Modelling 2 STATISTICAL DATA MODELLING

Chapter 5 Bayesian Data Analysis & Classical ML

Video #05

Statistics & Machine Learning

Classical Machine Learning

- Modeling 1 Recap: Least-Squares, PCA
- Old-School: Classical Classifiers

Bayesian Data Analysis

- Example 1: MAP Image Reconstruction
- Example 2: Bayesian Regression

Some Classical ML Methods

Recap from Modeling 1

- Regression: Least-squares fitting
- A generative model: Gaussian fitting
- Dimensionality reduction: PCA (Principle Component Analysis)

Regression with Linear Models

via Least-Squares Function Fitting

Situation

Situation

- Sample points taken at x_i from original f.
- Unknown Gaussian i.i.d. noise added to each y_i .
- Reconstruct \tilde{f} .

Summary (→ Mod-1)

Statistical model: least-squares criterion

$$\arg\min_{\tilde{f}} \sum_{i=1}^{n} (\tilde{f}(x_i) - y_i)^2$$

Linear ansatz: quadratic objective

$$\tilde{f}_{\lambda_1,\dots,\lambda_k}(x) = \sum_{j=1}^k \lambda_j b_j(x) \quad \Longrightarrow \quad \underset{\lambda_1,\dots,\lambda_k}{\operatorname{arg \, min}} \sum_{i=1}^n \left(\left(\sum_{j=1}^k \lambda_j b_j(x_i) \right) - y_i \right)^{-1}$$

Critical point: linear system

$$\begin{pmatrix} \langle \mathbf{b}_{1}, \mathbf{b}_{1} \rangle & \cdots & \langle \mathbf{b}_{1}, \mathbf{b}_{k} \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{b}_{k}, \mathbf{b}_{1} \rangle & \cdots & \langle \mathbf{b}_{k}, \mathbf{b}_{k} \rangle \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{k} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{y}, \mathbf{b}_{1} \rangle \\ \vdots \\ \langle \mathbf{y}, \mathbf{b}_{k} \rangle \end{pmatrix} \text{ with } \begin{cases} \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle \coloneqq \sum_{t=1}^{n} b_{i}(x_{t}) \cdot b_{j}(x_{t}) \\ \langle \mathbf{y}, \mathbf{b}_{i} \rangle \coloneqq \sum_{t=1}^{n} y_{t} \cdot b_{i}(x_{t}) \end{cases}$$

Maximum Likelihood Estimation

$$\arg\max_{\tilde{f}} \prod_{i=1}^{n} N_{0,\sigma}(\tilde{f}(x_{i}) - y_{i}) = \arg\max_{\tilde{f}} \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(\tilde{f}(x_{i}) - y_{i}\right)^{2}}{2\sigma^{2}}\right)$$

$$= \arg\max_{\tilde{f}} \ln\left[\prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(\tilde{f}(x_{i}) - y_{i}\right)^{2}}{2\sigma^{2}}\right)\right]$$

$$= \arg\max_{\tilde{f}} \sum_{i=1}^{n} \left(\left(\ln\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{\left(\tilde{f}(x_{i}) - y_{i}\right)^{2}}{2\sigma^{2}}\right)$$

$$= \arg\min_{\tilde{f}} \sum_{i=1}^{n} \left(+\frac{\left(\tilde{f}(x_{i}) - y_{i}\right)^{2}}{2\sigma^{2}}\right)$$

$$= \arg\min_{\tilde{f}} \sum_{i=1}^{n} \left(\tilde{f}(x_{i}) - y_{i}\right)^{2}$$

Estimating Gaussian

(Maximum Likelihood)

Gaussians

Gaussian Normal Distribution

- Two parameters: μ , σ
- Density:

$$\mathcal{N}_{\mu,\sigma}(x) \coloneqq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Gaussian normal distribution

- Mean: μ
- Variance: σ^2

Multi-Variate Gaussians

Gaussian Normal Distribution in d Dimensions

- Two parameters: μ (d-dim-vector), Σ (d×d matrix)
- Density:

$$\mathcal{N}_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) \coloneqq \left(\frac{1}{(2\pi)^{-\frac{d}{2}} \det(\boldsymbol{\Sigma})^{-\frac{1}{2}}}\right) e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

- Mean: µ
- Covariance Matrix: ∑

ML-Estimation from Data

Task

- Data (i.i.d.) $\mathbf{d}_1, \dots, \mathbf{d}_n$ from Gaussian distribution
- Estimate parameters

Maximum Likelihood Estimation

$$\mu_{ml} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{d}_{i}$$

$$\sum_{ml} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{d}_{i} - \mu)(\mathbf{d}_{i} - \mu)^{T}$$
mean
$$\text{covariance}$$

PCA

Least-Squares-Optimal Dimensionality Reduction

The Shape of Gaussians

Probability Density

$$\mathcal{N}_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) \coloneqq \left(\frac{1}{(2\pi)^{-\frac{d}{2}} \det(\boldsymbol{\Sigma})^{-\frac{1}{2}}}\right) e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Neg-Log Density:

$$\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu}) + const$$

Geometry

- Iso-probability profiles are ellipsoids
- Eigenvectors of ∑ are main axes

General Case

Principal Component Analysis (PCA)

- $(\lambda_1, \mathbf{v}_1), \dots, (\lambda_n, \mathbf{v}_n)$: sorted eigenvalue/vector pairs of Σ
 - λ_1 is the largest
 - $\|\mathbf{v}_i\| = 1$
- Select subspace spanned by

$$\mathbf{x}_0 + \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_d\}, \quad 0 \le d \le n$$

- Subspace-projection is optimal:
 - Yields optimal d-dim approximation among all possible affine subspaces (Wrt. squared distances)

Linear Dimensionality Reduction

Example Application

Fitting a line to a point cloud

 Sample mean and direction of maximum eigenvalue

Plane Fitting in \mathbb{R}^3 :

- Smallest eigenvalue: normal direction
- Aspect ratio λ_3/λ_2 is a measure of "flatness" (quality of fit)

(17)

Example Application

PCA-Model: 4-Legged Animals

Video #05a Summary

Summary

Fun with Gaussians!

- Least-squares fitting: Gaussian
- PCA: Gaussian
- Effort level: Solving linear systems

Ask-Me-Anything

- We can answer complicated / fancy questions without computational pain
- Unfortunately, not everything on earth is Gaussian

Modelling 2 STATISTICAL DATA MODELLING

Chapter 5
Bayesian Data Analysis & Classical ML

Video #05

Statistics & Machine Learning

Classical Machine Learning

- Modeling 1 Recap: LS, PCA
- Old-School: Classical Classifiers

Bayesian Data Analysis

- **Example 1:** MAP Image Reconstruction
- Example 2: Bayesian Regression

Logistic Regression

Example from Video #04

Gaussian Fitting: Yes, we can now do this.

Example from Video #04

Let's Build a Classifier

Simple discriminative model

- Two classes, probabilities p, (1 p)
- Need (only) odds-ratio

$$\frac{p}{1-p}$$

Logistic Regression

Model: linear log-likelihood for p

$$\mathbf{p}(\mathbf{x}) = e^{\mathbf{\theta}^T \mathbf{x}} = e^{\theta_1 x_1 + \dots + \theta_d x_d}$$

for input / feature vector $\mathbf{x} \in \mathbb{R}^d$

Always positive

Let's Build a Classifier

We get

Odds-ratio

$$\frac{p}{1-p} = \frac{e^{\theta^T \mathbf{x}}}{1-e^{\theta^T \mathbf{x}}}$$

$$= \frac{1}{1-e^{-\theta^T \mathbf{x}}}$$

$$= \sigma(\theta^T \mathbf{x})$$

$$= \frac{e^{\theta^T \mathbf{x}}}{1-e^{\theta^T \mathbf{x}}}$$

$$= \frac{1}{1-e^{\theta^T \mathbf{x}}}$$

with

$$\sigma(z) \coloneqq \frac{1}{1 - e^{-(z)}}$$

("Sigmoid function")

Training

Given

- Training examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1...n}$
 - "Feature Vectors" $\mathbf{x}_i \in \mathbb{R}^d$
 - "Labels" $y_i \in \{0,1\}$
 - Banana or not banana
 - (not banana = orange)
- Task
 - Find "good" $\mathbf{\theta} \in \mathbb{R}^d$
- Approach: Maximum Likelihood

MLE Logistic Regression

Maximum Likelihood Estimation

We want

$$h_{\theta}(\mathbf{x}) = 1 \text{ for } \mathbf{y}_i = 1 \text{ and } h_{\theta}(\mathbf{x}) = 0 \text{ for } \mathbf{y}_i = 0$$

• Likelihood for class y = 1

$$p(\mathbf{y}|\mathbf{x},\mathbf{\theta}) = h_{\mathbf{\theta}}(\mathbf{x})$$

Maximum likelihood

$$\widehat{\mathbf{\theta}} = \underset{\mathbf{\theta} \in \mathbb{R}^{d+1}}{\operatorname{arg max}} \prod_{i=1}^{n} \underbrace{h_{\mathbf{\theta}}(\mathbf{x})}_{\substack{\text{maximize} \\ \text{for } \mathbf{y}_{i} = 1}}^{\mathbf{y}_{i}} \underbrace{\left(1 - h_{\mathbf{\theta}}(\mathbf{x})\right)^{(1 - \mathbf{y}_{i})}}_{\substack{\text{maximize} \\ \text{for } \mathbf{y}_{i} = 0}}$$

MLE Logistic Regression

Maximum Likelihood Estimation

MLE objective

$$\prod_{i=1}^{n} \underbrace{\left(\frac{p(x_i)}{1-p(x_i)}\right)}_{\text{maximize for } y_i=1}^{y_i} \underbrace{\left(1-\frac{p(x_i)}{1-p(x_i)}\right)}_{\text{maximize for } y_i=0}^{(1-y_i)} \to \max$$

• Using $\frac{1}{1-e^{-t}} + \frac{1}{1-e^t} = 1$, we get

$$\prod_{i=1}^{n} \left(\frac{1}{1 - e^{-\theta^T \mathbf{x}}} \right)^{\mathbf{y}_i} \left(\frac{1}{1 - e^{\theta^T \mathbf{x}}} \right)^{(1 - \mathbf{y}_i)}$$

MLE Logistic Regression

Log-Likelihood

$$\sum_{i=1}^{n} [\mathbf{y}_i \log(h_{\theta}(\mathbf{x}_i)) + (1 - \mathbf{y}_i) \log(1 - h_{\theta}(\mathbf{x}_i))]$$

= ...

$$= -\sum_{i=1}^{n} \log \left(1 + e^{-\mathbf{y}_i \mathbf{\theta}^T \mathbf{x}_i}\right)$$

Derivation / further readings:

http://cs229.stanford.edu/extra-notes/loss-functions.pdf http://cs229.stanford.edu/notes2020spring/cs229-notes1.pdf https://en.wikipedia.org/wiki/Logistic_regression

Optimization

$$\widehat{\mathbf{\theta}} = \underset{\mathbf{\theta} \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^n \log \left(1 + e^{-\mathbf{y}_i \mathbf{\theta}^T \mathbf{x}_i} \right)$$

How do we get $\widehat{\theta}$?

- Non-quadratic objective
 - Non-linear optimization problem
- Fortunately, the function is convex
 - Sigmoid is convex
 - Sum of convex functions
- Numerical optimization
 - Gradient descent -or- (quasi-) Newton methods
 - Stochastic (batch-) gradient descent for "big data"

Multi-Label Case

Task

- Again, n Data points, indexed by $i = 1 \dots n$
 - Data $\mathbf{x}_i \in \mathbb{R}^d$ with...
 - ...label vectors $\mathbf{y}_i \in \{0,1\}^K$
 - "One hot vectors"
 - Only one entry is 1 (correct class), the rest is zero
- Learn class-specific parameters $\theta_1, ..., \theta_K \in \mathbb{R}^d$

Geometry

Multi-Label Case

Replace sigmoid function $\sigma: \mathbb{R} \to \mathbb{R}$

$$\sigma(\mathbf{z}) \coloneqq \frac{1}{1 - e^{-(\mathbf{z})}} = \frac{e^{\mathbf{z}}}{e^{\mathbf{z}} + 1}$$

by "softmax" function $\sigma: \mathbb{R}^K \to \mathbb{R}^K$

$$\sigma(\mathbf{z}) \coloneqq \begin{pmatrix} \frac{e^{\mathbf{z}_1}}{\sum_{j=1}^K e^{\mathbf{z}_j}} \\ \vdots \\ e^{\mathbf{z}_K} \\ \hline{\sum_{j=1}^K e^{\mathbf{z}_j}} \end{pmatrix}, \qquad \sigma_m(\mathbf{z}) \coloneqq \frac{e^{\mathbf{z}_m}}{\sum_{j=1}^K e^{\mathbf{z}_j}}$$

Classifier

Classifier

$$h_{\theta}(\mathbf{x}) \coloneqq \sigma\left(\underbrace{\begin{bmatrix} \mathbf{\theta}_{1}^{T} \cdot \mathbf{x} \\ \vdots \\ \mathbf{\theta}_{K}^{T} \cdot \mathbf{x} \end{bmatrix}}_{\mathbf{u}(\theta, \mathbf{x})}\right) = \sigma(\mathbf{u}(\theta, \mathbf{x}))$$

- Outputs class-probabilities
 - All output vector entries in [0,1]
 - Entries sum up to one

Geometry

(40)

Classifier

Classifier

MLE-Training via

$$\underset{\theta \in \mathbb{R}^{K \times d}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \left[\log \left(\sum_{j=1}^{K} e^{\theta_{j}^{T} \cdot \mathbf{x}} \right) - \sum_{m=1}^{K} \underbrace{\mathbf{y}_{i,m}}_{1 \text{ only for } correct \, class} \cdot \underbrace{\log \sigma_{m}(\mathbf{u}(\theta, \mathbf{x}))}_{\text{of correct class}} \right]$$

$$= \underset{\theta \in \mathbb{R}^{K \times d}}{\min} \sum_{i=1}^{n} \left[\underbrace{\log(Z)}_{\text{normalization}} - \underbrace{\log \sigma_{class_i}(\mathbf{u}(\theta, \mathbf{x}))}_{\text{(neg)-log-likelihood of correct class}} \right]$$

Support Vector Machines

Discriminative Learning

Not strictly statistical

Optimize for good decisions

Black box classifer

- Input: features
- Output: jugdement
 - Make it work!
- Discriminative model
 - No distributions, no posterior
 - No sampling from posterior
 - No generative model

Linear SVMs

Support Vector Machine

- Consider two labels $x \in \{-1,1\}$
- Data $\mathbf{d} \in \mathbb{R}^n$
- Classifier

$$x = f(\mathbf{d}) = \langle \mathbf{d}, \mathbf{\theta} \rangle + \theta_0$$

Training

• Maximize margin between classes (x = -1, x = 1)

Support Vector Machines

training set

separating hyperplane, minimal penetration of margin (L₁)

Linear SVMs

Support Vector Machine

- Consider two labels $y \in \{-1,1\}$
- Data $\mathbf{x} \in \mathbb{R}^d$
- Classifier

$$\mathbf{y} = f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{\theta} \rangle + \theta_0$$

to optimize: parameters θ , θ_0

Training

• Maximize margin between classes (y = -1, y = 1)

Linear SVMs

Classifier

$$\mathbf{y} = f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{\theta} \rangle + \theta_0$$

Hinge loss

$$(\mathbf{\theta}, \theta_0) = \underset{(\mathbf{\theta}, \theta_0) \in \mathbb{R}^{d+1}}{\arg \min} C \cdot \left[\sum_{i=1}^n \underset{h(t, x_i)}{\max(0, 1 - y_i f(\mathbf{x}_i))} \right] + \|\mathbf{\theta}\|^2$$

(47)

Kernel Support Vector Machine

Example Mapping:

"feature space"

$$\phi \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \mapsto (x^2, xy, y^2)$$

(48)

Algorithm

Consider Gram Matrix

$$\mathbf{G} = \begin{pmatrix} \left\langle \phi(x_1), \phi(x_1) \right\rangle & \cdots & \left\langle \phi(x_n), \phi(x_1) \right\rangle \\ \vdots & \ddots & \vdots \\ \left\langle \phi(x_1), \phi(x_n) \right\rangle & \cdots & \left\langle \phi(x_n), \phi(x_n) \right\rangle \end{pmatrix}$$

$$= \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_n, x_1) \\ \vdots & \ddots & \vdots \\ k(x_1, x_n) & \cdots & k(x_n, x_n) \end{pmatrix} \leftarrow \text{often easier to compute than via}$$

$$k(x_1, x_n) & \cdots & k(x_n, x_n) \leftarrow \text{often easier to compute than via}$$

Factorize Gram Matrix

- $G = X^T X$ (spectral embedding / MDS)
- Apply linear SVM, as we know it

Standard Kernels

Polynomial Kernel

- $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^d$
- Implicitly creates all multivariate polynomials up to degree d

Exponential Kernel

- $k(\mathbf{x}, \mathbf{y}) = \exp(-(\mathbf{x} \mathbf{y})^2 / \sigma^2)$
- Infinite dimensional feature space (clustering by density)

Video #05b Summary

Summary

Basic classification methods

- Linear model (log-likelihood)
- Two objectives
 - Probabilistic: odds-ratios / logistic regression
 - Geometric: Max-margin (SVM)
- Convex numerical optimization
- Both work in practice
 - SVM works well with kernelization
 - Similar performance in "deep" architectures

Modelling 2 STATISTICAL DATA MODELLING

Chapter 5
Bayesian Data Analysis & Classical ML

Video #05

Statistics & Machine Learning

Classical Machine Learning

- Modeling 1 Recap: LS, PCA
- Old-School: Classical Classifiers

Bayesian Data Analysis

- Example 1: MAP Image Reconstruction
- Example 2: Bayesian Regression

Bayesian Data Analysis

Example 1: Variational Reconstruction (Mod-1) (MAP-solution w/priors)

Image Reconstruction Model

Problem statement

- Measured 2D pixel image
- Distorted by noise
- Want to remove noise

Bayesian problem modeling

- Model of measurement process
 - Hand-crafted, not learned from data
- Prior distribution on images (thus "Bayesian")

Inference: Maximum-a-posteriori

Image

- $x_{i,j}$ with i = 1 ... w, j = 1, ..., h
- continuous model: $f: [1, w] \times [1, h] \rightarrow \mathbb{R}$

Probability space

- $\Omega = \mathbb{R}^{w \times h}$
- Probability density on $\mathbb{R}^{w \times h}$
- Continuous model " $f \in \mathbb{R}^{[0,w] \times [0,h]}$ " would be "mathematically involved"
 - We consider only finite-dimensional densities

Bayes rule

$$P(X|D) \sim P(D|X) \cdot P(X)$$

Likelihood

 $P(D|X) = \prod_{i=1}^{w} \prod_{j=1}^{h} \mathcal{N}_{d_i,\sigma_D}(x_i) \text{ (i.i.d. Gaussian noise)}$

$$= \prod_{i=1}^{w} \prod_{j=1}^{h} \left[\frac{1}{\sigma_D \sqrt{2\pi}} e^{-\frac{\left(x_i - d_i\right)^2}{2\sigma_D^2}} \right]$$

(Gaussian distribution)

- Not so unrealistic
 - Real cameras: Poisson distribution + Gaussian circuit noise
 - "Realistic" model: $\sigma_i \sim x_i + \sigma_0$

(60)

Likelihood

$$P(D|X) = \prod_{i=1}^{w} \prod_{j=1}^{h} \left[\frac{1}{\sigma_D \sqrt{2\pi}} e^{-\frac{(x_i - d_i)^2}{2\sigma_D^2}} \right]$$

Neg-Log-Likelihood

$$E(D|X) := -\ln P(D|X) = \sum_{i=1}^{w} \sum_{j=1}^{n} \frac{(x_i - d_i)^2}{2\sigma_D^2} + \frac{wh}{\sigma_D \sqrt{2\pi}}$$
independent of x_i

Least Squares!

Prior

- Assumption: Large image gradients are unlikely
 - Gaussian distribution on Gradients
 - Neg-log-likelihood: $\frac{1}{2\sigma^2} ||\nabla f||^2$
- Discretization

$$E(X) := -\ln P(X) = \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{\left(x_{i+1,j} - x_{i,j}\right)^2 + \left(x_{i,j+1} - x_{i,j}\right)^2}{2\sigma_X^2} + \frac{wh}{\sigma_X \sqrt{2\pi}}$$

independent of x_i

- (This is not very realistic)
 - (But what can you do?)
 - (This is very Bayesian)

Minimization Problem

Minimize

$$E(D|X) + E(X)$$

$$= \sum_{i=1}^{w} \sum_{j=1}^{h} \frac{(x_i - d_i)^2}{2\sigma_D^2} + \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{(x_{i+1,j} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2}{2\sigma_X^2}$$

Equivalent minimization objective

$$\sum_{i=1}^{w} \sum_{j=1}^{h} (x_i - d_i)^2 + \frac{\sigma_X^2}{\sigma_D^2} \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} (x_{i+1,j} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2$$

Continuous

$$\int_{\Omega} (f(\mathbf{x}) - d(\mathbf{x}))^{2} d\mathbf{x} + \frac{\sigma_{X}^{2}}{\sigma_{D}^{2}} \int_{\Omega} ||\nabla f(\mathbf{x})||^{2} d\mathbf{x}$$

Technical Remark

Image Prior

$$-\ln P(X) = \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{\left(x_{i+1,j} - x_{i,j}\right)^2 + \left(x_{i,j+1} - x_{i,j}\right)^2}{2\sigma_X^2} + \frac{wh}{\sigma_X \sqrt{2\pi}}$$

- This is an "improper prior"
 - Does not integrate to one!
 - Infinite subspaces without penalty
- Formal fix
 - Assume broader prior on function value itself: $f \sim N_{0,\sigma_{verv\ large}}$
- For MAP estimation, this does not matter
 - We just find a point of maximum density
 - Integration not required

Solution

Derivative of objective function

- Regularizer is a Laplace matrix (Euler-Lagrange-Eq.)
- Data term is an identity matrix + rhs = target values

solve
$$\left(\mathbf{I} + \frac{\sigma_X^2}{\sigma_D^2} \mathbf{L}\right) \mathbf{x} = \mathbf{d}$$

Linear system of equations

- Setup sparse linear system
- Solve using iterative solver (e.g. conjugate gradients)
- Remark: shift-invariant system can be solved directly using Fourier transform (no LSE)

Modeling I

Looks familiar?

Seen in Modeling 1

Variant

• Penalize l_1 norm instead of l_2 norm of gradients

$$\int_{\Omega} (f(\mathbf{x}) - d(\mathbf{x}))^2 d\mathbf{x} + \frac{\sigma_X^2}{\sigma_D^2} \int_{\Omega} ||\nabla f(\mathbf{x})||^2 d\mathbf{x}$$

- Laplace distribution (double exponential)
 - Yields sharper images
 - Justification: natural image statistics*)
 - Simplest solution via IRLS (iteratively reweighted quadr. solver)

Video #05c Summary

Summary

Image Reconstruction Example

- Modelling 1: Interpretation as "regularization" of inverse problem
- Modelling 2: Maximum-A-Priori Estimation with a natural image prior
 - Gaussian Noise
 - Statistics of image gradients
- Unrealistic Prior
 - Only gradient statistics
 - Very Low-dimensional projection/approximation
- Nonetheless: Correct statistics matters

Modelling 2 STATISTICAL DATA MODELLING

Chapter 4 Statistics and Machine Learning

Video #05

Statistics & Machine Learning

Classical Machine Learning

- Modeling 1 Recap: LS, PCA
- Old-School: Classical Classifiers

Bayesian Data Analysis

- **Example 1:** MAP Image Reconstruction
- Example 2: Bayesian Regression

Bayesian Data Analysis

Example 2: Bayesian Regression (full inference w/model averaging)

Example: Regression

Regression example

- We do not know how smooth the curve should be
- Using marginalization for "model selection"

Data & Model

Data

10 samples from sine curve

$$\mathbf{x} = \left(0, \frac{1}{9}\pi, \frac{2}{9}\pi, \dots, \pi\right), \qquad \mathbf{y}_i = \sin(\mathbf{x}_i) + \mathbf{\eta}_i, \qquad i = 1 \dots 10$$

- Distorted by random noise η_i
 - Additive, Gaussian, i.i.d., $\sigma = 0.2$, unbiased ($\mu = 0$)

Data & Model

Model

• Polynomial of degree K (with $0 \le K \le 9$)

$$f_{\mathbf{c}}^{(K)}(x) = \sum_{k=0}^{K} c_k x^k$$

for data $\mathbf{D} = (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}^D$

 We do not fix degree K, but use marginalization (Bayesian model averaging) over K

Polynomial Least-Squares Fit (MLE)

Bayesian Inference

Abstract inference rule

$$\overline{X} = \mathbb{E}_{X \sim P(X|D)}[X] = \int_{\Omega(\theta)} \overline{X}_{\theta} \cdot P(\theta|D) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \overline{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

Bayesian Inference

Abstract inference rule

$$\overline{X} = \mathbb{E}_{X \sim P(X|D)}[X] = \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(\theta|D) d\theta$$

$$\underset{for \ fixed \ \theta}{\text{mean}} \quad \underset{given \ the \ data}{\textit{likelihood of } \theta}$$

normalization likelihood of the data
$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \hat{X}_{\theta} \cdot P(D|\theta) \cdot P(\theta) d\theta$$

Bayesian Inference

Abstract inference rule

$$\overline{c} = \mathbb{E}_{c \sim P(c|D)}[c] = \frac{1}{P(D)} \sum_{K=0}^{9} \widehat{c}_{K} \cdot P(D|K) \cdot P(K)$$

$$\underbrace{Rack MAP \ estimate \ for \ fixed \ K}$$

Bayesian Inference

Abstract inference rule

$$\overline{c} = \mathbb{E}_{c \sim P(c|D)}[c] = \frac{1}{P(D)} \sum_{K=0}^{9} \widehat{c}_K \cdot P(D|K) \cdot P(K)$$

$$\underbrace{Rad hoc}_{given K} \cdot P(D|K) \cdot P(K)$$

Data likelihood

- P(D|K) marginal likelihood for fixed K
 - Fixed K
- We obtain

$$P(\mathbf{D}|K) = \int_{\mathbf{c}_K \in \mathbb{R}^K} P(\mathbf{D}|\mathbf{c}_K, K) P(\mathbf{c}_K|K) d\mathbf{c}_K$$

$$P(\mathbf{D}|K) = \int_{\mathbf{c}_K \in \mathbb{R}^K} P(\mathbf{D}|\mathbf{c}_K, K) P(\mathbf{c}_K|K)$$

Plugging in model assumptions

- Data has normal-distributed noise
- Simple Gaussian prior

$$P(\mathbf{D}|\mathbf{c}_{K},K) = \prod_{i=1}^{n} \mathcal{N}_{0,\sigma_{D}}(f_{\mathbf{c}_{K}}(\mathbf{x}_{i}) - \mathbf{y}_{i})$$

$$P(\mathbf{c}_{K}|K) = \mathcal{N}_{0,\sigma_{C}\cdot\mathbf{I}_{K}}(\mathbf{c}_{K})$$

$$\sigma_D = 0.2$$
, σ_c large (prior), $\mathbf{I}_K = \text{identity in } \mathbb{R}^{K \times K}$

Data likelihood

• For fixed K and in our case $X = \mathbf{c}$

$$P(\mathbf{D}|\mathbf{c}_K,K) = \left(\prod_{i=1}^n \mathcal{N}_{0,\sigma_D}(f_{\mathbf{c}_K}(x_i) - y_i)\right) \mathcal{N}_{0,\sigma_C \cdot \mathbf{I}_K}(\mathbf{c}_K)$$

with
$$f_{\mathbf{c}_K}(\mathbf{x}_i) = \underbrace{(\mathbf{x}_i^0, \dots, \mathbf{x}_i^d, \dots, \mathbf{x}_i^K)}_{\boldsymbol{\xi}_i^T} \cdot \mathbf{c}_K = \underline{\boldsymbol{\xi}}_i^T \cdot \mathbf{c}_K$$
:

$$\prod_{i=1}^{n} \mathcal{N}_{0,\sigma_{D}} \left(f_{\mathbf{c}_{K}}(\mathbf{x}_{i}) - \mathbf{y}_{i} \right) = \frac{1}{\sigma_{D}^{n} (2\pi)^{\frac{n+K}{2}}} \cdot \prod_{i=1}^{n} e^{-\frac{\left(\boldsymbol{\xi}_{i}^{T} \mathbf{c}_{K} - \mathbf{y}_{i} \right)^{2}}{2\sigma_{D}^{2}}}$$

Data likelihood

$$\prod_{i=1}^{n} \mathcal{N}_{0,\sigma_{D}} (f_{c_{K}}(x_{i}) - y_{i}) = \prod_{i=1}^{n} \frac{1}{\sigma_{D} \sqrt{2\pi}} e^{-\frac{1}{2\sigma_{D}^{2}} (\xi_{i}^{T} c_{K} - y_{i})^{2}}$$

$$= (\sigma_{D}^{2} 2\pi)^{-\frac{n}{2}} \cdot \prod_{i=1}^{n} e^{-\frac{1}{2\sigma_{D}^{2}} (c_{K}^{T} \xi_{i} \xi_{i}^{T} c_{K} - 2c_{K} \xi_{i}^{T} y_{i} + y_{i}^{2})}$$

$$= (\sigma_{D}^{2} 2\pi)^{-\frac{n}{2}} \cdot e^{-\frac{1}{2\sigma_{D}^{2}} (c_{K}^{T} \sum_{i=1}^{n} \xi_{i} \xi_{i}^{T} c_{K} - 2c_{K} \sum_{i=1}^{n} \xi_{i}^{T} y_{i} + \sum_{i=1}^{n} y_{i}^{2})}$$

$$= (\sigma_{D}^{2} 2\pi)^{-\frac{n}{2}} \cdot e^{-\frac{1}{2\sigma_{D}^{2}} (c_{K}^{T} A c_{K} - 2c_{K} b + \sum_{i=1}^{n} y_{i}^{2})}$$

$$= (\sigma_{D}^{2} 2\pi)^{-\frac{n}{2}} \cdot e^{-\frac{1}{2\sigma_{D}^{2}} ((c_{K} - \hat{c}_{K})^{T} A (c_{K} - \hat{c}_{K}) - \hat{c}_{K}^{2} + \sum_{i=1}^{n} y_{i}^{2})}$$

$$= (\sigma_{D}^{2} 2\pi)^{-\frac{n}{2}} \cdot e^{-\frac{1}{2\sigma_{D}^{2}} ((c_{K} - \hat{c}_{K})^{T} A (c_{K} - \hat{c}_{K}) - \hat{c}_{K}^{2} + \sum_{i=1}^{n} y_{i}^{2})}$$
(87)

(87)

Data likelihood

$$P(\mathbf{D}|K) = \int_{\mathbf{c}_K \in \mathbb{R}^K} \mathbf{P}(\mathbf{D}|\mathbf{c}_K, K) P(\mathbf{c}_K|K) d\mathbf{c}_K$$

$$= (\sigma_D^2 2\pi)^{-\frac{n}{2}} (\sigma_c^2 2\pi)^{-\frac{K}{2}} \cdot \int_{\mathbf{c}_K \in \mathbb{R}^K} e^{-\frac{1}{2\sigma_D^2} \left((\mathbf{c}_K - \hat{\mathbf{c}}_K)^T \mathbf{A} (\mathbf{c}_K - \hat{\mathbf{c}}_K) - \hat{\mathbf{c}}_K^2 + \sum_{i=1}^n \mathbf{y}_i^2 \right)} e^{-\frac{(\mathbf{c}_K)^2}{2\sigma_c^2}} d\mathbf{c}_K$$

$$= (\sigma_D^2 2\pi)^{-\frac{n}{2}} (\sigma_c^2 2\pi)^{-\frac{K}{2}} \cdot \int_{\mathbf{c}_K \in \mathbb{R}^K} e^{-\frac{1}{2\sigma_D^2} \left((\mathbf{c}_K - \hat{\mathbf{c}}_K)^T \left[\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2} \mathbf{I} \right] (\mathbf{c}_K - \hat{\mathbf{c}}_K) - \hat{\mathbf{c}}_K^2 + \sum_{i=1}^n y_i^2 \right)} d\mathbf{c}_K$$

$$= (\sigma_D^2 2\pi)^{-\frac{n}{2}} (\sigma_c^2 2\pi)^{-\frac{K}{2}} \cdot e^{-\frac{1}{2\sigma_D^2} (\sum_{i=1}^n \mathbf{y}_i^2 - \hat{\mathbf{c}}_K^2)} \cdot \int_{\mathbf{c}_K \in \mathbb{R}^K} e^{-\frac{1}{2\sigma_D^2} \left((\mathbf{c}_K - \hat{\mathbf{c}}_K)^T \left[\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2} \mathbf{I} \right] (\mathbf{c}_K - \hat{\mathbf{c}}_K) \right)} d\mathbf{c}_K$$

Data likelihood

$$P(\mathbf{D}|K) = \int_{\mathbf{c}_K \in \mathbb{R}^K} P(\mathbf{D}|\mathbf{c}_K, K) P(\mathbf{c}_K|K) d\mathbf{c}_K$$

$$= (\sigma_D^2 2\pi)^{-\frac{n}{2}} (\sigma_c^2 2\pi)^{-\frac{K}{2}} \cdot e^{-\frac{1}{2\sigma_D^2} (\sum_{i=1}^n \mathbf{y}_i^2 - \hat{\mathbf{c}}_K^2)} \cdot \int_{\mathbf{c}_K \in \mathbb{R}^K} e^{-\frac{1}{2\sigma_D^2} \left((\mathbf{c}_K - \hat{\mathbf{c}}_K)^T \left[\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2} \mathbf{I} \right] (\mathbf{c}_K - \hat{\mathbf{c}}_K) \right)} d\mathbf{c}_K$$

$$= (\sigma_D^2 2\pi)^{-\frac{n}{2}} (\sigma_c^2 2\pi)^{-\frac{K}{2}} \cdot e^{-\frac{1}{2\sigma_D^2} (\sum_{i=1}^n y_i^2 - \hat{c}_K^2)} \cdot \underbrace{(2\pi)^{\frac{K}{2}} \det \left(\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2} \mathbf{I}\right)^{-\frac{1}{2}}}_{\text{normalization factor for normal distribution}}$$

$$= (\sigma_D^2 2\pi)^{-\frac{n}{2}} \sigma_c^{-K} \cdot e^{-\frac{1}{2\sigma_D^2} (\sum_{i=1}^n y_i^2 - \hat{c}_K^2)} \cdot \det \left(\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2} \mathbf{I} \right)^{-\frac{1}{2}}$$

$$\sim \sigma_c^{-K} \cdot e^{-\frac{1}{2\sigma_D^2} \left(\sum_{i=1}^n y_i^2 - \hat{\mathbf{c}}_K^2\right)} \cdot \det\left(\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2}\mathbf{I}\right)^{-\frac{1}{2}}$$

Data likelihood

$$P(D|K) \sim \sigma_c^{-K} \cdot e^{-\frac{1}{2\sigma_D^2} \left(\sum_{i=1}^n y_i^2 - \hat{c}_K^2\right)} \cdot \det\left(\mathbf{A} + \frac{\sigma_D^2}{\sigma_c^2}\mathbf{I}\right)^{-\frac{1}{2}}$$

Flat (improper) Prior

$$P(D|K) \sim e^{-\frac{1}{2\sigma_D^2} \left(\sum_{i=1}^n y_i^2 - \hat{\mathbf{c}}_K^2\right)} \cdot \det(\mathbf{A})^{-\frac{1}{2}}$$
data fit complexity penalty

Result

Result

Some Observations / Remarks

Bayesian inference

- Unknown parameter K, many possible models \widehat{X}_K
- Weight model \hat{X}_K by "evidence" P(D|K) (marginal likelihood)
- Sum up (normalize weights, if not done yet)

Compute

$$\widehat{X} = \int_{\Omega(K)} \widehat{X}_K \cdot P(D|K) \ dK$$

Some Observations / Remarks

Structure of Marginal likelihood

$$P(D) = \int_{X} \underbrace{P(D|X)}_{\text{quality of fit model prior}} \underbrace{P(X)}_{P(D,X)} dX$$

$$(\text{leaving out K for clarity})$$

What does it do?

- P(D, X) contains two parts
 - Likelihood of the data (quality of fit)
 - Complexity penalty
 - Density P(D, X) more spread out if X has much choice

Occam's Razor

"Full" Bayesian inference

- Less weight on complex models
 - Equivalent to description length priors (more later)

Utility for Estimation

Can also be use for model comparison:
 Compare marginal likelihoods ("evidences")

$$P(D|K_1)$$
 vs. $P(D|K_2)$

- ...and select more likely model
 - Evaluates trade-off between data-fit and complexity

Gaussian Models

Special structure for Gaussians

Marginal Likelihood

$$P(D|K) \sim P(D|X = \overline{X}_K, K) \cdot \det(\Sigma)^{-\frac{1}{2}}$$
data fit at complexity mean / peak penalty

- Σ = covariance matrix of the posterior
 - Will see later: $\det(\Sigma)^{-\frac{1}{2}}$ shrinks with growing information content

Video #05d Summary

Summary

"Full Bayesian" Inference

- Reduced overfitting
 - Estimation methods are much more "risky"
- Amounts to weighting solutions by likelihood
 - "Bayesian model averaging"

Why does it help?

- Prefer simple models
- Model with many parameters θ (Here: high degree)
 - Model has more spread out density
 - Lower weight in likelihood weighting