Modelling 2 STATISTICAL DATA MODELLING

Chapter 4
 Statistics and Machine Learning

Recap: Previous Video

Probability Theory

- Mathematical Axioms
- Basis for all modeling of uncertainty
- Frequentist Interpretation / Application
- Repeatable experiments
- Bayesian Interpretation / Application
- General believes
- Might be subjective

Hertzman's Principle \#1

Laplace (1814)

"Probability theory is nothing more than common sense reduced to calculation"

Pierre-Simon Laplace (1749-1827)

Video \#04
 Statistics \& Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning \& Inference

Machine Learning \& Bayesian Statistics

Machine Learning \& Statistics

What is machine learning?

- Derive solution from examples (data)
- "Data driven" computer science
- Given a task and examples
- Statistical ML: Use statistical techniques
- "Real world" data such as photos, sound, etc., rather than curated data bases
- Algorithmic induction

Machine learning

Typical Tasks

- Regression

$$
\text { learn function } f: X \rightarrow Y
$$

- Classification

special case $-B$ is a set of categories

- Density reconstruction
learn probability distribution $p(\mathbf{x}), \quad \mathbf{x} \in X$

Machine learning

Typical Tasks

- Compression / simplification / structure discovery
- Dimensionality reduction
- Clustering
- Latent (unobserved) variable discovery
- ...and the similar
- Control
- Learn decision making
- Steer some agent, or self-driving car
- Play chess, GO, Robo-Soccer
- Several actions, long term consequences
- There are probably more

Training Data

How / which data is provided?

- Supervised learning
- Full "example solutions"
- Example: Regression from pairs $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1 . . n}$
- Unsupervised learning
- Unannotated data, infer solution from structure
- Example: Density reconstruction from points $\left\{\mathbf{x}_{i}\right\}_{i=1 . . n}$
- Semi-supervised learning
- Only some examples are "full solutions"
- Ex.: Classification from $\left\{\mathbf{x}_{i}\right\}_{i=1 . . n}$ and $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1 . . m}$, usually $m \ll n$
- Reinforcement learning:
- Qualitative feedback, only after a while

Statistical Approach

Meta-Algorithm

- Obtain training data
- Fit probabilistic model to the data
- Use probabilistic model to solve problem
- Inferring solutions: Minimize risk of errors / loss

Statistical Approach

Goals

- Objective: Generalizability
- Learned model should work on non-training data
- of the same statistics as the training data
- Usual approach
- Practical objective: "Fit model well to training data"
- Control for "overfitting" (being "too specific")

Machine Learning \& Bayesian Statistics

Example: Classification

Example Application

Machine Learning Example

- Classification

Application Example

- Automatic scales at supermarket
- Detect type of fruit using a camera

Learning Probabilities

Toy Example

- Distinguish pictures of oranges and bananas
- 100 training pictures each
- Find rule to distinguish pictures

Learning Probabilities

Very simple approach

- Compute average color
- Learn distribution

Machine Learning:
"Generative Models"

Learning Probabilities

Density Reconstruction

Bayesian Risk Minimization

Generative Learning

Very simple idea

- Collect data
- Estimate probability distribution
- Use learned probabilities for classification
- Always decide for the most likely case (largest probability)

Easy to see

- If probability distributions is known exactly: decision is optimal (in expectation)
- "Minimal Bayesian risk classifier"

Simple Algorithm: Histograms

Simple Algorithm: Fit Gaussians

Machine Learning:
 "Discriminative Models"

Idea: Why all the fuss?

k-Nearest Neighbors

Linear Classifier (e.g. SVM)

General Classifiers

separating manifold

Generalization

Unreliable Models

Previous example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- $k=6$ fits any data
- Unique model
- But no predictive power
- $k=5,4,3$...? fits any data
- More or less reliable

We Care (Only) About Generalization

Performance on Training Data

- Might be misleading
- For example:
- High degree polynomial fits perfectly
- Very unlikely to fit in general

Problem

- How indicative is training performance for general performance (off-training data)?
- Big error for complex models, small error for small models
- We will make this quantitative soon

Bias Variance Trade-Off

Video \#04a Summary

Summary

Machine Learning

- Inductive reasoning: Learn solutions from examples
- Training vs. generalization: Beware of overfitting

Machine Learning \& Statistics

- Build suitable probabilistic model
- Determine probability distributions from examples

Two main approaches

- Generative: model statistics of everything
- Discriminative: Focus on task (classification)

Modelling 2 STATISTICAL DATA MODELLING

Chapter 4
 Statistics and Machine Learning

Video \#04
 Statistics \& Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning \& Inference

Bayes' Rule

Derivation of Bayes' rule

Bayes' rule

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

Derivation

$$
\begin{aligned}
=\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B) \\
\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)
\end{aligned}
$$

$$
\Rightarrow \operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})
$$

Bayes for Densities

Bayes' rule for densities

$$
\begin{aligned}
p(x \mid y) & =\frac{p(y \mid x) \cdot p(x)}{p(y)} \\
& =\frac{p(y \mid x) \cdot p(x)}{\int_{x \in \Omega(X)}^{p(y \mid x) p(x)} d y}
\end{aligned}
$$

Bayes Rule for Densities: Visualization

Bayes Rule for Densities: Visualization

Bayesian Statistics for ML A Practical How-To

Recommended Reading:
http://www.dgp.toronto.edu/~hertzman/ibl2004/notes.pdf

Bayesian Toolset

Rules

- Normalization

$$
\int_{\Omega} p(\mathrm{x}) d \mathrm{x}=1, \quad \int_{\Omega} p(\mathrm{x} \mid \mathrm{y}) d \mathrm{x}=1
$$

- Marginalization

$$
p(\mathrm{x})=\int_{\Omega} p(\mathrm{x}, \mathrm{y}) d \mathbf{y}
$$

Bayesian Toolset

More rules...

- Product rule

$$
\begin{aligned}
p(\mathrm{x}, \mathrm{y}) & =p(\mathrm{x} \mid \mathrm{y}) \cdot p(\mathrm{y}) \\
p(\mathrm{x}, \mathrm{y}, \mathrm{z}) & =p(\mathrm{x} \mid \mathrm{y}, \mathrm{z}) \cdot p(\mathrm{y}, \mathrm{z}) \\
& =p(\mathrm{x} \mid \mathrm{y}, \mathrm{z}) \cdot p(\mathrm{y} \mid \mathrm{z}) \cdot p(\mathrm{z})
\end{aligned}
$$

- Product rule: condition on any (sub-) tuple(s)

$$
\begin{aligned}
p(\mathrm{x}, \mathrm{y}, \mathrm{z}) & =p(\mathbf{x}, \mathrm{y} \mid \mathrm{z}) \cdot p(\mathrm{z}) \\
& =p(\mathbf{x} \mid \mathbf{y}, \mathrm{z}) \cdot p(\mathrm{y} \mid \mathrm{z}) \cdot p(\mathrm{z})
\end{aligned}
$$

Bayesian Toolset

Rules

- Marginalization (e.g. "nuisance" parameters)

$$
p(\mathbf{x})=\int_{\Omega(\varphi)} p(\mathbf{x}, \varphi) d \varphi
$$

- Integrate over everything you do not care about
- If too costly: maximize with well-designed prior
- Direct observation

$$
p(\mathrm{x} \mid \mathrm{y})=\frac{p(\mathrm{x}, \mathrm{y})}{p(\mathrm{y})}
$$

- We have seen / we know y
- Divide joint pd $p(\mathbf{x}, \mathbf{y})$ by $p(\mathbf{y})$ to obtain conditional pd

Bayesian Toolset

When to use what?

- Marginalization

$$
p(\mathrm{x})=\int_{\Omega(\mathrm{y})} p(\mathrm{x}, \mathrm{y}) d \mathbf{y}
$$

- y could be anything
- Want likelihood for \mathbf{x} (overall, any y)
- Conditioning

$$
p(\mathrm{x} \mid \mathrm{y})=\frac{p(\mathrm{x}, \mathrm{y})}{p(\mathrm{y})}
$$

- We have seen / we know y!

Marginalization

Conditioning

- y is fixed, we want to update (renormalize) distribution

Bayesian Toolset

Bayes' Rule

$$
p(\mathrm{x} \mid \mathrm{y})=\overbrace{\frac{p(\mathrm{y} \mid \mathrm{x}) \cdot p(\mathrm{x})}{p(\mathrm{x}, \mathrm{y})}}^{p(\mathrm{y})}
$$

- "Inverse" problem
- We know conditional \& marginal probabilities
- We want to know the inverse conditional
- Determine $p(\mathbf{x} \mid \mathbf{y})$ from $p(\mathbf{y} \mid \mathbf{x}), p(\mathbf{x})$

Bayes vs. simple conditioning

- We do not have $p(\mathrm{x}, \mathrm{y})$ directly
- But we can model / observe $p(\mathbf{y} \mid \mathbf{x}), p(\mathrm{x})$

Example

Measurement device

- State of measured object: X
- Measured data: D

What is X given data D ? $p(\mathbf{X} \mid \mathrm{D})$

We can model how device works

- "Likelihood" p (D|X)

We have a rough idea how X looks like

- "Prior" $p(\mathbf{X})$

With this, we can compute inverse $p(X \mid D)$

Hertzman’s Principles

Laplace (1814)

"Probability theory is nothing more than common sense reduced to calculation"

Further principles

- Build complete model

Pierre-Simon Laplace (1749-1827)

- Infer knowledge (given observations)
- Bayes' Rule to infer from observation
- Marginalize to remove unknown parameters

Likelihoods \& Priors

 Merging Information
Bayesian Models

Scenario

- Customer picks banana $\int(X=0)$ or orange $O(X=1)$
- Object X creates image D

Modeling

- Given image D (observed), what was X (latent)?

$$
\begin{aligned}
& P(X \mid D)=\frac{P(D \mid X) P(X)}{P(D)} \\
& P(X \mid D) \sim P(D \mid X) P(X)
\end{aligned}
$$

Relation

Easy to confuse

- $p(x \mid y)$ and $p(x, y)$ with y fixed

Difference

- $p(x \mid y)=\frac{p(x, y)}{p(y)}=\frac{p(x, y)}{\int_{\Omega(x)} p(x, y) d x}$
- Conditional probability is normalized
- Integrates to one
- Careful for varying y !
- $p(x \mid y) \nsim p(x, y)$ (not proportional in 2D!)
- Normalization varies with y !

Bayes Rule for ML

Variables: Explanation X, data D, model θ
Learning θ given training pairs (D, X)

$$
P_{\theta}(X \mid D)=\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P_{\theta}(D)}
$$

Inferring X from data D given model θ

$$
\begin{aligned}
P_{\theta}(X \mid D) & =\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P P_{\theta}(D) \cdot \text { independent of } X} \\
P_{\theta}(X \mid D) & \sim P_{\theta}(D \mid X) P(X)
\end{aligned}
$$

Bayesian Models

Statistical Model

Bayesian Models

Our Classifier

$$
P_{\theta}^{\text {posterior }}(X \mid D)=\frac{P_{\theta}^{\text {fruit } \rightarrow \text { img }} \quad \begin{array}{r}
\text { freq. of fruits } \\
P_{\theta}(D \mid X) \\
P_{\theta}(X)
\end{array}}{\begin{array}{c}
\text { fruit image } \\
\text { probability }
\end{array}}
$$

Bayesian Models

Generative Model

$$
P_{\text {compute }}^{\text {posterior }} \begin{gathered}
P_{\begin{array}{c}
\text { fruit } \rightarrow \text { img } \\
\text { fruit image } \\
\text { probability }
\end{array}}^{P_{\theta}(D \mid X) P_{\theta}(X)} \\
\text { compute } / \text { ignore fruits }
\end{gathered}
$$

Properties

- Comprehensive model:

Full description of how data is created

- Might be complex (how to create images of fruit?)

Bayesian Models

Discriminative Model

$$
P_{\text {learn directly }}^{P_{\theta}(X \mid D)}=\frac{P_{\begin{array}{c}
\text { fruit image } \\
\text { probability }
\end{array}}^{P_{\theta}(D \mid X) \rightarrow P_{\theta}(X)}}{P_{\theta}(D)}
$$

Often easier to learn

- Learn mapping from phenomenon to explanation
- Less "powerful": needs less data
- Not trying to explain the whole phenomenon
- Can use reduced representation / features

Generative Models

Generative Models

Generative Models

Generative Models

Discriminative Model

Discriminative Model

Example: Generative Models

Autoencoder
(PCA in latent space)

WGAN-GP (generative adversarial network)

Discriminative Models

[not an actual classification result, just photos]

Video \#04b Summary

Summary

Bayesian Toolset

- Conditioning: We know something
- Marginalization: We disregard something
- "Bayesian inference":

Got a question, marginalize over everything not asked for

- Chain rule: Joint density from conditional \& marginal
- Build $p(x, y)$ from $p(x \mid y), p(x)$
- Stepwise modeling
- Bayes rule: Flip conditional
- Build $p(y, x)$ from $p(x \mid y), p(y)$
- Interpret measurement/observation

Modelling 2 STATISTICAL DATA MODELLING

Chapter 4
 Statistics and Machine Learning

Video \#04
 Statistics \& Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning \& Inference

Let's say we have a model already... Inference

Inference

Model

$$
P_{\theta}(X \mid D)=\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P_{\theta}(D)}
$$

Situation

- We know the model parameters θ (e.g. classifier par.)
- Fixed during inference
- Determined during learning
- We have observed data D (e.g. photo of fruit)
- We want to infer X (e.g. class of fruid)

Three Variants

Model

$$
P_{\theta}(X \mid D)=\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P_{\theta}(D)}
$$

Inference Schemes

- Maximum Likelihood (simplest)
- Maximum-a-posteriori (with prior)
- Bayesian inference (most fancy, but often intractable)

Maximum Likelihood Estimation

Maximum Likelihood

Fixed Parameters

$$
\begin{aligned}
P_{\theta}(X \mid D) & =\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P_{\theta}(D)} \\
& \sim P_{\theta}(D \mid X) P_{\theta}(X) \\
& =P_{\theta}(D \mid X)
\end{aligned}
$$

$$
\hat{X}=\underset{X \in \Omega(X)}{\arg \max } \underbrace{}_{\begin{array}{c}
\text { data term } \\
\begin{array}{c}
\text { (likelihood) } \\
\text { only }
\end{array}
\end{array} P_{\theta}(D \mid X)}
$$

ML-Estimation (MLE)

- Only data likelihood, maximize for best X
- Ignore prior, or uniform (pseudo-) prior
- Model must be from restrictive family

Maximum-A-Posteriori (MAP) Estimation

Maximum-A-Posteriori (MAP)

Fixed model parameters θ

$$
\left.\begin{array}{rl}
P_{\theta}(X \mid D) & =\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P_{\theta}(D)} \\
& \sim P_{\theta}(D \mid X) P_{\theta}(X)
\end{array}\right\} \hat{X}=\underset{X \in \Omega(X)}{\arg \max } \underbrace{P_{\theta}(D \mid X) P_{\theta}(X)}_{\begin{array}{c}
\text { posterior distribution } \\
\text { (unnormalized) }
\end{array}}
$$

MAP-Estimation

- Maximize for best X
- Prior $P_{\theta}(X)$ non-trivial: X can be from overly flexible family
- Prior will fill in missing information
- Can solve ill-posed problems, weak data term $P_{\theta}(D \mid X)$

Inference

Numerical trick for MAP/MLE

- Obtain X by maximizing

$$
P(X \mid D) \sim P(D \mid X) P(X)
$$

- Neg-log likelihoods: $E(\cdot)=-\ln P(\cdot)$

$$
E(X \mid D) \sim E(D \mid X)+E(X) \longleftarrow \underset{\text { used in Mod }-1}{\operatorname{not}} E(\cdot)
$$

Useful for i.i.d. data

$$
P(D \mid X)=\prod_{i=1}^{n} P\left(\mathbf{d}_{i} \mid X\right) \rightarrow E(D \mid X)=\sum_{i=1}^{n} E\left(\mathbf{d}_{i} \mid X\right)
$$

"Bayesian Inference"

Bayesian Inference

Marginalization: Solution is the mean

$$
\begin{aligned}
\bar{X} & =\mathbb{E}_{X \sim P_{\theta}(X \mid D)}[X] \\
& =\int_{\mathbf{x} \in \Omega(X)} \mathbf{x} \cdot \frac{P_{\theta}(D \mid \mathbf{x}) P_{\theta}(\mathbf{x})}{P_{\theta}(D)} d \mathbf{x}
\end{aligned}
$$

Determine $X=\bar{X}$ by marginalization

- Average all solutions (can be expensive)
- Weight by posterior
- Same as estimation for simple posteriors (e.g., Gaussian)
- Requires "proper" normalization; no neg-log tricks

ML \& MAP Learning
 (ML/MAP Parameter Estimation)

Maximum Likelihood

Maximum likelihood parameter estimation

$$
\begin{aligned}
& P_{\theta}(X, D)=P_{\theta}(D \mid X) P_{\theta}(X) \\
& \hat{\theta}=\underset{\theta \in \Omega(\theta)}{\arg \max } P_{\theta}\left(D \mid \underset{\substack{X \\
\text { properly normalized, } \\
\int=1}}{\mid} P_{\theta}(X)\right.
\end{aligned}
$$

- Maximize likelihood of observed data under model
- Attention: Need properly normalized densities!
- Normalization usually depends on θ
- Thus, cannot be neglected
- Often serious computational problem
- Optional prior on X, no prior on θ

Maximum A Posteriori

Maximum a posterior parameter estimation

$$
P(\theta \mid(X, D))=\frac{P((X, D) \mid \theta) P(\theta)}{P((X, D))}
$$

$$
\hat{\theta}=\underset{\sim}{\arg \max } P((X, D) \mid \theta) P(\theta)
$$

$\theta \in \Omega(\theta)$

Idea

- Add a prior on θ
often $P(X, D \mid \theta)=P(D \mid X, \theta) P(X \mid \theta)$ is used
- Use Bayes' rule to determine posterior on θ
- Again, $P((X, D) \mid \theta)$ must be normalized correctly
- Scale factor usually depends on θ

Learning via
 Bayesian Inference

Bayesian Inference

"Posterior predictive distribution"

$$
\begin{aligned}
P(X \mid D) & =\int_{\Omega(\theta)} P(X, \theta \mid D) d \theta \\
& =\int_{\Omega(\theta)} P(X \mid \theta, D) P(\theta \mid D) d \theta
\end{aligned}
$$

Bayesian Inference

Inference (Mean)

$$
\begin{aligned}
\bar{X}=\mathbb{E}_{X \sim P(X \mid D)}[X] & =\int_{X} X \cdot P(X \mid D) d X \\
& =\int_{X} X \cdot \int_{\Omega(\theta)} P(X, \theta \mid D) d \theta d X \\
& =\int_{\Omega(\theta)}\left(\int_{X} X \cdot P(X \mid \theta, D) d X\right) P(\theta \mid D) d \theta \\
& =\int_{\Omega(\theta)} \overline{X_{\theta}} \cdot P(\theta \mid D) d \theta
\end{aligned}
$$

Mean inferred likelihood of θ for fixed θ given the data

Bayesian Inference

Inference

$$
\begin{aligned}
\bar{X}=\mathbb{E}_{X \sim P(X \mid D)}[X] & =\int_{\Omega(\theta)} \overline{X_{\theta}} \cdot P(\theta \mid D) d \theta \\
& =\int_{\Omega(\theta)} \overline{X_{\theta}} \cdot \frac{P(D \mid \theta) P(\theta)}{P(D)} d \theta
\end{aligned}
$$

normalization likelihood of the data

$$
=\frac{1}{P(D)} \int_{\Omega(\theta)} \overline{X_{\theta}} \cdot \frac{\text { given } \theta}{P(D \mid \theta)} \cdot P(\theta) d \theta
$$

Video \#04c Summary

Summary

Answers to questions

- Maximum Likelihood Estimation (MLE)
- Maximum A Priori (MAP) Estimation
- Bayesian inference

Two modes

- Inference (fixed model parameters θ)
- Training/learning (of θ)

Computational Hurdles

General Model

$$
P_{\theta}(X \mid D)=\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P_{\theta}(D)}
$$

MLE/MAP Inference (θ fixed)

- Can ignore denominator
- Can use unnormalized densities

MLE / MAP

Maximum search
on log-density

MLE/MAP Learning (θ fixed)

- Denominator counts (usually depends on θ)
- Careful with normalization (dependence on θ)

Computational Hurdles

General Model

$$
P_{\theta}(X \mid D)=\frac{P_{\theta}(D \mid X) P_{\theta}(X)}{P_{\theta}(D)}
$$

Bayesian Inference of X / θ

- Need high-dimensional integration
- Need to be careful to weight everything correctly
- Normalization of numerator affects weight
- Log-space computations usually do not help
- Learning: Again - be careful with dependencies on θ

