

Chapter 4 Statistics and Machine Learning

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Recap: Previous Video

Probability Theory

- Mathematical Axioms
 - Basis for all modeling of uncertainty
- Frequentist Interpretation / Application
 - Repeatable experiments
- Bayesian Interpretation / Application
 - General believes
 - Might be subjective

Hertzman's Principle #1

Laplace (1814)

"Probability theory is nothing more than common sense reduced to calculation"

Pierre-Simon Laplace (1749–1827)

Video #04 Statistics & Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning & Inference

Machine Learning & Bayesian Statistics

Machine Learning & Statistics

What is machine learning?

- Derive solution from examples (data)
 - "Data driven" computer science
 - Given a task and examples
- Statistical ML: Use statistical techniques
 - "Real world" data such as photos, sound, etc., rather than curated data bases
 - Algorithmic induction

Machine learning

Typical Tasks

Regression

learn function $f: X \to Y$

Classification

special case – *B* is a set of categories

Density reconstruction

learn probability distribution $p(\mathbf{x})$, $\mathbf{x} \in X$

Machine learning

Typical Tasks

Compression / simplification / structure discovery

- Dimensionality reduction
- Clustering
- Latent (unobserved) variable discovery
- ...and the similar

Control

- Learn decision making
 - Steer some agent, or self-driving car
 - Play chess, GO, Robo-Soccer
- Several actions, long term consequences
- There are probably more

Training Data

How / which data is provided?

- Supervised learning
 - Full "example solutions"
 - Example: Regression from pairs $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1..n}$

Unsupervised learning

- Unannotated data, infer solution from structure
- Example: Density reconstruction from points $\{\mathbf{x}_i\}_{i=1..n}$

Semi-supervised learning

- Only some examples are "full solutions"
- Ex.: Classification from $\{\mathbf{x}_i\}_{i=1..n}$ and $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1..m}$, usually $m \ll n$

Reinforcement learning:

Qualitative feedback, only after a while

Statistical Approach

Meta-Algorithm

- Obtain training data
- Fit probabilistic model to the data
- Use probabilistic model to solve problem
 - Inferring solutions: Minimize risk of errors / loss

Statistical Approach

Goals

- Objective: Generalizability
 - Learned model should work on non-training data
 - of the same statistics as the training data
- Usual approach
 - Practical objective: "Fit model well to training data"
 - Control for "overfitting" (being "too specific")

Machine Learning & Bayesian Statistics

Example: Classification

Example Application

Machine Learning Example

Classification

Application Example

- Automatic scales at supermarket
- Detect type of fruit using a camera

Learning Probabilities

Toy Example

- Distinguish pictures of oranges and bananas
- 100 training pictures each
- Find rule to distinguish pictures

Learning Probabilities

Very simple approach

- Compute average color
- Learn distribution

Machine Learning: "Generative Models"

Learning Probabilities

Density Reconstruction

Bayesian Risk Minimization

Generative Learning

Very simple idea

- Collect data
- Estimate probability distribution
- Use learned probabilities for classification
- Always decide for the most likely case (largest probability)

Easy to see

- If probability distributions is known exactly: decision is optimal (in expectation)
- "Minimal Bayesian risk classifier"

Simple Algorithm: Histograms

Simple Algorithm: Fit Gaussians

Machine Learning: "Discriminative Models"

Idea: Why all the fuss?

k-Nearest Neighbors

Linear Classifier (e.g. SVM)

hyperplane* separator SVM: large margin

red

General Classifiers

separating manifold

Generalization

Unreliable Models

Previous example

- Betting on stock prices
- Polynomial fitting
- Seven observations

Degree k polynomial

- k = 6 fits any data
 - Unique model
 - But no predictive power
- k = 5,4,3 ...? fits any data
 - More or less reliable

We Care (Only) About Generalization

Performance on Training Data

- Might be misleading
- For example:
 - High degree polynomial fits perfectly
 - Very unlikely to fit in general

Problem

- How indicative is training performance for general performance (off-training data)?
 - Big error for complex models, small error for small models
 - We will make this quantitative soon

Video #04a Summary

Summary

Machine Learning

- Inductive reasoning: Learn solutions from examples
- Training vs. generalization: Beware of overfitting

Machine Learning & Statistics

- Build suitable probabilistic model
- Determine probability distributions from examples

Two main approaches

- Generative: model statistics of everything
- Discriminative: Focus on task (classification)

Chapter 4 Statistics and Machine Learning

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #04

Statistics & Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning & Inference

Bayes' Rule
Derivation of Bayes' rule

Bayes' rule

$$Pr(A | B) = \frac{Pr(B | A) \cdot Pr(A)}{Pr(B)}$$

Derivation

• $Pr(A \cap B)$ = $Pr(A|B) \cdot Pr(B)$ $Pr(A \cap B)$ = $Pr(B|A) \cdot Pr(A)$

 $\Rightarrow \Pr(A|B) \cdot \Pr(B) = \Pr(B|A) \cdot \Pr(A)$

Bayes for Densities

Bayes' rule for densities

$$p(x|y) = \frac{p(y|x) \cdot p(x)}{p(y)}$$
$$= \frac{p(y|x) \cdot p(x)}{\int_{x \in \Omega(X)} p(y|x)p(x)dy}$$

Bayes Rule for Densities: Visualization

Bayes Rule for Densities: Visualization

Bayesian Statistics for ML A Practical How-To

Recommended Reading: http://www.dgp.toronto.edu/~hertzman/ibl2004/notes.pdf

Rules

Normalization

$$\int_{\Omega} p(\mathbf{x}) d\mathbf{x} = 1, \qquad \int_{\Omega} p(\mathbf{x} | \mathbf{y}) d\mathbf{x} = 1$$

Marginalization

$$p(\mathbf{x}) = \int_{\Omega} p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

More rules...

Product rule

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y}) \cdot p(\mathbf{y})$$
$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x}|\mathbf{y}, \mathbf{z}) \cdot p(\mathbf{y}, \mathbf{z})$$
$$= p(\mathbf{x}|\mathbf{y}, \mathbf{z}) \cdot p(\mathbf{y}|\mathbf{z}) \cdot p(\mathbf{z})$$

Product rule: condition on any (sub-) tuple(s)

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x}, \mathbf{y} | \mathbf{z}) \cdot p(\mathbf{z})$$
$$= p(\mathbf{x} | \mathbf{y}, \mathbf{z}) \cdot p(\mathbf{y} | \mathbf{z}) \cdot p(\mathbf{z})$$

Rules

- Marginalization (e.g. "nuisance" parameters) $p(\mathbf{x}) = \int_{\Omega(\varphi)} p(\mathbf{x}, \varphi) d\varphi$
 - Integrate over everything you do not care about
 - If too costly: maximize with well-designed prior
- Direct observation

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})}$$

- We have seen / we know y
- Divide joint pd $p(\mathbf{x}, \mathbf{y})$ by $p(\mathbf{y})$ to obtain conditional pd

When to use what?

Marginalization

$$p(\mathbf{x}) = \int_{\Omega(\mathbf{y})} p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

- y could be anything
- Want likelihood for x (overall, any y)
- Conditioning

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})}$$

- We have seen / we know y!
- y is fixed, we want to update (renormalize) distribution

Bayes' Rule

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})}{p(\mathbf{y})}$$

- "Inverse" problem
 - We know conditional & marginal probabilities
 - We want to know the inverse conditional
 - Determine $p(\mathbf{x}|\mathbf{y})$ from $p(\mathbf{y}|\mathbf{x}), p(\mathbf{x})$

Bayes vs. simple conditioning

- We do not have $p(\mathbf{x}, \mathbf{y})$ directly
- But we can model / observe $p(\mathbf{y}|\mathbf{x}), p(\mathbf{x})$

Example

Measurement device

- State of measured object: X
- Measured data: D

We can model how device works

• "Likelihood" $p(\mathbf{D}|\mathbf{X})$

We have a rough idea how X looks like

"Prior" p(X)

With this, we can compute inverse $p(\mathbf{X}|\mathbf{D})$

from Hertzman's course notes: [http://www.dgp.toronto.edu/~hertzman/ibl2004/bayes2004.pdf]

(48)

Hertzman's Principles

Laplace (1814)

"Probability theory is nothing more than common sense reduced to calculation"

Further principles

- Build complete model
- Infer knowledge (given observations)
- Bayes' Rule to infer from observation
- Marginalize to remove unknown parameters

Pierre-Simon Laplace (1749–1827)

Likelihoods & Priors Merging Information

Scenario

- Customer picks banana (X = 0) or orange $\bigcirc (X = 1)$
- Object X creates image D

Modeling

Given image D (observed), what was X (latent)?

$$P(X|D) = \frac{P(D|X)P(X)}{P(D)}$$

 $P(X|D) \sim P(D|X)P(X)$

Relation

Easy to confuse

• p(x|y) and p(x, y) with y fixed

Difference

•
$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{p(\boldsymbol{x},\boldsymbol{y})}{p(\boldsymbol{y})} = \frac{p(\boldsymbol{x},\boldsymbol{y})}{\int_{\Omega(\boldsymbol{x})} p(\boldsymbol{x},\boldsymbol{y}) d\boldsymbol{x}}$$

- Conditional probability is normalized
 - Integrates to one
- Careful for varying y!
 - $p(x|y) \not\sim p(x,y)$ (not proportional in 2D!)
 - Normalization varies with y!

Bayes Rule for ML

Variables: Explanation X, data D, model θ

Learning θ given training pairs (D, X) $P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$

Inferring X from data D given model θ $P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)} \cdot \text{independent of } X$ $P_{\theta}(X|D) \sim P_{\theta}(D|X)P(X)$

Statistical Model

Our Classifier

- Comprehensive model: Full description of how data is created
- Might be complex (how to create images of fruit?)

Discriminative Model

Often easier to learn

- Learn mapping from phenomenon to explanation
 - Less "powerful": needs less data
- Not trying to explain the whole phenomenon
 - Can use reduced representation / features

Discriminative Model

Discriminative Model

Example: Generative Models

Autoencoder (PCA in latent space)

WGAN-GP (generative adversarial network)

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Discriminative Models

[not an actual classification result, just photos]

Video #04b Summary

Summary

Bayesian Toolset

- Conditioning: We know something
- Marginalization: We disregard something
 - "Bayesian inference": Got a question, marginalize over everything not asked for
- Chain rule: Joint density from conditional & marginal
 - Build p(x, y) from p(x|y), p(x)
 - Stepwise modeling
- Bayes rule: Flip conditional
 - Build p(y, x) from p(x|y), p(y)
 - Interpret measurement/observation

Chapter 4 Statistics and Machine Learning

Michael Wand · Institut für Informatik, JGU Mainz · michael.wand@uni-mainz.de

Video #04

Statistics & Machine Learning

- Machine Learning Basics
- Bayesian Inference for ML
- Learning & Inference

Let's say we have a model already... Inference

Inference

Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

Situation

- We know the model parameters θ (e.g. classifier par.)
 - Fixed during inference
 - Determined during learning
- We have observed data D (e.g. photo of fruit)
- We want to infer X (e.g. class of fruid)

Three Variants

Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

Inference Schemes

- Maximum Likelihood (simplest)
- Maximum-a-posteriori (with prior)
- Bayesian inference (most fancy, but often intractable)

Maximum Likelihood Estimation
Maximum Likelihood

Fixed Parameters θ

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

$$\sim P_{\theta}(D|X)P_{\theta}(X)$$

$$= P_{\theta}(D|X)$$

$$\hat{X} = \underset{X \in \Omega(X)}{\operatorname{arg max}} P_{\theta}(D|X)$$

$$data \ term (likelihood) only$$

ML-Estimation (MLE)

- Only data likelihood, maximize for best X
 - Ignore prior, or uniform (pseudo-) prior
 - Model must be from restrictive family

Maximum-A-Posteriori (MAP) Estimation

Maximum-A-Posteriori (MAP)

Fixed model parameters θ

MAP-Estimation

- Maximize for best X
 - Prior $P_{\theta}(X)$ non-trivial: X can be from overly flexible family
- Prior will fill in missing information
 - Can solve ill-posed problems, weak data term $P_{\theta}(D|X)$

Inference

Numerical trick for MAP/MLE

Obtain X by maximizing

 $P(X|D) \sim P(D|X)P(X)$

• Neg-log likelihoods: $E(\cdot) = -\ln P(\cdot)$

 $E(X|D) \sim E(D|X) + E(X) \quad \longleftarrow \text{ notation } E(\cdot)$ used in Mod-1
(variational modeling)

Useful for i.i.d. data

$$P(\mathbf{D}|\mathbf{X}) = \prod_{i=1}^{n} P(\mathbf{d}_{i}|\mathbf{X}) \rightarrow E(\mathbf{D}|\mathbf{X}) = \sum_{i=1}^{n} E(\mathbf{d}_{i}|\mathbf{X})$$

Marginalization: Solution is the mean

 $\overline{X} = \mathbb{E}_{X \sim P_{\theta}}(X|D)[X]$ $= \int_{\mathbf{x} \in \Omega(X)} \mathbf{x} \cdot \frac{P_{\theta}(D|\mathbf{x})P_{\theta}(\mathbf{x})}{P_{\theta}(D)} d\mathbf{x}$

Determine $X = \overline{X}$ by marginalization

- Average all solutions (can be expensive)
 - Weight by posterior
 - Same as estimation for simple posteriors (e.g., Gaussian)
- Requires "proper" normalization; no neg-log tricks

ML & MAP Learning (ML/MAP Parameter Estimation)

Maximum Likelihood

Maximum likelihood parameter estimation

 $P_{\theta}(X, D) = P_{\theta}(D|X)P_{\theta}(X)$ $\hat{\theta} = \arg \max P_{\theta}(D|X)P_{\theta}(X)$ $\theta \in \Omega(\theta)$ properly normalized, $\int = 1$

Idea

Maximize likelihood of observed data under model

- Attention: Need properly normalized densities!
 - Normalization usually depends on θ
 - Thus, cannot be neglected
 - Often serious computational problem
- Optional prior on X, no prior on θ

Maximum A Posteriori

Maximum a posteriori parameter estimation

$$P(\theta|(X, D)) = \frac{P((X, D)|\theta)P(\theta)}{P((X, D))}$$

$$\hat{\theta} = \arg \max P((X, D)|\theta)P(\theta)$$

 $\theta \in \Omega(\theta)$ for properly normalized
 $\int = 1$

Idea

• Add a prior on θ

- often $P(X, D|\theta) = P(D|X, \theta)P(X|\theta)$ is used
- Use Bayes' rule to determine posterior on θ
- Again, $P((X, D)|\theta)$ must be normalized correctly
 - Scale factor usually depends on $\boldsymbol{\theta}$

)

Learning via Bayesian Inference

"Posterior predictive distribution"

predictive distribution
$$\theta$$
 is no longer

$$P(X|D) = \int_{\Omega(\theta)} P(X, \theta|D) \ d\theta$$

$$= \int_{\Omega(\theta)} P(X|\theta, D) P(\theta|D) \ d\theta$$

Inference (Mean)

$$\overline{X} = \mathbb{E}_{X \sim P(X|D)}[X] = \int_{X} X \cdot P(X|D) dX$$

$$= \int_{X} X \cdot \int_{\Omega(\theta)} P(X, \theta|D) \ d\theta dX$$

$$= \int_{\Omega(\theta)} \left(\int_{X} X \cdot P(X|\theta, D) dX \right) P(\theta|D) \ d\theta$$

$$= \int_{\Omega(\theta)} \overline{X_{\theta}} \cdot P(\theta|D) \ d\theta$$
Mean inferred likelihood of θ
for fixed θ given the data
$$(a)$$

Inference

$$\bar{X} = \mathbb{E}_{X \sim P(X|D)}[X] = \int_{\Omega(\theta)} \overline{X_{\theta}} \cdot P(\theta|D) d\theta$$

$$= \int_{\Omega(\theta)} \overline{X_{\theta}} \cdot \frac{P(D|\theta)P(\theta)}{P(D)} d\theta$$

$$= \int_{\Omega(\theta)} \overline{X_{\theta}} \cdot \frac{P(D|\theta)P(\theta)}{P(D)} d\theta$$
normalization likelihood of the data
$$= \frac{1}{P(D)} \int_{\Omega(\theta)} \overline{X_{\theta}} \cdot P(D|\theta) \cdot P(\theta) d\theta$$
Mean inferred prior for fixed θ for θ

Video #04c Summary

Summary

Answers to questions

- Maximum Likelihood Estimation (MLE)
- Maximum A Priori (MAP) Estimation
- Bayesian inference

Two modes

- Inference (fixed model parameters θ)
- Training/learning (of θ)

Computational Hurdles

General Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

MLE/MAP Inference (θ fixed)

- Can ignore denominator
- Can use unnormalized densities

MLE / MAP

Maximum search on log-density

MLE/MAP Learning (θ **fixed**)

- Denominator counts (usually depends on θ)
- Careful with normalization (dependence on θ)

Computational Hurdles

General Model

$$P_{\theta}(X|D) = \frac{P_{\theta}(D|X)P_{\theta}(X)}{P_{\theta}(D)}$$

Bayesian Inference of X/θ

Bayesian Inference

Integration

- Need high-dimensional integration
 - Need to be careful to weight everything correctly
 - Normalization of numerator affects weight
 - Log-space computations usually do not help
 - Learning:

Again – be careful with dependencies on $\boldsymbol{\theta}$