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Introduction

Physics & Machine Learning?

▪ Why does would this matter?

Big problems

▪ “The” research question: Solve AI

▪ In other words: Universal machine learning

Big question

▪ Does universal learning exist?

(5)



Introduction

Meta-Priors

▪ Math: No free lunch!

▪ Physics: ?

▪ Biology: Sure (if you are optimistic)

Computer Science

▪ < 2010: We have none, but good luck.

▪ 2010-2020: Ups, maybe
▪ Deep networks solve very limited tasks

▪ But they seem disturbingly universal at that

(6)

our focus



Introduction

Perspective

▪ Taking fundamental physics as we know it as model

▪ Does this tell us
how to build a universal learning machine?

▪ We will not be able to answer this question.

Three steps

1. All of physics in 45min (from a CS perspective)

2. Methods / results on self-organizing systems

3. Do your own research (beyond this lecture)

(7)



Disclaimer

I am not a physicist

▪ Educated in computer science

▪ This lecture gives an overview / starting point

▪ This is not a physics lecture

▪ Take everything with a grain of scepticism

(8)



Physical Dynamics



Physics: Dynamical Systems

Dynamical systems

▪ State Space (“microstates”)
▪ Set Ω of possible system states 

▪ Examples
▪ 8 planets orbiting the sun

Ω = ℝ2×3×9 = ℝ54

▪ Cellular automata

– Discrete state space on infinite grid

Ω = 𝜔1, … , 𝜔𝑁
ℤ2

▪ Temporal evolution

function 𝑠:ℝ → Ω



Dynamical Systems

Dynamics

▪ State evolves over time
▪ The future only depends on the “last time step”

▪ Continuous case:

𝑓:ℝ → Ω, 𝑡 ↦ 𝑓 𝑡
𝑑

𝑑𝑡
𝑓 𝑡 = 𝐹 𝑓 𝑡 , 𝑡 (Markov process)

▪ Discrete case:

𝑓: ℤ → Ω, 𝑡 ↦ s 𝑡

𝑓 𝑡 + 1 = 𝐹 𝑓 𝑡 , 𝑡 (Markov chain)

▪ “New information”: 𝐹 can be a random variable
▪ Markovian dynamics
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Integration

𝑓:ℝ → ℝ

𝑓′ 𝑡 =𝐹 𝑓 𝑡 , 𝑡

𝑓(𝑡)

Function f

Slope prescribed

𝑓′(𝑡)

𝑡

initial cond.

𝑓(𝑡0) = 𝑦0



Newtonian Physics



Newtonian Physics

Newtonian Physics

“F = m⋅a”

Which means:

𝐅 𝑡, 𝐬 𝑡 = 𝑚 ⋅ 𝐚 𝑡 = 𝑚 ⋅ ሷ𝐬(𝑡)

In other words…
𝑑2

𝑑𝑡2
𝐬(𝑡) =

1

𝑚
𝐅 𝑡, 𝐬 𝑡



Typical Forces

gravitation

‖𝐅‖ = 𝛾
𝑚1𝑚2

𝑟2
𝐅

electric charge
(Coulomb law)

𝐅 = 𝜖0
𝑞1𝑞2
𝑟2

(sign matters)

springs

Hooke’s Law

𝐅𝑖𝑗 = 𝑘‖𝐬𝑗 𝑡 − 𝐬𝑖(𝑡)‖

𝐅 𝐅𝑗𝑖

𝑠𝑖 𝑡

𝑠𝑗 𝑡

𝐅𝑖𝑗
dissipation

friction

𝐅 = −𝑐𝐯 𝑡

air resistance
𝐅 = −𝑐𝐯 𝑡 2

force vector

𝐅1,2 = 𝐅
𝐬𝑖 − 𝐬𝑗

𝐬𝑖 − 𝐬𝑗

+

-𝑟 𝑟



Classical
Fields & Waves



We Like the Springs

Wave Equation

𝜕𝑓2

𝜕𝑡
= −cΔ𝑓 𝐱, 𝑡

Information
▪ Information 

transported
▪ through space
▪ over time

▪ Reversible
▪ practical

(18)



Classical Wave Models

(19)

coupling General case
▪ More general

local interactions

▪ More complex 
dynamics

▪ Wave propagation 
still possible

Concrete model

▪ Usually involves 
coupled fields



General Case

Local rules

▪ At each time instance,
affect only 
direct neighborhood

▪ Information is
transported through
space over time

Symmetric

▪ Translations

▪ Rotations

▪ (Reflections)
(20)



Continuum

(21)

Local neighborhoods 𝜕𝑡 , ∇𝐱, Δ𝐱, …

“cellular automata”
as discrete model systems

“            ”



Properties

Locality

▪ Markovian: all memory in dynamic state

▪ Local interactions evolve over time

Symmetry

▪ Relativistic (invariant under Poincaré Group)

▪ Causality chains: Local interactions → global behavior

(22)



General Relativity: Locality to the max

General Relativity

▪ Curved spacetime

▪ “General covariance”
▪ One could deform it 

arbitrarily

▪ Relevant are causal 
chains

▪ Information propagates 
according to metric

(23)

time

space

here & now
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(24)

time

space

here & now



Quantum Mechanics



We Probably Like the Cat

“Schrödinger”-Style QM:

▪ 𝑛 Particles in ℝ3

▪ Time 𝑡 ∈ ℝ

▪ Wave function

Ψ𝑡 𝐱1, … , 𝐱𝑛
=:𝐗

: ℝ3𝑛 × ℝ → ℂ

(26)

p
a

rt
. 

1

part. 2

Ψ𝑡 𝐱1, … , 𝐱𝑛

𝐱1

𝐱2

𝐱𝑛
𝐱3

𝐱…



We Probably Like the Cat

Wave function

Ψ𝑡 𝐱1, … , 𝐱𝑛
=:𝐗

: ℝ3𝑛 × ℝ → ℂ

Born-Rule
𝑝𝑡 𝐗 = Ψ𝑡 𝐗

2

Rules

▪ Dynamics 
𝜕

𝜕t
Ψ𝑡 𝐗 =

1

𝑖ℎ
෡𝐇Ψ𝑡 𝐗

▪ Unitarian, non-linear operator ෡𝐇Ψ𝑡 𝐗 = ෡𝐇 Ψ𝑡 𝐗 ⋅ Ψ𝑡 𝐗

▪ General observables Ψ𝑡 𝐗
T ⋅ 𝐌 ⋅ Ψ𝑡 𝐗

▪ Hermitian (complex-symmetric) 𝐌

▪ Observe Eigenfunctions of 𝐌 with 𝑝 = eigenvalue
(27)



Quantum Field Theory

Schrödinger’s Problem
▪ Cannot create/remove/convert particles

▪ Not relativistic

Quantum Field theory
▪ ≈ statistics on Fourier-coefficients of fields

▪ Maintains symmetries of special relativity
▪ Standard model: No general relativity 

(28)

𝑝𝑡 𝐱1, … , 𝐱𝑛

𝐱1

𝐱2

𝐱𝑛
𝐱3

𝐱… 𝑝𝑡 𝑧𝐤1 , 𝑧𝐤2 , …

Ψ𝑡 𝐱 = ෍

𝐤∈ℤ3

𝑧𝐤𝑒
𝑖𝐤𝐱 , 𝑧𝐤 ∈ ℕΨ𝑡 𝐱 = ෍

𝐤∈ℤ3

𝑧𝐤𝑒
𝑖𝐤𝐱 , 𝑧𝐤 ∈ ℕ



QM – tl;dr

We compute a Wavefunction

Ψ𝑡 𝐗 :ℝ3𝑛 × ℝ → ℂ

This yields a distribution

𝑝𝑡 𝐗 = Ψ𝑡 𝐗
2

We sample once from 𝑝

▪ Obtain 𝐗𝑡 ∈ ℝ → ℝ3𝑛

▪ This is life

(29)



Information (= Randomness)
in Physics



Classical Physics

▪ Deterministic dynamics, but only partial knowledge

▪ Far-away structures invisible
▪ Wave equation transports information too us (e.g. light)

▪ Small scales invisible
▪ Information transport across scales

▪ Chaotic dynamics / “butterfly effect”

Probabilistic Models of Physics

(31)

observer

observer

information

information



Quantum Physics

▪ Distribution 𝑝 derived from wave Ψ

▪ We compute the statistical dependency structure
▪ Using a non-linear wave equation

▪ This is deterministic – similar to classical physics

▪ We sample from it: this is random

Probabilistic Models of Physics

(32)

observer

observer

information

information
is smeared out

(correlated)



The Universe as a Generative Network

(33)
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There is only one wave function Ψ

• One big distribution 𝑝

• Life is correlations (stat. dependencies)



Stochastic Machines



What are we up to?

Physics as information processing

▪ View the dynamics of reality as computation

Physics as a universal machine

▪ We can build computers in the real world

▪ Rules of physics are Turing complete

Simulation

▪ We can simulate the rules of physics in a computer
▪ Perfectly on a quantum computer

▪ Approximate arbitrarily on a classical machine

▪ Costs are prohibitive, of course

(35)



Prediction

Predictive Reasoning

▪ Brain tries to predict what is going to happen
▪ Or other intelligent systems

▪ For things “we care” about
▪ Macroscopic events

▪ Only certain events (some “details” omitted)

(36)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

similar
situation

𝑜 𝑜

Intelligent system:

Real world:



Prediction

Predictive Reasoning

▪ Brain / system has limits
▪ Imperfect knowledge “𝑜(𝐱)”

▪ Limited capacity of model 𝑚
▪ Limited experience (“training data”)

▪ Build “best you can”

(37)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

similar
situation

𝑜 𝑜

Intelligent system:

Real world:



Prediction

Predictive Reasoning

▪ Short-cut
▪ Predict physical dynamics

▪ At coarse level

▪ Physical computer
▪ Use less time + space than original event

▪ Compression (maybe evolutionary-discriminative)
(38)

𝐲

𝐱 𝑒(𝐱)

𝑚(𝐲)
𝑚

similar
situation

𝑜 𝑜

Intelligent system:

Real world:



Short-Cut / Coarse-Grained Reasoning

[NASA]

[https://en.wikipedia.org/wiki/Big_Bang#/media/File:CMB_Timeline300_no_WMAP.jpg]



Computability Theory

Computability (of shortcuts)

▪ Infinite processes: Undecidable

▪ Limited space: Busy-beaver (grows too fast)

▪ Limited time & space: Still a lot?

Average behavior: seems more “restrained”
(40)

unknown

known

input
information

result output
information

perceived

shortcut



Summary



Physics

A big parallel machine

▪ Simple rules

▪ Parallel computing

▪ Turing-capable

Properties

▪ Symmetric
▪ Poincaré group: Relativistic models

▪ Strict locality (causality chains)
▪ All wave-models (classic & QFT)

▪ Non-deterministic
▪ Classical models, too, if not all state is known

(42)



Breaking the NFL-Theorem

Our learning setting

▪ Learning algorithm

▪ Pattern creation algorithm

No Free Lunch / Bias-Variance Trade-Off

▪ For 𝑛 input bits
▪ 2𝑛 different pieces of data can be encoded

▪ 22
𝑛

different binary classifications are possible

▪ “Storage” requirements

▪ log2 2
2𝑛 = 2𝑛 bits to encode arbitrary pattern

▪ Now the generator and decoder “play the same game”

(43)

both implemented
in physical hardware



Universal Priors

Better than that?

▪ What kind of patterns emerge naturally?

▪ What kind of classes / structures might we be 
interested in naturally?

Self-organization in physical systems

▪ Vast area

▪ “Unsolved” as far as I know

▪ We will take a brief glimpse in what is known

(44)
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Physics & Self-Organization

• Physics

• Self-Organization

(50)

Video #12



Overview



Two Topics

Two self-organization scenarios

▪ Thermodynamic equilibrium in a gas
▪ Maximum entropy for prescriped mean energy

▪ Connection to log-likelihoods and “energy functions”

▪ Coarse-graining of processes through 
renormalization groups

▪ Microscopical dynamical system

▪ Scale symmetry

▪ Understanding of macroscopical properties

Disclaimer again

▪ All of the above “rough sketch” from a CS person

(52)



Entropy in 
Physical Systems



Reversibility
& the Second Law



Reversible

Newtonian physics is reversible

▪ No information is ever lost
▪ Assuming no singularities,

such as point particles colliding

▪ We can play the ODE forward and backward

𝑓(𝑡)

𝑡

Initial conditions

𝑓(𝑡0) = 𝑦0

Final conditions

𝑑

𝑑𝑡
𝑓 𝑡 = 𝐹 𝑓 𝑡 , 𝑡



Reversible Dynamics

Discrete case

▪ 𝐹 is a bijection

Continuous case

▪ 𝐹 is a bijection (+ some regularity conditions)

Time symmetry, discrete case

▪ 𝐹 is independent of 𝑡:
▪ 𝑓 1 = 𝑓0, 𝑓 1 = 𝐹 𝑓0 , 𝑓 2 = 𝐹2 𝑓0 , 𝑓 3 = 𝐹3 𝑓0 , …

▪ Permutation group orbit 𝐹𝑡 𝑓0 (finite cyclic group)



Where is reversibility lost?

Classical “coarse-grained” models

▪ Friction → thermal molecular movements
▪ Btw: Variational “Hamiltonian” approach only works

in the reversible case

Macroscopic view

▪ Abstract from small details

▪ Information flows into the small scales!
▪ …and from the small scales – butterfly effect in fluid dyn.

Quantum physics

▪ Evolution of Ψ is deterministic
▪ But reconstruction from observations is imperfect

(57)



Classical, Reversible Physics:

Variational Description



𝐩

𝐪 𝑠 𝑡
𝑑𝑠 𝑡

𝑑𝑡

Quantities

Variational System Modeling

▪ State 𝑠 𝑡 ∈ Ω (continuous)

▪ Energy 𝐇 𝑠 𝑡 (here 𝐇 = “Hamiltonian”, not entropy!)

▪ Dynamics is known when energy function 𝐇 is given

𝑑𝐩

𝑑𝑡
= −

𝜕𝐇

𝜕𝐪
,

𝑑𝐪

𝑑𝑡
= +

𝜕𝐇

𝜕𝐩

(𝐪 = position, 𝐩 = impulse 𝐯 ⋅ 𝑚)

Reversible Dynamics

▪ The formulation assumes reversibility

▪ “No energy lost”



Example

1D Mass-Spring System

▪ Kinetic energy 𝐸𝑘𝑖𝑛 𝑞 =
1

2
𝑚 ሶ𝑞2

▪ 𝑣 = ሶ𝑞, 𝑝 = 𝑚 ሶ𝑞

▪ Potential energy 𝐸𝑝𝑜𝑡 𝑞 =
1

2
𝐷𝑞2

▪ In Hookean spring with spring constant 𝐷

▪ Hamiltonian

𝐇 =
1

2
𝐷𝑞2 +

1

2
𝑚 ሶ𝑞2 =

1

2
𝐷𝑞2 +

𝑝2

𝑚

▪ ODE
𝑑𝑝

𝑑𝑡
= −

𝜕𝐇

𝜕𝑞
= −

𝐷𝑞

𝑚
,

𝑑𝑞

𝑑𝑡
=

𝜕𝐇

𝜕𝑝
=

𝑝

𝑚
= ሶ𝑞

mass

spring at rest

spring

𝐩

𝐪 𝑠 𝑡
𝑑𝑠 𝑡

𝑑𝑡



Macro States

Statistical Physics

▪ We do not see atoms
▪ “Micro states”

▪ Because too small

▪ We only see macroscopical phenomena
▪ “Macro states”

Macro state: Descriptors for Conditions

▪ “Glass is half-empty” (all particles on the bottom)

▪ “Pressure” (force per area due to collisions)

▪ “Temperature” ≈ average energy per particle

observer



Macro States

Example: “discrete” gas, 9 particles, 4×9 spots
▪ “All particles in the upper left corner: One microstate

▪ “Particles can be anywhere”: 
4 × 9
9

microstates (many!)



Equilibrium

Equilibrium

▪ We let the system run “for ever”
▪ Discrete system, for now

▪ Stop at a random time
▪ After ages

▪ Sample a random configuration 
▪ Out of all possible states



Example

Example:

▪ All permutations possible
▪ Implies: each visited once during each cycle

▪ 𝑃 Macrostate =
#states that fit macro state

#all microstates

P(“only upper left corner filled”) = 
1

17550
P(“any patter”) = 1



“Ideal Gas”

Consider “Gas in a Box”

▪ Continuous

▪ Particles move independently

▪ No interaction / collisions

Maximum Entropy

▪ Each particle independent
▪ Because: no interactions

▪ State of the particle “typical”
▪ Random one out of all possible.

▪ All states visited = all states similarly likely



“Ideal Gas”

Typical particle state

▪ Maximum Entropy principle

▪ Distribution has maximum
uncertainty: Maximum Entropy

State space

▪ Ω = ℝ3 × ℝ3 𝑁

▪ 𝑃 𝑠, 𝑣 chosen s.t. entropy H 𝑃 𝑠, 𝑣 → max
▪ MaxEnt for 𝑠: Uniform distribution over box

▪ MaxEnt for 𝑣: Does not make sense

– We need constraints!

position velocity



Discretization

State Space of One Particle

▪ Ω = [0,1]3 × ℝ3 𝑁

▪ Discretize
▪ Box is a (fine) discrete grid

▪ Velocities on a (fine) discrete grid

Model assumption

▪ Fixed temperature
▪ Fixed average energy per particle

position:
just the box!

velocity:
anything

goes

Discrete 𝐬: box grid
Discrete 𝐯: infinite grid



Discretization

Model assumption

▪ Fixed temperature
▪ Average energy per particle

Constraint

▪ Position must be in box

▪ Velocities

𝐸 =
1

2
𝑚‖𝐯‖2

1

𝑁
෍

𝑖=1

𝑁

𝐸𝑖 ≈ 𝜇 𝐸 =
1

2
𝑚 ⋅ 𝜇 𝐯𝑖

2

Discrete 𝐬: box grid
Discrete 𝐯: infinite grid



Discretization

Deriviation (Sketch)

▪ Mean of velocities is zero

▪ Normal distribution

𝒩0,𝜎2 𝐯 = 𝑒
−
𝐯2

2𝜎2

maximizes entropy!

Discrete 𝐬: box grid
Discrete 𝐯: infinite gridIn general

▪ Gibs / Boltzmann Distribution

𝑃 state = exp −
energy state

𝑘𝑇

maximizes entropy at temperature 𝑇 (𝑘 is a constant)



Variational Model

Variational System Modeling

▪ State 𝑠 𝑡 ∈ Ω (continuous)

▪ Energy 𝐇 𝑠 𝑡 (here 𝐇 = “Hamiltonian”, not entropy!)

▪ Dynamics is known when energy function 𝐇 is given

𝑑𝐩

𝑑𝑡
= −

𝜕𝐇

𝜕𝐪
,

𝑑𝐪

𝑑𝑡
= +

𝜕𝐇

𝜕𝐩

(𝐪 = position, 𝐩 = impulse 𝐯 ⋅ 𝑚)

Equilibrium

▪ Constant temperature 𝑇: 𝑃 𝑠 𝑡 = exp −
𝐇 𝑠 𝑡

𝑘𝑇



The Second Law

Entropy increases

▪ Universe starts in low-entropy state (boom)

▪ Reversible dynamics since then

▪ Entropy (of its macroscopic, observable state) increases

„Big Bang“ „later“



Statistical Doom?

“Earthrise”
Nasa/Apollo 8, Bill Anders

The Universe is not
in equilibrium (yet)

Sunshine
Heat radiation

(“Entropy for the
rest of the universe”)



Renormalization Groups



Scale-Symmetry

How do systems coarse-grain?

▪ In general: unknown (Turing complete!)

▪ Special case:
▪ Model family, with only changing parameters

– For example, Hamiltonian model

▪ A scale-symmetry can be established

▪ In this case
▪ We can understand the macroscopic behavior

from the microscopic

Formal tool

▪ “Renormalization group”



Scale-Symmetry

Consider system

▪ Function 𝑠 𝐱 :ℝ𝑑 → ℝ𝑘

▪ Governed by (physical) law with parameters 𝑐1, … , 𝑐𝑛
▪ For example, a Hamiltonian

𝐇 𝑠 = 𝑓𝑐1,…,𝑐𝑛 𝑠

▪ Where 𝑓 is a function with parameters 𝑐1, … , 𝑐𝑛

Scale changes

▪ Consider system “at a different scale 𝜎”

▪ New Parameters 𝑐1, … , 𝑐𝑛 ↦ 𝐹𝜎 𝑐1, … , 𝑐𝑛

▪ Hamiltonian: 𝐇 𝜎 𝑠 = 𝑓𝐹𝜎 𝑐1,…,𝑐𝑛 𝑠



Examples for scale changes

Rescaling

▪ Just replace 𝐱 ↦
1

𝜎
𝐱

Discrete coarse-graining

▪ Replace 𝑠1, 𝑠2, … , 𝑠𝑛 by

𝑚 𝑠1, 𝑠2 , 𝑚 𝑠3, 𝑠4 , … ,𝑚 𝑠𝑛−1, 𝑠𝑛
for some averaging function 𝑚

Continuous Coarse-Graining

▪ Low-pass filter 𝜔𝜎 𝐱 at scale 𝜎
▪ For example 𝜔𝜎 = 𝒩0,𝜎

▪ Coarser observables: 𝑠 𝜎 ≔ 𝑠⊗𝜔𝜎

“zoom-in”

= =

continuous scales

discrete



Critical Points

Examine Mapping

𝑐1, … , 𝑐𝑛 ↦ 𝐹𝜎 𝑐1, … , 𝑐𝑛

▪ System parameters remapped under coarse-graining

▪ Symmetry
▪ Change scale, change parameters, then same behavior

▪ Scale transforms form a “renormalization group”

Critical Points

𝑐1, … , 𝑐𝑛 = 𝐹𝜎 𝑐1, … , 𝑐𝑛

▪ System behavior becomes scale-invariant

▪ This indicates fundamental changes at this point

(77)



Statistical Systems

Correlation function

▪ Measure correlation at distance 𝑟
▪ In this example: Distance in cells

▪ 𝑐𝑜𝑟𝑟 𝑟 = 𝔼𝑇=const. ⟨𝑠 𝑥 , 𝑠 𝑥 + 𝑟 ⟩

Degree of order

▪ Quickly dropping: unordered / random

▪ Slowly dropping: ordered / large-scale structure

Critical points

▪ Scale symmetry

▪ Special correlation function, such as power law 𝑟−2ℎ



Example 1:
Exponential ODE

(79)



Toy Example

“Physical Law”

𝑓:ℝ → ℝ,
𝑑𝑓(𝑡)

𝑑𝑡
= 𝑐𝑓 𝑡 , 𝑐 ∈ ℝ

Solution
𝑓(𝑡) = exp 𝑐𝑡

Scale Transformation

𝑡 =
1

𝜎
𝑡 → 𝑓 𝑡 = exp

𝑐

𝜎
𝑡 → 𝐹𝜎 𝑐 = 𝜎𝑐

Fixed point

▪ ∀𝜎 ∈ ℝ: 𝐹𝜎 𝑐 = 𝑐 for 𝑐 = 0
(80)



Visualization

Scale Symmetry

▪ Scale symmetry at 𝑐 = 0
▪ Boring, but symmetric

▪ Behavior changes qualitatively at this point
▪ Raising instead of shrinking

(81)

𝑐 = 2

𝑐 = 1

𝑐 = 0
𝑐 = −1
𝑐 = −2

phase
transition
at 𝑐 = 0

𝜎 = 1
𝑐 = 2

𝜎 = 2
𝑐 = 4



Example 2:
Fractal Brownian Motion



Toy Example

“Physical Law”: Random Walk
𝑓: 1, … , 𝑛 → ℝ, 𝑓 𝑡 + 1 = 𝑓 𝑡 + 𝜈, 𝜈~𝒩0,1,

Solution in Fourier Space

𝑓 𝑡 = ෍

𝜔=−𝑛

𝑛

z𝜔𝑒
−𝑖𝜔𝑡 with z𝜔 ∈ ℂ, z𝜔 ~𝒩0,𝜔−1

General FBM-Noise: Continuous spectrum

z𝜔 ∈ ℂ, z𝜔 ~𝒩0,𝜔−2ℎ , 𝜔 ∈ ℝ

„Fraktal exponent“ ℎ

(83)



Toy Example

Functions

𝑓 𝑡 = න
ℝ

z𝜔𝑒
−𝑖𝜔𝑡 𝑑𝜔 with z𝜔 ∈ ℂ, z𝜔 ~𝒩0,𝜔−2ℎ

Scale Invariance (“stochastic fractal”)
𝑡 = 𝜎𝑡 → 𝑓 𝜎𝑡 = 𝜎ℎ𝑓 𝑡

Perfect symmetry

▪ For ℎ = 1: 𝑓 𝜎𝑡 = 𝜎𝑓 𝑡

(84)



Example 3: Ising Model



Example System: Ising Model

State space

▪ Integer grid 𝑥𝐤, 𝐤 ∈ Ω ⊂ ℤ𝑑

▪ Binary “spins” 𝑠 𝑥𝐤 ∈ −1,1 (→ magnetism)

▪ For simplicity: enumerate as 𝑠1, … , 𝑠𝑛 with 𝑠𝑖 = 𝑠 𝑥𝐤𝑖

Neg-Log-Likelihood / Hamiltonian

𝐇 𝑠1 , … , 𝑠𝑛 = ෍

𝑖=1

𝑛

𝑐𝑖𝑠𝑖 +෍

𝑖=1

𝑛

෍

𝑗∈𝑁 𝑖

𝐽𝑖𝑗𝑠𝑖𝑠𝑗

Symmetric, no external field

𝐇 𝑠1 , … , 𝑠𝑛 = 𝐽෍

𝑖=1

𝑛

෍

𝑗∈𝑁 𝑖

𝑠𝑖𝑠𝑗



Ising Model

Wikipedia user HeMath (CC Attribution-SA 4.0)
https://commons.wikimedia.org/wiki/File:Ising_quench_b10.gif



Equilibrium at Fixed Temperature

Probability

𝑝 𝑠1 , … , 𝑠𝑛 =
1

𝑍
exp

− σ𝑖=1
𝑛 𝑐𝑖𝑠𝑖 + σ𝑖=1

𝑛 σ𝑗∈𝑁 𝑖 𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑘𝑇

Sampling

▪ MCMC sampler

▪ Metropolis-Hastings
▪ Detailed balance in equilibrium

▪ 𝑝 𝐱 ⋅ 𝑝𝑡𝑟𝑎𝑛𝑠 𝐱 → 𝐲 = 𝑝 𝐲 ⋅ 𝑝𝑡𝑟𝑎𝑛𝑠 𝐲 → 𝐱

▪ Random moves, accept outcome with likelihood ratio 
𝑝 𝑛𝑒𝑤

𝑝 𝑜𝑙𝑑



Scale Symmetry

Coarse-graining
▪ Block renormalization: 2x2 blocks with one new state

▪ Scale space symmetry for this system

▪ Hamiltonian has the same form

▪ Only 𝐽 changes
▪ Group of transformations that changes parameters with scale

Renormalized

𝐇 𝑠1, … , 𝑠𝑛 =෍

𝑖=1

𝑛

෍

𝑗∈𝑁 𝑖

𝐽𝑖𝑗
𝛼
𝑠𝑖𝑠𝑗



Scale Symmetry

Renormalization analysis
▪ High temperature

▪ Correlation function drops exponentially

▪ Low temperature
▪ Correlation function drops very slowly

▪ Critical point: perfect scale symmetry
▪ Correlation function forms a power law

▪ Transition from unordered to ordered phase

▪ Model for magnetism (Curie-temperature)



Deep Networks



Phase transitions

Initialization of networks

▪ Variance of weights
▪ linear weights, bias values

▪ Standard initialization
▪ Keeps signal variance constant

▪ “critical” initialization

▪ Mean-field analysis [Schoenholz et al. 2017]
▪ Varying weight / bias variance

▪ Networks learn best close to phase transition

▪ Similar observations in neuroscience (neural activity)

(96)

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, Surya Ganguli
Exponential expressivity in deep neural networks through transient chaos. NeurIPS 2016.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, Jascha Sohl-Dickstein
Deep Information Propagation. ICLR 2017.



Non-Equilibrium
Self-Organization



Dynamical System View

Self-organized criticality

▪ Many natural systems
operate at critical point

▪ Self-stabilizing dynamics

▪ Phase transition destroy structure

Bak, Tang, Wiesenfeld: Self-organized criticality: an explanation of 1/f noise.
Physical Review Letters, 1987.



Machine Learning?

“Free Energy Principle”

▪ [Friston et al. 2006+]

▪ Hypothesis on emergence
of intelligence

▪ Markovian systems
▪ Inner & outer region

▪ Interface: Markov blanket

▪ (Thermo-) dynamics: Outer fluctuations
▪ Structure preservation implies Bayesian Inference

▪ Similarities between free energy minimization
and variational approximations of Bayesian inference

Karl Friston: The Free Energy Principle
https://www.youtube.com/watch?v=NIu_dJGyIQI

stable
structure

outside

Markov  
blanket



“Thermodynamics of Life”

Origin of life
▪ Why/how do complex, self-replicating structures arise 

from random fluctuations?

▪ Driven system
▪ The sun shines

▪ Space is cold

▪ Non-maximum-entropy structure can arise

“Dissipation-driven Adaptation”
▪ Hypothesis by Jeremy England

▪ Self-replicating machines create disorder more effectively

https://www.quantamagazine.org/a-new-thermodynamics-theory-of-the-origin-of-life-20140122/



Summary



Self-Organization

Self-organizing principles

▪ Maximum entropy
▪ As random as possible

▪ General dynamical systems with scale symmetry
▪ Find emergent macroscopic structure through RG

Rather basic, but already very useful

More complex structures

▪ Wide field, beyond our lecture

▪ Active area of research

(102)


