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* Modeling 1 Recap: Least-Squares, PCA



Some Classical ML Methods

Recap from Modeling 1
= Regression: Least-squares fitting
= A generative model: Gaussian fitting

= Dimensionality reduction: PCA
(Principle Component Analysis)



Regression with
Linear Models

via Least-Squares Function Fitting



Situation

Y2 ”f

>

X;X; X,

Situation
= Sample points taken at x;, from original f.
= Unknown Gaussian i.i.d. noise added to each y..
= Reconstruct f.



Summary (- Mod-1)

Statistical model: least-squares criterion
' F(x) — i i
argfmln;(f X y)

Linear ansatz: quadratic objective

2
f;ll 2,0 = ZA bi(x) = argmmE((EA b (x; )) )

j=1

Critical point: linear system

(by,by) - (by,bp)\ (44 (y,by) . z b;(x¢) - b;(x;)
: : P = : With + (=1
<bk7b1> <bk1bk> /lk (Y, bk) (y b z

- b; (x¢)
(8)




Maximum Likelihood Estimation

n n £ .
arg max 1_[ Noo(f(x) =) = arg;nax H = exp <_ (f(xiz)g_Z ), >
i=1

f 10 2T

- ) "\
= arg max In 1_[ - exp <— (f(xi) — yi) >
7 L Lovan 20%

_ \ 1\ (Fe)-»)
= arg;naxz ((ln Jﬁ) — P )

=1

N (f<xl->—yi)2>
= argfmmz <+ 252

=1

= ' F(x) = yi i
argfmln;(f b y)



Estimating Gaussian

(Maximum Likelihood)

(10)



Gaussians

Gaussian Normal Distribution
= TwWO parameters: , o

= Density:
) 1 _G=p)?
N, (x) = e 207 Gaussian normal distribution
. V2mo?
= Mean:

= Variance: g*

(1)



Multi-Variate Gaussians

Gaussian Normal Distribution in d Dimensions
= Two parameters: i1 (d-dim-vector), 2 (d x d matrix)

= Density:

1 1 _
(2m) 2det(X) 2

= Mean:

= Covariance Matrix: 2

(12)



ML-Estimation from Data

Task

= Data (i.i.d.) dq, ..., d,, from Gaussian distribution
= Estimate parameters

Maximum Likelihood Estimation

1w 1 ~
:;Zdi zml:n—lZ(di_ )(d; — )"
=1 1=1

mean covariance

(13)



PCA

Least-Squares-Optimal
Dimensionality Reduction



The Shape of Gaussians
Probability Density

1 1 _
Nx () = (—— 1>e-z<x- T e
(2m) 2det(X) 2

Neg-Log Density:

: %(x — T Y (x — ) + const

Geometry
= |so-probability profiles are ellipsoids
= Eigenvectors of X are main axes

(15)



General Case
Principal Component Analysis (PCA)

= (A4, vq1), ..., (4,,, v,,): sorted eigenvalue/vector pairs of X
= A; is the largest
“ lvill =1

= Select subspace spanned by

+ span{vy, ..., v}, 0<d<n

» Subspace-projection is optimal: )
Linear

> Dimensionality
among all possible affine subspaces Reduction

= Yields optimal d-dim approximation

(Wrt. squared distances) _ 6



Example Application

Fitting a line to a point cloud

= Sample mean and direction
of maximum eigenvalue

Plane Fitting in R3: o N -
. . . A
= Smallest eigenvalue: normal direction T small
= Aspect ratio A3/4, is
a measure of “flatness” (quality of fit) L
ra
. larger



Example Application
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PCA-Model: 4-Legged Animals
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« Training data (in correspondence)
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Video #05a

summary

(20)



Summary

Fun with Gaussians!
= Least-squares fitting: Gaussian
= PCA: Gaussian
= Effort level: Solving linear systems

Ask-Me-Anything

= We can answer complicated / fancy questions
without computational pain

= Unfortunately, not everything on earth is Gaussian

(21)
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Classical Machine Learning

e 0Old-School: Classical Classifiers

(25)



Logistic Regression

(26)



Example from Video #04

Gaussian Fitting: Yes, we can now do this.

"orange") O )
(0=95%) L0

oA
v by

“banana”
(P=51%)

(27)



Example from Video

Discriminative Learning
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Let’s Build a Classifier

Simple discriminative model
= Two classes, probabilities p, (1 — p)
= Need (only) odds-ratio

1—-p

Logistic Regression
= Model: linear log-likelihood for p

p(X) — eBTX — 691X1+“‘+9d.7€d

for input / feature vector x € R¢
= Always positive

(29)



Let’s Build a Classifier

We get
= Odds-ratio
p B eeTX ~
1—p 1-—e®x
— 1 >
o 1 — e—OTx = hﬂ(x)
=o(0'x)
with
1
ag(z) = e

(,Sigmoid function®)
(30)



Training

Given

= Training examples {(x;, v;)}i=1
= “Feature Vectors” x; € R%
= “Labels” y; € {0,1}
— Banana or not banana
— (not banana = orange)

= Task
= Find “good” 6 € R4

= Approach: Maximum Likelihood

(31)



MLE Logistic Regression

Maximum Likelihood Estimation
= We want

hg(x) =1fory; =1 and hy(x) =0fory; =0
= Likelihood forclassy =1

p(ylx' 9) — hG(X)
= Maximum Iikeliwood

8 = arg max'_[ Ro () (1~ ho()) "7

d+1
O€ER i=1 max1mlze max1mlze
for y;= for y;=

(32)



MLE Logistic Regression

Maximum Likelihood Estimation
= MLE objective

n

pGd) \ T, pG) TP
| ] @—mg) ﬁ‘l—p<xi>) o

=1

maximize for y;=1 maximize for y;=0

" Using —— +-— =1, we get
n 1 Vi 1 (1-yi)
1_[ 1—e0"x 1—ef'x
i=1

(33)



MLE Logistic Regression

Log-Likelihood
z[Yi log(he(x;) ) + (1 —y;) log(1 — hg(x;) )]

i=1

n
= —Z log (1 + e‘yieTXi)
i=1

Derivation / further readings:
http://cs229.stanford.edu/extra-notes/loss-functions.pdf
http://cs229.stanford.edu/notes2020spring/cs229-notes1.pdf
https://en.wikipedia.org/wiki/Logistic_regression

(34)



Optimization

0 =arg minz log (1 + e‘yieTXi)
0ER? 4

How do we get 07?

= Non-quadratic objective
= Non-linear optimization problem

= Fortunately, the function is convex
= Sigmoid is convex
= Sum of convex functions

= Numerical optimization
= Gradient descent -or- (quasi-) Newton methods

= Stochastic (batch-) gradient descent for “big data”

(35)



Multi-Label Case

Task

= Again, n Data points, indexedbyi =1..n
= Data x; € R” with...
- ..label vectors y; € {0,1}"
— "One hot vectors’
- Only one entry is 1 (correct class), the rest is zero

= Learn class-specific parameters 6, ...,0, € R

(36)



Geometry

orange

........
.......

l banana

_________

(37)



Multi-Label Case

Replace sigmoid function 0:R - R
1 e’

O-(Z) P 1 _e—(z) — oz n 1

by “softmax” function o: R* - R

/ eZ \
Z]:l eZ]

e
\2j=1ezj /

o(z) =

(38)



Classifier

Classifier

ho(x) =0

= Qutputs class-probabilities

N

_T -
Ol'X

0! - x

-

u(é,x)

= o(u(6,x))

= All output vector entries in [0,1]
= Entries sum up to one



-
N,

Geometry




Classifier

Classifier
= MLE-Training

n

arg min z log z
ERKX

=1

i=1 j

N

via

n
= arg min z
KX

factor Z

log(Z)

normalization

T
i x| — z yi,
=1 |

normalization

1 only for
correct class

log 0, (u(6, %))

(neg)-log—likelihood
of correct class

- lf)g Oclass; (u(o, X)z

(neg)—log—likelihood
of correct class




Support Vector Machines

(42)



Discriminative Learning

Not strictly statistical Features D
= Optimize for good decisions

Black box classifer
= |[nput: features
= Qutput: jugdement

= Make it work!

« Discriminative model Decision
= No distributions, no posterior boundary of

= No sampling from posterior Po(X|D)"
= No generative model Labels/Models X

(43)



Linear SVMs

Support Vector Machine

= Consider two labels x € {—1,1}
= Datad € R"

= Classifier
x = f(d) =(d,0)+ 0,

Training
= Maximize margin between classes (x = —1, x = 1)

(44)



Support Vector Machines

training set separating hyperplane,
minimal penetration
of margin (Ly)

(45)



Linear SVMs

Support Vector Machine
= Consider two labels y € {—1,1}
» Datax € R?

= Classifier to optimize:
y=f(x)=(x,0)+0, parameters 6,6,

Training
= Maximize margin between classes (y = —1, y = 1)

(46)



Linear SVMs

‘. oo ® 9 =1 T\ /
'.. :-‘,':': h(f(t),1) h(f(t),—1)
o.‘:. :. ° ) —
’.'-‘.5 , |
el 101 f
Classifier

y=fx) =(x,0)+ 0,
Hinge loss

n
(6,0,) = argmin ( - lz \max(O, 1— yif(xi))J + ||0]]4
i=1 v

(0,0,)€RA+1
h(t,x;)
(47)



Kernel Support Vector Machine
Example Mapping:

]
i, '_.-. ______

original space "feature space”
. R* > R”
2 2
(x,5) = (6%, 23, 5°)

(48)



Algorithm

Consider Gram Matrix

G:

/<¢(x1),¢(x1)>

($(x),b(x,)) -

(k(xl,xl)

R(xp,x,) -

(p(ax,),p(x,))

($(x,),$(x,)),

R(x,,x,)
: often easier to compute than via

T (), 0() = (d(x), d())

R(x,,x,)

Factorize Gram Matrix
= ¢ = X'X (spectral embedding / MDS)
= Apply linear SVM, as we know it

(49)



Standard Kernels

Polynomial Kernel
" k(x,y) = (xy+1)°

= Implicitly creates all multivariate
polynomials up to degree d

Exponential Kernel

" k(x,y) = exp(- (x—y)*/c?)
= Infinite dimensional feature space
(clustering by density)

(50)



Video #05b

summary
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Summary

Basic classification methods
= Linear model (log-likelihood)

= Two objectives
= Probabilistic: odds-ratios / logistic regression
= Geometric: Max-margin (SVM)

= Convex numerical optimization

= Both work in practice
= SVM works well with kernelization
= Similar performance in “deep” architectures

(52)
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Video #05
Statistics & Machine Learning

Classical Machine Learning

Bayesian Data Analysis
 Example 1: MAP Image Reconstruction

(56)



Bayesian
Data Analysis

Example 1: Variational Reconstruction (Mod-1)
(MAP-solution w/priors)



Image Reconstruction Model

Problem statement
= Measured 2D pixel image
= Distorted by noise
= Want to remove noise

Bayesian problem modeling

= Model of measurement process
« Hand-crafted, not learned from data

= Prior distribution on images (thus “Bayesian”)

Inference: Maximum-a-posteriori

(58)



Model

Image
" Xjj withi =1 W,] =1,..,h

= continuous model: f:[1,w] X [1,h] = R

Probability space
s () = wah
= Probability density on RW*"

= Continuous model “f € RIOWIx[0.]”
would be “mathematically involved”
= We consider only finite-dimensional densities

(59)



Model

Bayes rule
P(X|D) ~ P(D|X)-P(X)

Likelihood

» P(DIX) = [1;L1 [1j=1 Na, o) () (1. Gaussian noise)

(xl l)
W h 1 202
= T | e

(Gaussian d|str|but|on)

= Not so unrealistic
= Real cameras: Poisson distribution + Gaussian circuit noise

= "Realistic” model: g; ~ x; + g, (60)



Model
Likelihood

(xl l)
1
* POIX) =% [jer | —5ze %0

Neg-Log-Likelihood

W h
E(D|X) = —InP(D|X) = ZZ xi—di)” | _wh
= —|n 7/
— = 207 opN 2T

independent of x;

Least Squares!

(67)



Model

Prior

= Assumption: Large image gradients are unlikely
= Gaussian distribution on Gradients

= Neg-log-likelihood: $||\7f||2
= Discretization
w—1h-— X — X _)2 + (x'j+1 . X'j)z wh
E(X) =—-InP(X) = L1 LJ L L)
%

205 oA 2T

o o independent of x;
= (This is not very realistic)

= (But what can you do?)

= (This is very Bayesian)
(62)



Minimization Problem

Minimize
E(D|X)+ EX)
w—1h-1

w h 2 2
_ 2 2 (xi — di)* 4 z z (rivay = x0) "+ (xije1 — x05)
o 2 2

Equwalent minimization objective

W1h1

ZZ —d)2+—ZZ(xl+1] xU) + (x; j41 — XU)

=1 j=

Continuous

2
f (0 — d()) dx + & j V£ (0 lI2dx
Q Op Ja
(63)



Technical Remark

Image Prior

w—1h-1

wh

(xi+1) — xij)z + (41 — xij)z
—In P(X) = z Z J— ) T '
el & 20%
=1 j=1
= This is an “improper prior”
= Does not integrate to one!

= Infinite subspaces without penalty

= Formal fix
« Assume broader prior on function value itself:

fNNO:Uvery large

= For MAP estimation, this does not matter
= We just find a point of maximum density
= Integration not required

_|_

O-XVZT[

(64)



Solution

Derivative of objective function
= Regularizer is a Laplace matrix (Euler-Lagrange-Eq.)
= Data term is an identity matrix + rhs = target values

0.2
solve (l +—§L)x =d
)
D
Linear system of equations
= Setup sparse linear system
= Solve using iterative solver (e.g. conjugate gradients)

= Remark: shift-invariant system can be solved
directly using Fourier transform (no LSE)

(65)



Modeling |

Looks familiar?
= Seen in Modeling 1

Variant
= Penalize I; norm instead of [, norm of gradients

2
j (F(0) — d(0))2dx + 2 f 177 GOl dx
Q Op Jo

= Laplace distribution (double exponential)
= Yields sharper images
= Justification: natural image statistics”
= Simplest solution via IRLS (iteratively reweighted quadr. solver)

Daniel L. Ruderman: The statistics of natural images. In: Network: Computation in Neural Systems (5) 1994 517-548. (66)






Video #05c

summary
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Summary

Image Reconstruction Example

= Modelling 1: Interpretation as
“regularization” of inverse problem

= Modelling 2: Maximum-A-Priori Estimation with a
natural image prior

= Gaussian Noise
= Statistics of image gradients

= Unrealistic Prior
= Only gradient statistics
= Very Low-dimensional projection/approximation

= Nonetheless: Correct statistics matters

(69)
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Video #05
Statistics & Machine Learning

Classical Machine Learning

Bayesian Data Analysis

 Example 2: Bayesian Regression

(73)



Bayesian
Data Analysis

Example 2: Bayesian Regression
(full inference w/model averaging)



Example: Regression

Regression example

= We do not know how
smooth the curve should be

= Using marginalization for
“model selection”

price

price




Data & Model

109 e
1.0 e
-2.0 -
Data OTO 110 210 3!0 4!0 510 6!0
= 10 samples from sine curve
X = (O, 17T, ETL’, ., TL’), y; = sin(x;) + n;, i =1..10

9" 9
= Distorted by random noise 7;

= Additive, Gaussian, i.i.d., ¢ = 0.2, unbiased (u = 0)

(76)



Data & Model

Model
= Polynomial of degree K (with 0 < K < 9)
K

FOW =) ot

k=0

for data D=(x,y) € R" x R",c € R”

= We do not fix degree K, but use marginalization
(Bayesian model averaging) over K

(77)



Polynomial Least-Squares Fit (MLE)

2.0 2.0
K=5 “reasonable’
1.0 0] //\
0.0 2 0.0{ ~
K=2
underfitting
1.0 - 1.0 -
-2.0 1 -2.0 1 K=9 overfitting
| | | | | | | | | | | | | |
0.0 1.0 20 3.0 40 50 6.0 0.0 1.0 20 3.0 40 50 6.0
Degree 0to 9 Degrees 2, 5,9

(78)



Bayesian Inference

Abstract inference rule

X = [EX~P(X|D)[X] — f X@ - P(0|D)do
Q)

1

= 53 Q(Q)xé, . P(D|0) - P(0)dO

(79)



Bayesian Inference

Abstract inference rule

X = [EX~P(X|D)[X] — f P(9|D) ao
OTC) I a— v

mean likelihood of 6
for fixed 8  given the data

normalization likelihood of the data

----- Ao given 6
1 P Ao,
= Ry - P(DI6) - P(Q)d@
P(D) Q)= e
mean pwor
for fixed 6 for 6

(80)



Bayesian Inference

Abstract inference rule

normallzatlon

---------

_:[ENP( |D) P(D)Z

hkehl«ood of the data

—————————————

: P(DlK) P(K)

———————

MAP estimate P“O"
for fixed K for K

(81)



Bayesian Inference

Abstract inference rule

normalize
ad hoce Iikelihood' of the data

T = Eep(inyle] = 2 ¢ - POIK) - PO

MAP estlw\ate uniform prior
for fixed K for K

(82)



Computing the Likelihood

Data likelihood

= P(D|K) — marginal likelihood for fixed K
= Fixed K

= We obtain
P(DIK) = f P(Dcy, K) P(cyli)dey

KE]RK

(83)



Computing the Likelihood
POI = | POl K) PGl

Plugging in model assumptions
= Data has normal-distributed noise
= Simple Gaussian prior

P(Dl K:K) HNOUD(f (xl) yl)

( |K) NOO' IK( K)

op = 0.2, oclarge (prior), I = identity in R***

(84)



Computing the Likelihood

Data likelihood
= For fixed K and in our case X =

P(D|cy,K) = (HNO,UD(fK(xi) _yi)>NO,O'C°IK( i)
=1

Wltth(xl)nglO,,xl,,x{() Kzf’{' K

Y

§T

1 n _(E? K—J’i)z

n
HNO,JD(fK(xi) o yl) — n+K ) ne ZO-DZ
=1

ohy(2m) 2 i=i

(86)



Computing the Likelihood

Data likelihood

- - El K—X1
[[om (0= = [ [ 2 g
=1

i=1
n

2( Kflfl K—2 KELIVL+371)
[l
i=1
—%( TSR gidT cr—2ek By yl+2?=1yi2>

2
9D A b

— e

o 2012)( kAck—2 kb+Xie, v7)

Mod 1: A~ 1b

1 ( A~ \T ¢
——((cx—Ci)TA(cg—Cr)—tH+2i 1yl)
e ZO-D (87)



Computing the Likelihood

Data likelihood
PDIK) = f P(Dlcx, K) P(c[K)dey

KE]RK

—Ziz(( k=CIOTA(c =) —CE+31 ylz) _(ex)®

— 2 2 f e op
KE]RK

0.2

1
s <(K e)T|A
D
_ (2 2 f e
KE]RK

A+—I

n T
KERK

1| (cx—Cr)—CE+TI, ylz>
O'C d

202
e CdK

K

(ck— K))
d

K

(88)



Computing the Likelihood

Data likelihood
PODIK) = f P(D e, K) P(cx | K)dey

KE]RK
1 ) 1 A N\T ﬁ A
o , g v 12()'[ e"ﬁ<( A a4 K))d
KERK
1
Lo, v7-e2) K of -\ 2
— (52 2 e 205 -(Zn)?det<A+—21>
O-C

normaliza'tion factor
for normal distribution

1

_ an y.Z_AZ 0'2 2
= (05 K 6205(111 . det A+—=1
Oc

K

(89)



Computing the Likelihood

Data likelihood

1

YL Vi o7 2
P(D|K) ~ 7K e ng( ' K)-det(A+—gl>
O-C

Flat (improper) Prior

— (T, vP-t%) E

P(D|K) ~e 205 bz _ - det(A) 2
data fit complex1ty

penalty

(90)



Bayesian
average
-2.0 1 -2.0 - K=9
0!0 110 2{0 310 410 510 6?0 010 110 210 310 410 510 610
X- X-
Model averaging Degrees 2,5, 9

(97)



weight —»

Result

1.0E+00 |,
1.0E-04
1.0E-08
1.0E-12
1.0E-16 |

1.0E-20

—— data fit
—e— complexity
—— product ~ weight

-2.0 7

3 4 5 6

weighting

degree —

00 10 20 30 40 50 6.0

degree 0to 9

(92)



Some Observations / Remarks

Bayesian inference

= Unknown parameter K, many possible models X

= Weight model X by “evidence” P(D|K)
(marginal likelihood)

= Sum up (normalize weights, if not done yet)

Compute
)?=f X P(D|K) dK
Q(K)

(93)



Some Observations / Remarks

Structure of Marginal likelihood

P(D) = [, P(D|X) P(X) dX
gJalit&oFfit modTepr*ioE
P(D,X)
(leaving out K for clarity)

What does it dO? 1P ’_H_‘ few choices

= P(D, X) contains two parts .y
= Likelihood of the data (quality of fit) ,p

= Complexity penalty
— Density P(D, X) more spread W_I_'_hw

out if X has much choice

(94)



Occam's Razor

“Full” Bayesian inference
= Less weight on complex models

= Equivalent to description length priors (more later)

Utility for Estimation
= Can also be use for model comparison:

Compare marginal likelihoods (“evidences”)

P(D|K,) vs. P(D|K,)

= ...and select more likely model

= Evaluates trade-off between
data-fit and complexity

gy

—— produc

(95)



Gaussian Models

Special structure for Gaussians
= Marginal Likelihood

- 1
P(D|K) ~P(D|X = X, K) - det(Z)2
data Yfit at compiexity

mean / peak penalty

= ¥ = covariance matrix of the posterior

1

« Will see later: det(X) 2z shrinks with growing
information content

(96)



Video #05d

summary
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Summary

“Full Bayesian” Inference

= Reduced overfitting
= Estimation methods are much more “risky”

= Amounts to weighting solutions by likelihood
= "Bayesian model averaging”

Why does it help?
= Prefer simple models

= Model with many parameters 6 (Here: high degree)
= Model has more spread out density
= Lower weight in likelihood weighting

(98)



