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Video #12

Physics & Self-Organization

* Physics

* Self-Organization



Introduction

Physics & Machine Learning?
= Why does would this matter?

Big problems
= “The” research question: Solve Al
= In other words: Universal machine learning

Big question
= Does universal learning exist?



Introduction

Meta-Priors
= Math: No free lunch!
= Physics: ?
= Biology: Sure (if you are optimistic)

Computer Science

o < 2070: We have none, but good luck.
= 2010-2020: Ups, maybe

= Deep networks solve very limited tasks
= But they seem disturbingly universal at that



Introduction

Perspective
= Taking fundamental physics as we know it as model

= Does this tell us
how to build a universal learning machine?

= We will not be able to answer this question.

Three steps
1. All of physics in 45min (from a CS perspective)
2. Methods / results on self-organizing systems
Do your own research (beyond this lecture)



Disclaimer

| am not a physicist
= Educated in computer science
= This lecture gives an overview / starting point
= This is not a physics lecture
= Take everything with a grain of scepticism




Physical Dynamics



Physics: Dynamical Systems

Dynamical systems

= State Space (“microstates”)
= Set Q) of possible system states

= Examples
= 8 planets orbiting the sun
0 = ]R2><3><9 — ]R54
= Cellular automata
— Discrete state space on infinite grid
Q= {wq, .., oy}t

= Temporal evolution
functions: R - Q



Dynamical Systems

Dynamics

= State evolves over time
= The future only depends on the “last time step”

= Continuous case:
fiR->Q,te f(t)
ZF(0) = F(F(0), 1)
= Discrete case:
[iZ - Q,t - s(t)
fE+1)=F((t),1)



Dynamical Systems

Dynamics

= State evolves over time
= The future only depends on the “last time step”

= Continuous case
fiR-> Ot f(t)
= f£(8) = F(f(£),£) (Markov process)
= Discrete case
[iZ - Q,t - s(t)
f(t+1) =F(f(t),t) (Markov chain)

= “New information”: F can be a random variable
= Markovian dynamics



Integration

Function

initial cond.
\/

fE)=yo  ~J
, :

Slope prescribed

[fR->R
fr@) =F(f(t),t)



Newtonian Physics



Newtonian Physics

Newtonian Physics
((F — M'a ))

Which means:

F(t,s(t)) =m-a(t) =m-§(t)

In other words...
d2

—5s(0) = —F(t s(t))



Typical Forces

force vector
(Si — Sj)
Is: — s

IO
*
*
*
*
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F1,2 — ||F||

*
*
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‘o

dissipation
friction
F=—cv(t)

air resistance
F = —cv(t)?

r_ @ e -
o o

electric charge

ravitation
J My, (Coulomb law)
IF|l =y 719>
2 Il =

(sign matters)

® sj(t)

ij
springs
Hooke's Law
Fij = kl|s;(t) — s; (D)l




Classical
Fields & Waves



We Like the Springs

Wave Equation

0 2
% = —cAf(x,t)

Information

= Information

transported
= through space
= over time

= Reversible
= practical

(18)



Classical Wave Models

coupling

\
\

General case

= More general
local interactions

= More complex
dynamics

= Wave propagation
still possible

Concrete model

= Usually involves
coupled fields

(19)



General Case

Local rules

= At each time instance,
affect only
direct neighborhood

= Information is
transported through
space over time

Symmetric
= Translations
= Rotations
= (Reflections)

(20)



Continuum
W

HEEH T

Local neighborhoods 01, Vy, Ay, ...

‘cellular automata”
as discrete model systems

(21)



Properties

e

Locality

= Markovian: all memory in dynamic state
= |Local interactions evolve over time

Symmetry
= Relativistic (invariant under Poincaré Group)

= Causality chains: Local interactions — global behavior
(22)



General Relativity: Locality to the max

| @ General Relativity
time = Curved spacetime

= “General covariance”

B = One could deform it
@he\rej& now arbitrarily

OO O\ - Relevant are causal
O|O|OS chains
@O  Information propagates

according to metric
space

(23)



General Relativity: Locality to the max

General Relativity

time 0 %Tucr)e = Curved spacetime
> = “General covariance”

O O @ = One could deform it
O] 0 he@j& now arbitrarily

OO JSON S - Relevant are causal

@ pfaﬁst chams.

> &> = Information propagates

— according to metric

(24)



Quantum Mechanics



We Probably Like the Cat
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“Schrodinger”-Style QM:
= n Particles in R3
= Timet € R
= Wave function

P, ({1, ...,XE) R xR > C
=X

(26)



We Probably Like the Cat

Wave function 2 ¢
Wy, (3(1, ""X@) R X R - C

=';X e —

Born-Rule
pe(X) = |Lpt(X)|2

Rules
= Dynamics %Wt(X) = %FILPt(X)
= Unitarian, non-linear operator H¥,(X) = H(¥,(X)) - ¥,(X)

= General observables ¥,(X)T - M - ¥, (X)
= Hermitian (complex-symmetric) M
= Observe Eigenfunctions of M with p = eigenvalue



Quantum Field Theory
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Schrodinger’s Problem
= Cannot create/remove/convert particles
= Not relativistic

Quantum Field theory
= ~ statistics on Fourier-coefficients of fields

= Maintains symmetries of special relativity

= Standard model: No general relativity (28)



QM - tl:dr

We compute a Wavefunction
Y.(X):R" xR —>C

This yields a distribution
p:(X) = [P (X)|°

We sample once from p
= Obtain X; € R —» R3"
= This is life

(29)



Information (= Randomness)
in Physics



Probabilistic Models of Physics

observer

//\

\l

D A

) information
|

Classical Physics
= Deterministic dynamics, but only partial knowledge

= Far-away structures invisible
= Wave equation transports information too us (e.g. light)

= Small scales invisible
= Information transport across scales
= Chaotic dynamics / “butterfly effect”

(31)



Probabilistic Models of Physics

B — N —3 information
i — 3 Is smeared out
Quantum Physics (correlated)

= Distribution p derived from wave ¥

= We compute the statistical dependency structure
= Using a non-linear wave equation
= This is deterministic — similar to classical physics
= We sample from it: this is random
(32)



The Universe as a Generative Network
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Information
(noise)
Z
images

random noise

There is only one wave function ¥

‘?N ~ + One big distribution p

—z—=\ - Life is correlations (stat. dependencies)

(33)



Stochastic Machines



What are we up to?

Physics as information processing
= View the dynamics of reality as computation

Physics as a universal machine
= We can build computers in the real world
= Rules of physics are Turing complete

Simulation

= We can simulate the rules of physics in a computer
= Perfectly on a quantum computer
= Approximate arbitrarily on a classical machine
= Costs are prohibitive, of course
(35)



Prediction

Intelligent system: @ — @

I g
Real world: :>

similar
situation

Predictive Reasoning

= Brain tries to predict what is going to happen
= Or other intelligent systems

= For things “we care” about
= Macroscopic events
= Only certain events (some “details” omitted)

(36)



Prediction

Intelligent system: @ — @

I g
Real world: :>

similar
situation

Predictive Reasoning

= Brain / system has limits
= Imperfect knowledge “o(x)”
« Limited capacity of model
= Limited experience (“training data”)

= Build “best you can”

(37)



Prediction

Intelligent system: @ — @

I g
Real world: :>

similar
situation

Predictive Reasoning

= Short-cut
= Predict physical dynamics
= At coarse level

= Physical computer
= Use less time + space than original event

= Compression (maybe evolutionary-discriminative)

(38)



Short-Cut / Coarse-Grained Reasoning

N U W U e e

nyrs.
Big Bang Expansion
13.7 billion years O
Nz
/(% N

INASA]

[https://en.wikipedia.org/wiki/Big_Bang#/media/File:CMB_Timeline300_no_WMAP jpg]



Computability Theory

INput
information

output
information

shortcut

Computability (of shortcuts)
= Infinite processes: Undecidable
= Limited space: Busy-beaver (grows too fast)
= Limited time & space: Still a lot?

Average behavior: seems more “restrained” "



summary



Physics

A big parallel machine
= Simple rules
= Parallel computing
= Turing-capable

Properties

= Symmetric
= Poincare group: Relativistic models

= Strict locality (causality chains)
= All wave-models (classic & QFT)

= Non-deterministic
= Classical models, too, if not all state is known

(42)



Breaking the NFL-Theorem

Our learning setting

= Learning algorithm both implemented
= Pattern creation algorithm in physical hardware

No Free Lunch / Bias-Variance Trade-Off

= For n input bits

= 2™ different pieces of data can be encoded

- 22" different binary classifications are possible
= “Storage” requirements

- log, 22" = 2™ bits to encode arbitrary pattern
= Now the generator and decoder “play the same game”

(43)



Universal

Priors

Better than that?

= What kind
= What kind

Interestec

of patterns emerge naturally?

of classes / structures might we be
in naturally?

Self-organization in physical systems

= Vast area

= “Unsolved” as far as | know
= We will take a brief glimpse in what is known

(44)
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Video #12

Physics & Self-Organization

e Self-Organization

(50)



Overview



Two Topics

Two self-organization scenarios

= Thermodynamic equilibrium in a gas
= Maximum entropy for prescriped mean energy
= Connection to log-likelihoods and “energy functions”
= Coarse-graining of processes through
renormalization groups
= Microscopical dynamical system

= Scale symmetry
= Understanding of macroscopical properties

Disclaimer again
= All of the above “rough sketch” from a CS person

(52)



Entropy In
Physical Systems



Reversipility
& the Second Law



Reversible

Newtonian physics is reversible

= No information is ever lost

= Assuming no singularities,
such as point particles colliding

= We can play the ODE forward and backward

P
.- ® Final conditions
.............. ;
) |n|t|a|cond|t|ons —f(t) _ F(f(t) t)
ﬁ. > dt ’

f(lto) = Yo

| T




Reversible Dynamics

Discrete case
= [ is a bijection

Continuous case
= [ is a bijection (+ some regularity conditions)

Time symmetry, discrete case

= F is independent of ¢:
- fD) = fo, FQA)=F(o), f(2)=F(fo), fB)=F3(fo), -
= Permutation group orbit Ft(f;) (finite cyclic group)



Where is reversibility lost?

Classical “coarse-grained” models

= Friction —» thermal molecular movements

= Btw: Variational "Hamiltonian” approach only works
in the reversible case

Macroscopic view
= Abstract from small details

= Information flows into the small scales!
= ..and from the small scales — butterfly effect in fluid dyn.

Quantum physics

= Evolution of W is deterministic

= But reconstruction from observations is imperfect
(57)



Classical, Reversible Physics:

Variational Description



Quantities

Variational System Modeling
= State s(t) € Q (continuous)
= Energy H(s(¢)) (here H = "Hamiltonian”, not entropy!)
= Dynamics is known when energy function H is given

(q = position, p = impulse v - m)

Reversible Dynamics at s(e)
) o eqe ~ ds(t)
= The formulation assumes reversibility \'\\A

dt
= “No energy lost” D




Example |
spring

1D Mass-Spring System W e

. . 1 )
= Kinetic energy E;,,(q) = ~mq spring at rest
I /e C.I’ p — mq

= Potential energy £,,.(q) = %qu

= In Hookean spring with spring constant D

at s(t)
= Hamiltonian 2 {Z(tt)
H=-Dgq?+-mg? = %(qu +%) \) p
= ODE
dp _ 98H _ Dqg dq _ 8H

dt 0q m’ dt O0p m



Macro States ﬁ//\/.b\/\

Statistical Physics *7%\
= We do not see atoms ]

\

= "Micro states” L)
|
= Because too small

= We only see macroscopical phenomena
= "Macro states”

Macro state: Descriptors for Conditions
= “Glass is half-empty” (all particles on the bottom)
= “Pressure” (force per area due to collisions)
= “Temperature” ~ average energy per particle



Macro States

000 = JUULULUE®
00 . 1| NN
000 = @
JUUVUUL W, W
JUUVUUL U@
JUUUVUU ®_ _ @

Example: "discrete” gas, 9 particles, 4x9 spots

= “All particles in the upper left corner: One microstate

4 X9

9 ) microstates (many!)

= “Particles can be anywhere”: (



Equilibrium

Equilibrium
= We let the system run “for ever”
= Discrete system, for now

= Stop at a random time
= After ages

= Sample a random configuration
= Out of all possible states



Example

®0e = JUJUUe
00 » | D
1 I IO o_UUL
JULVVVU e e
JUUVUVUU WWww »
JUVUUU ®_ 0

P(“only upper left corner filled”) =

o P(“any patter”) = 1

Example:

= All permutations possible
= Implies: each visited once during each cycle
#states that fit macro state

= P(Macrostate) =

#all microstates



“Ideal Gas”

Consider “Gas in a Box” °
= Continuous N\
= Particles move independently
= No interaction / collisions

Maximum Entropy

= Each particle independent
= Because: no interactions

= State of the particle “typical”
= Random one out of all possible.
= All states visited = all states similarly likely



“Ideal Gas”

= Maximum Entropy principle

= Distribution has maximum
uncertainty: Maximum Entropy

Typical particle state
C\ £ 4
@

- :
State space o-
= 0 =(R> x R3)V
—— =

position velocity
= P(s,v) chosen s.t. entropy H(P (s, v)) » max
= MaxEnt for s: Uniform distribution over box

= MaxEnt for v: Does not make sense
— We need constraints!



Discretization

State Space of One Particle

= 0= ([0,1]° x R3)N
position:  velocity:
just the box! anything
goes

= Discretize
= Box is a (fine) discrete grid
= Velocities on a (fine) discrete grid

Model assumption

= Fixed temperature
= Fixed average energy per particle

Discrete s: box grid
Discrete v: infinite grid




Discretization

Model assumption

= Fixed temperature
= Average energy per particle

Constraint
= Position must be in box
= Velocities

F = 2
= S mivl

N

1 1

NZ Ei = u(E) = S u(v?)
i=1

Discrete s: box grid
Discrete v: infinite grid




Discretization

Deriviation (Sketch)
= Mean of velocities is zero

= Normal distribution

V2

Ny 2(v) =e 202
maximizes entropy!

Discrete s: box grid
In general Discrete v: infinite grid

= Gibs / Boltzmann Distribution
( energy(state))
P(state) = exp| —

k
maximizes entropy at temperature 7" (k is a constant)



Variational Model

Equilibrium

H(s(t)))

- Constant temperature 7: P(s()) = exp (_ :



The Second Law

JUUVUIUIU DI N
JUVVUUL JUVVVOL
Dl 1 I N O
il 1 1 1w @
il 1 I 1 JUVOLUOL
JUVVUUL JUVVO UL
JUUVUVUVUU ®_ 0
,Big Bang” Jater"

Entropy increases
= Universe starts in low-entropy state (boom)
= Reversible dynamics since then
= Entropy (of its macroscopic, observable state) increases



Statistical Doom?

The Universe is not
in equilibrium (yet)

\ Anshme

Heat radiation

(“Entropy for the
rest of the universe”)

“Earthrise”
Nasa/Apollo 8, Bill Anders



Renormalization Groups



Scale-Symmetry

How do systems coarse-grain?
= In general: unknown (Turing complete!)

= Special case:
= Model family, with only changing parameters
— For example, Hamiltonian model
= A scale-symmetry can be established

= |n this case

= We can understand the macroscopic behavior
from the microscopic

Formal tool
= “Renormalization group”



Scale-Symmetry

Consider system
= Function s(x): R? —» R
= Governed by (physical) law with parameters ¢4, ...

= For example, a Hamiltonian

H(s) = foy,...cn (S)

= Where f is a function with parameters ¢y, ..., cp,

Scale changes
= Consider system “at a different scale ¢”
= New Parameters cq, ...,c, = F.(cq, .., Cpp)
= Hamiltonian: H9(s) = fr ,..c.y(5)



Examples for scale changes

_______________

Rescaling 5 ///é

1 |
= Justreplace x » —X

Discrete coarse-graining
= Replace sq, S5, ..., s, by
m(sq,s,), m(s3,54), ..., m(Sp—1, Si)
for some averaging function m

Continuous Coarse-Graining

= Low-pass filter w,(x) at scale o
= Forexample w, = Ny

= Coarser observables: s(?) := s ® w,

continuous scales



Critical Points

Examine Mapping

1 Cn P FO'( 1) ==y n)
= System parameters remapped under coarse-graining

= Symmetry
= Change scale, change parameters, then same behavior
= Scale transforms form a “renormalization group”

Critical Points

1y ooy bnp — FO‘( 1y =ov s TL)
= System behavior becomes scale-invariant
= This indicates fundamental changes at this point
(77)



Statistical Systems

Correlation function

= Measure correlation at distance r
= In this example: Distance in cells

= corr(r) = IE:T=const.(<5(x):S(x + 7")))

Degree of order
= Quickly dropping: unordered / random
= Slowly dropping: ordered / large-scale structure

Critical points
= Scale symmetry
= Special correlation function, such as power law r=2"



Example 1:
Exponential ODE



Toy Example

“Physical Law”
| df (t) _
fiR->R, e f(t), ER
Solution

f(t) = exp(ct)
Scale Transformation

t=%t — f(t)zexp(;t) - F()=o0

Fixed point
Vo eR:E,(c)=cforc=0

(80)



Visualization

g=2 o=1
— 4 =2
¥ / g A =2
% \/ .
/ =0
- . — 1
= —2
phase
transition
atc =0

Scale Symmetry

= Scale symmetryat c =0
= Boring, but symmetric

= Behavior changes qualitatively at this point
= Raising instead of shrinking
(81)



Example 2:
Fractal Brownian Motion




Toy Example

“Physical Law”: Random Walk
f:{1,..,n} - R, ft+1)=7(t)+v, v~No 1,

Solution in Fourier Space

f() = Z z,e 0t with z, € C |z, |~Ng -1

wWw=—Nn

General FBM-Noise: Continuous spectrum
Zy € G |2y|~Ny ,-2n, 0 ER
,<Fraktal exponent” h

(83)



Toy Example

Functions
() = f zoe~ @l dw  With z, € G, |z, |~ 21
R

Scale Invariance ("stochastic fractal’)
t=ot — f(ot) =0c"f(t)

Perfect symmetry
" Forh =1: f(at) = of (t)

(84)



Example 3: Ising Model



Example System: Ising Model

State space
= Integer grid x,,, ke Q c 74
= Binary “spins” s(xy) € {—1,1} (— magnetism)
- For simplicity: enumerate as sy, ..., s, With s; = s(xy;)

Neg-Log-LikeIihood / Hamiltonian

H(s{, .., Sy) = ZC S; + z z JijSiS;

i=1jeN(i)

Symmetric, no external field

H(s{, .., Sy) = ]Zn: z SiS;

i=1jeN(i)



Ising Model

.

N

P

=

2

400

300
Wikipedia user HeMath (CC Attribution-SA 4.0)
https://commons.wikimedia.org/wiki/File:lsing_quench_b10.gif

200

100



Equilibrium at Fixed Temperature
Probability

1 —(Z?ﬂ ;S + Xi=q ZjeN(i)]ijSiSJ')
p(Sq, en) Sp) = ~ €XP .

Sampling
= MCMC sampler
= Metropolis-Hastings
= Detailed balance in equilibrium

* p(X)  Perans X 2 Y) = p(Y) * Perans(y = X)

+ Random moves, accept outcome with likelihood ratio 222

p(old)




Scale Symmetry

Coarse-graining
= Block renormalization: 2x2 blocks with one new state
= Scale space symmetry for this system
= Hamiltonian has the same form
= Only / changes

= Group of transformations that changes parameters with scale

Renormalized
n

H(S1, ooy Sp) = Z Z ](a)

i=1 jeN(i)



Scale Symmetry

Renormalization analysis

= High temperature
= Correlation function drops exponentially

= Low temperature
= Correlation function drops very slowly

= Critical point: perfect scale symmetry
= Correlation function forms a power law
= Transition from unordered to ordered phase
= Model for magnetism (Curie-temperature)



Deep Networks



Phase transitions

Initialization of networks

= Variance of weights
= linear weights, bias values

= Standard initialization
= Keeps signal variance constant
= “critical” initialization

= Mean-field analysis [Schoenholz et al. 2017]
= Varying weight / bias variance
= Networks learn best close to phase transition
= Similar observations in neuroscience (neural activity)

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, Surya Ganguli
Exponential expressivity in deep neural networks through transient chaos. NeurlPS 2076,

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, Jascha Sohl-Dickstein
Deep Information Propagation. ICLR 2017, (96)



Non-Equilibrium
Self-Organization



Dynamical System View

Self-organized criticality

= Many natural systems
operate at critical point

= Self-stabilizing dynamics
= Phase transition destroy structure

1
o

Bak, Tang, Wiesenfeld: Self-organized criticality: an explanation of 1/f noise.
Physical Review Letters, 1987.



Machine Learning?

“Free Energy Principle”
« [Friston et al. 2006+]

= Hypothesis on emergence
of intelligence

= Markovian systems
= Inner & outer region
= Interface: Markov blanket

= (Thermo-) dynamics: Outer fluctuations
= Structure preservation implies Bayesian Inference

= Similarities between free energy minimization
and variational approximations of Bayesian inference

Karl Friston: The Free Energy Principle
https://www.youtube.com/watch?v=NIu_dJGyIQl



“Thermodynamics of Life”
Origin of life

= Why/how do complex, self-replicating structures arise
from random fluctuations?

= Driven system
= The sun shines
= Space is cold
= Non-maximum-entropy structure can arise

“Dissipation-driven Adaptation”
= Hypothesis by Jeremy England
= Self-replicating machines create disorder more effectively

https://www.quantamagazine.org/a-new-thermodynamics-theory-of-the-origin-of-life-20140122/



summary



Self-Organization

Self-organizing principles

= Maximum entropy
= As random as possible

= General dynamical systems with scale symmetry
= Find emergent macroscopic structure through RG

Rather basic, but already very useful

More complex structures
= Wide field, beyond our lecture
= Active area of research

(102)



