know nothing”

▪ Basis of all science (but clearly insufficient on its own…)

[Raffael. The Yorck Project (2002), public domain. https://commons.wikimedia.org/w/index.php?curid=157721] (12)



Descartes

▪ “Cogito ergo sum” – I think, therefore I am

▪ Consciousness: Important, but not our topic

How do we know things?

[https://commons.wikimedia.org/wiki/File:Frans_Hals_-_Portret_van_Ren%C3%A9_Descartes.jpg]

At least,
there is
something!

Might be
nonsense,

but I am
perceiving s.t.

(13)



The Science of Knowing

To make progress

▪ Need “philosophically”
strong assumptions

▪ Not “strong” in an 
everyday-sense

Historic: Enlightment

▪ Let’s be reasonable

▪ But what is reasonable?

[Sébastien Leclerc I, Louis XIV Visiting the Royal Academy of Sciences. https://commons.wikimedia.org/w/index.php?curid=30184020] (14)



The Scientific Method

Assumptions

▪ Math & Logic

▪ Occasionally non-trivial

▪ See e.g. debate on “axiom of choice”

▪ Symmetry

▪ Repeatability of experiments

▪ Spatio-temporal persistence of knowledge

▪ Simplicity

▪ How the world works can be condensed to
a few “simple” rules

▪ “Reductionism”

(15)



The Scientific Method

Gaining objective knowledge

▪ Various formulations

▪ Discussing my personal take here

▪ Skepticism as default

Two main techniques

▪ Logical reasoning (deduction)

▪ Empirical observation (induction)

(16)



Two Schools of Thought
(At least)

Comic: [Randall Munroe, https://xkcd.com/435/]

empirical purely deductive



Two Schools of Thought
(At least)

DeductionInduction



Two Schools of Thought
(At least)

DeductionInduction



Deductive Reasoning

Deductive Reasoning

▪ Start from assumptions

▪ “Axioms”

▪ Derive consequences

≈ “Mathematics”

Axiom 1

Axiom 2

Axiom 3

Axiom 4

Axioms

Th. 2 Th. 3

Model

Theorem 1

(20)



Deductive Reasoning

Structure

▪ Sequence of invocations
of assumed facts
yields new facts

▪ Can be complex

▪ Variables (and sets)

▪ Higher-order logic

Axiom 1

Axiom 2

Axiom 3

Axiom 4

Axioms

Th. 2 Th. 3

Model

Theorem 1

(21)



Example

Peano Axioms for ℕ (excerpt)

▪ 0 is a natural number

▪ For each 𝑛 ∈ ℕ there is a successor 𝑆 𝑛

▪ If 𝑛 = 𝑚 then 𝑆 𝑛 = 𝑆(𝑚)

▪ …

Complexity: Use of variables

▪ Making statements over variables from larger sets

▪ Expressive power depends on types of sets permitted

▪ E.g. sets of sets vs. single elements

(22)



Deductive Reasoning

Computational Structure

▪ Axioms and proofs can be
encoded as bit-strings

▪ Countably many proofs

Automatic proving

▪ Algorithmic deduction
(part of AI, but not our topic)

▪ We can search for proofs

▪ Undecidable: no exclusion of existence in finite time

▪ Means: very, very expensive search in practice

Axiom 1

Axiom 2

Axiom 3

Axiom 4

Axioms

Th. 2 Th. 3

Model

Theorem 1

(23)



It gets worse…

Gödel’s incompleteness

▪ Axioms strong enough
to describe ℕ

▪ „All facts“ are not recursively
enumerable, but proofs are

Consequence

▪ There are “true” facts
without a proof

▪ For classic binary logic

▪ Emergent complexity: You cannot understand an 
axiom system from within itself

Axiom 1

Axiom 2

Axiom 3

Axiom 4

Axioms

Th. 2 Th. 3

Model

Theorem 1

(24)



Emergent complexity in algorithms

▪ “Dynamically” executed
algorithms face
the same problem

Unpredictable behavior

▪ Turing-capable program

▪ E.g. arithmetics, assignment, repetition, condition

▪ Discrete, finite (but unbound) sequence of statements

▪ No finitely-sized algorithms can decide non-trivial 
properties of the algorithms behavior

// good night & good luck.

int f(int n) {

if (n <= 1) return 0;

if (n % 2 == 0) {

return f(n / 2);

} else {

return f(3*n + 1);

}

}

Speaking of Static Logic…

(25)



Emergent Complexity



Emergent Complexity
Mandelbrot

Set

Iteration
𝑧 → 𝑧2 + 𝑐
𝑧, 𝑐 ∈ ℂ

color = number of iterations until value > 2

re 𝑐 →

im
𝑐

→

[Animation: Wikipedia contributor „Simpsons contributor“] (27)



Emergent Complexity

Principle

▪ Put tiles together

▪ Can fill whole 2D plane

▪ Globally aperiodic
(no repetitions)

Tiling is Turing-capable → Programming by designing tiles
(quadratic “Wang-Domino” bricks sufficient)

[Left tiling: WP contrib. Inductiveload, https://en.wikipedia.org/wiki/Penrose_tiling]

Penrose Tilings

(28)



Emergent Complexity

Conway‘s „Game of Life“

▪ Binary lableing for „cells“: dead or alive

▪ “Living” cells with <2 or >3 neighbors “die”

▪ “Living” cells with 2…3 neighbors remain “alive”

▪ “Dead” cells with exactly 3 neighbors come back to live

Turing-capable machine
[right image: Jan Disselhof] (29)



Two Schools of Thought
(At least)

DeductionInduction



Induction: Generalization from examples

▪ Observe examples

▪ Try to derive model

▪ Observe more (independent)
examples

▪ Verify or falsify model
time
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Black-Box Model

Repeatable / reproducible experiment

▪ Define/find/observe experiment that is repeatable

▪ Same behavior each time (rest “randomness”)

▪ Independent (no influence, also not in randomness)

▪ Make multiple observations

▪ Gain information on how likely outcomes are

prepare outcome

independently repeatable

experiment
(black box)

repeatable:
symmetry

result:
probabilistic
knowledge

independence
needs

assumptions

(32)



Induction Recipe

How to learn knowledge inductively

▪ Set up model

▪ Might contains unknown parameters

▪ Find repeatable experiment (“training data”)

▪ Measure  𝑛 outcomes

▪ Determine

▪ If the model is able to explain the experiment

▪ Which parameters are likely

(33)



Model of Heinrich Hertz (1894)

Bilder
(Modelle)

„denknotwendige“
Folgen     

(Vorhersagen) 

„Folgen der Bilder“

Gegenstand
(Natur)

Gegenstand
(Folgezustand)

„naturnotwendige
Folgen“

B
eo

ba
ch

tu
ng

B
eo

ba
ch

tu
ng

real world (objective & unknown)

realm of ideas
Models,

Imagination

(34)



Model of Heinrich Hertz (1894)

mental
image

(model)

deduced
consequences     

of model

model consequence

object
(nature / real)

object
(consequence)

natural (real) 
consequence
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bs

er
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on
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bs
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real world (objective & unknown)

realm of ideas
Models,

Imagination

coarse
graining

(simplification)

simplified
dynamics

original
dynamics 

(35)



Formalization

Inductive / predictive reasoning

▪ “State of nature”: 𝐱 ∈ Ω

▪ “State of model”: 𝐲 ∈ M

▪ Observation: 𝑜: Ω → M

▪ Experiment: 𝑒: Ω → Ω

▪ Model prediction: 𝑚:M → M

Commuting diagram / homomorphism

▪ Chose 𝑚 such that ∀𝐱 ∈ Ω:𝑚 ∘ 𝑜 = 𝑜 ∘ 𝑒

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

(36)



Formalization

Learning

▪ Chose 𝑚 such ∀𝐱 ∈ Ω:𝑚 ∘ 𝑜 ≈ 𝑜 ∘ 𝑒

Inference (using knowledge)

▪ Find 𝑦′ ∈ 𝑀 such 𝑦′ = 𝑚 𝑜 𝐱 = 𝑚(𝑦)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

unkown

unkown

(37)



What Could Possibly Go Wrong?

Is this model sufficient?

▪ Assume perfectly predictive model

▪ Is this model “correct”?

2– Problems

▪ The model might be too complex

▪ The model might be (overly) simplified

▪ Information is probabilistic

1

2

can be ok

bad

unavoidable

(need math)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

(38)



What Could Possibly Go Wrong?

(1) Too simple

▪ Observation / model might
loose information

▪ Model 𝐲 does not describe all of 𝐱

“In principle ok”

▪ No model is comprehensive

▪ Abstraction needed

▪ Need to keep the “right” / “relevant” information

▪ Model design problem

▪ Example: image reconstruction vs. pattern recognition

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

too
simple

?
no way
back

(39)

no general
answer

(no free lunch)



Autoencoder
(PCA in latent space)

WGAN-GP
(generative adversarial network)

Model might leave out details…

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]
(40)



What Could Possibly Go Wrong?

(2) Too complex

▪ Observation (model) has 
too much information

▪ Model might add information

▪ Model might not remove enough information

Usually: Very bad

▪ Additional information is nonsense

▪ “Made-up stuff”, “Fairytale”

▪ Predictive power might be compromised

▪ If not careful, we might not recognize it

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

too
complex!

(41)



Example: Mythology of Seasons

Example of “too complex” [see Ref. below]

▪ The sun is a goddess. Shines warm.

▪ (Note: latent sexism in mythology)

▪ There is a winter god. He is evil and moody.

▪ Why? This is how bad guys are in mythology!

▪ When the winter good gets in a bad mood, he chases 
the sun in senseless wrath.

▪ The sun has to hide.

▪ It happens periodically.

(42)
Adapted from David Deutsch: “A new way to explain explanation” (Ted Talk 2009) 
[https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation]



Model too Complex

Good model?

▪ Explains seasons very accurately

𝑚 𝑜 𝑥 − 𝑜 𝑒 𝑥 → 𝑠𝑚𝑎𝑙𝑙

▪ All predictions match very well

Adapted from David Deutsch: “A new way to explain explanation” (Ted Talk 2009) 
[https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation]

an
ge

r 
→

time →

agitated

bad

severe

gigantic

wrath of the winter god

calm

te
m

p.
 →

time →

cool

warm

hot

lava-hot

outside temperature

freezing

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

good
fit!

(43)



Model too Complex

Good model?

▪ Unverifiable model aspects

▪ „Winter god“ → “guys next town 
release poisonous gas into the air”

▪ Unreliable information

an
ge

r 
→

time →

agitated

bad

severe

gigantic

wrath of the winter god

calm

te
m

p.
 →

time →

cool

warm

hot

lava-hot

outside temperature

freezing

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

good
fit!

Adapted from David Deutsch: “A new way to explain explanation” (Ted Talk 2009) 
[https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation] (44)



Model too Complex

Rule: Falsifiable models

▪ Remove all information that is independent of
experiment-observation-cycle

▪ Anything that can be changed without changing the 
outcome is “no information”

ef
fe

ct
 →

time →

low

medium

high

very high

“some effect”

zero

te
m

p.
 →

time →

cool

warm

hot

lava-hot

outside temperature

freezing

Adapted from David Deutsch: “A new way to explain explanation” (Ted Talk 2009) 
[https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation] (45)



Model too Complex

What we do not know

▪ Let 𝑇 be a change to the model

▪ Anything change that does not change the 
observations yields an equally predictive model

▪ All the information subject to change are
“not established” (unknown)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

𝒯 ∋ 𝑇

(46)



Symmetry in overly complex models

Formally: Symmetry

▪ Transformation 𝑇 ∈ 𝒯 leave experiments unchanged

𝑇:𝑀 → 𝑀

𝒯 = 𝑇:𝑀 → 𝑀 ∀𝐱 ∈ Ω:𝑚 ∘ 𝑇 ∘ 𝑜 ≈ 𝑇 ∘ 𝑜 ∘ 𝑒

▪ 𝒯: symmetry group of the model under observations

▪ We do not know 𝐲, only 𝐲 mod 𝒯

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

𝒯 ∋ 𝑇

(47)



Symmetry in overly complex models

Socrates: Do not believe anything

▪ My thinking might be delusional

▪ Observations might be hallucinations

▪ No knowledge: All models equal

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

𝒯 ∋ 𝑇 𝒯 = set of all
permutations of 𝑀:

∀𝑦1, 𝑦2 ∈ 𝑀:
𝑦1 ≡ 𝑦2 mod 𝒯

maximize

𝒯

(48)



Unreliable Models

Another example

▪ Betting on stock prices

▪ Polynomial fitting

▪ Seven observations

Degree 𝑘 polynomial

▪ 𝑘 = 6 fits any data

▪ Unique model

▪ But no predictive power

▪ 𝑘 = 5,4,3…? fits any data

▪ More or less reliable

time

pr
ic

e short the
stock!

time

pr
ic

e

(to the
moon!)

buy the
stock!

(49)



Unreliable Models

Another example

▪ Betting on stock prices

▪ Polynomial fitting

▪ Seven observations

Degree 𝑘 polynomial

▪ 𝑘 = 6 fits any data

▪ Unique model

▪ But no predictive power

▪ 𝑘 = 5,4,3…? fits any data

▪ More or less reliable

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

𝑇 ∈ 𝒯

(50)



Unreliable Models

Another example

▪ Betting on stock prices

▪ Polynomial fitting

▪ Seven observations

Degree 𝑘 polynomial

▪ 𝑘 = 6 fits any data

▪ Unique model

▪ But no predictive power

▪ 𝑘 = 5,4,3…? fits any data

▪ More or less reliable

time

pr
ic

e short the
stock!

time

pr
ic

e

(to the
moon!)

buy the
stock!

(51)



Unreliable Models

We need to quantify

▪ How reliable is our model?

▪ How complex can
we make it?

“Occam’s razor”

▪ Do not make overly complex

▪ We will see a 
quantitative version soon

time

pr
ic

e short the
stock!

time

pr
ic

e

(to the
moon!)

buy the
stock!

(52)



Unreliable Models

Remark

▪ The basics can still go wrong

▪ Repeatability / time symmetry

Examples

▪ Financial crisis 2008 partially attributed to
bad risk modeling for credit default correlations

▪ “Unlikely that everybody defaults on home loans”

▪ Simple model, but fitted to data from growth period

▪ “Experiment” not independently repeatable

▪ Social media 2021 starts discussing stock trades
(53)



Back to our 3 Problems

Is this model sufficient?

2– Problems

▪ The model might be too complex

▪ The model might be (overly) simplified

▪ Information is probabilistic

1

2

can be ok

bad

unavoidable

(need math)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜

(54)



Probabilistic Nature of Induction

(3) Inductive reasoning is always 
probabilistic

▪ Same outcome in 1000 experiments?

▪ Slim chance of a change the 1001st time

▪ Cannot make accurate predictions?

▪ Random influence on outcome

▪ Example:

– Sometimes the medicine works, sometimes it does not

– Physiology highly complex

– Unmodeled effects are “random”

(55)



Probabilistic Nature of Induction

(3) Inductive reasoning is always 
probabilistic

▪ This is not a fundamental problem

▪ Models can be probabilistic

▪ But we need the right tools to capture uncertainty

→ Stastistical Data Modeling

(56)



Probability!



Probability

Discrete probability measure

▪ “Sample space” Ω = {𝜔1, … , 𝜔𝑛}

▪ Outcome 𝜔𝑖 ∈ Ω has probability

0 ≤ 𝑃 𝜔𝑖 ≤ 1

▪ The sum of all probabilities is 1



𝑖=1

𝑛

𝑃 𝜔𝑖 = 1

▪ “If we repeat the experiment 𝑛
times (often), we will observe 𝜔𝑖

roughly 𝑛 ⋅ 𝑃 𝜔𝑖 times.”
(58)
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Stochastic Convergence

Probability: model of uncertainty

▪ Motivated by repeating experiment

▪ Let ℎ𝑛 𝜔 be the frequency (a random outcome)
at which 𝜔 was observed in 𝑛 concrete trials

▪ ℎ𝑛 𝜔 does not converge to 𝑃 𝜔 in a classic sense

▪ Instead: a “hidden” process makes it unlikely to deviate far

▪ Precise: probability of deviation converges to zero

∀𝜖 > 0: lim
𝑛→∞

𝑃 ℎ𝑛 𝜔 − 𝑃 𝜔 > 𝜖 → 0

(59)



(1) Building probabilistic models

▪ (1a) Theoretical model (class)
▪ Prior knowledge (e.g. symmetries)

▪ Might contain unknown parameters

▪ (1b) Knowledge from experiments
▪ Fill in parameter values

▪ Statistics / machine learning

▪ Prior knowledge always required

(2) Predictions: using probabilistic models

▪ New (partial) data / observations

▪ Infer predictions from models

How to Create Knowledge?

(60)
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Summary



Summary

Gaining knowledge

▪ Observations → inductive reasoning

▪ Logical conclusions → deductive reasoning

Algorithmic induction

▪ Information from observations

▪ Finite examples → uncertainty

▪ Statistics models knowledge gain

Will look at probability theory next

(63)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

𝑒

𝑜 𝑜


