
Modelling 2
STATISTICAL DATA MODELLING

Chapter 9

Deep Neural Networks

Informatik

Institut

für

Michael Wand · Institut für Informatik, JGU Mainz ·

[Deep Dream Image: Daniel Strecker]

Down the Deep End

• Back to the Future: Neural Networks

• Common Architectures

• Generative Models

(4)

Video #09

Artificial Neural
Networks

Crude Imitation of Nature

(6)

Motivation: Biological Neural Networks

▪ Networks of computations

▪ Graph structure

▪ Neurons accumulate inputs until threshold

▪ Then “fire” output signals

Laypersons (my)
impression of
neural circuits

Crude Imitation of Nature

(7)

Dissimilar: Biological Neural Networks

▪ Complex computations

▪ Complex graph structure (including cycles)

▪ Sending, transmitting and gathering data non-trivial

▪ Spiking coding (not real numbers)

Artificial Neural Network

Simplified Model

▪ Connections
→ linear weights

▪ Neurons
→ Summation, activation

▪ Activation
→ simple non-linearity

▪ Graph structure
→ Simple pattern,

often “feed-forward”

(8)

𝑤1 𝑤2 ...

Inputs

Outputs

𝑤1337...

Neural Networks vs. Neural Networks

1980s / 1990s
▪ typ. 100s of “neurons”

▪ Bottleneck architecture
(9)

Inputs

Outputs

Inputs

Outputs

𝑤1 𝑤2 ...

𝑤4.2×106...

...

...

2010s
▪ 105 – 107 weights

▪ Overcomplete

• Big data
• GPUs (TFlops)

• “Dirty tricks”

Problems with NNs

Hard to train

▪ Local minima

▪ Overcomplete representations seem
to find reasonable local minima

▪ We do not fully understand why

▪ Numerical issues

▪ Determining some of the weights ill-posed

▪ “Dirty tricks” help a lot

▪ Ongoing research

Inductive bias (NFL, BVT, etc.)

▪ Seems to work, no idea why
(10)

Deep Neural Networks

Architectural Building Blocks

Fully connected network layer

𝑙𝑎𝑦𝑒𝑟:ℝ𝑛 → ℝ𝑚

𝐲 = 𝑙𝑎𝑦𝑒𝑟 𝐱 = 𝑛𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝐖𝐱

𝑦𝑗 = 𝑛𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 ෍

𝑖=1

𝑛

𝑤𝑖𝑗𝑥𝑖

𝑛𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦(𝑦) = ቐ
max 𝑦, 0 ("relu")

tanh 𝑦
…

𝐱

𝐲

𝐖

softplusrectified linear unit

Non-Linearities

(13)

tangent hyperbolicus,
sigmoid

𝜎

tanh

𝑥 𝑥 𝑥

𝜑 𝑥 𝜑 𝑥 𝜑 𝑥

softplus 𝑥 = ln(1 + 𝑒𝑥)ReLU 𝑥 = max 𝑥, 0𝜎 𝑥 =
𝑒𝑥

1−𝑒𝑥

(tanh 𝑥 = 2𝜎 2𝑥 − 1)

ReLU

leaky-ReLU

leaky-ReLU 𝑥 = max 𝑥, 𝜆𝑥
0 < 𝜆 < 1

softplus𝛽 𝑥 =
1

𝛽
ln(1 + 𝛽𝑒𝑥)

Millions more…

(14)

...

ReLU is Popular

𝑙𝑎𝑦𝑒𝑟:ℝ𝑛 → ℝ𝑚

𝐲 = 𝑙𝑎𝑦𝑒𝑟 𝐱 = 𝜑 𝐖𝐱

𝑦𝑗 = max 0,෍

𝑖=1

𝑛

𝑤𝑖𝑗𝑥𝑖

𝐱

𝐲

𝐖

Architectural Building Blocks
(Fully connected) network layer

Interpretation: ReLu-Layer = Arrangement of Hyperplanes
Different linear map in each region

inactive halve has zero output in corr. coordiate

Architectural Building Blocks
Fully connected network layer

global connection / global dependencies

e.g: feature classification

Convolutional neural network

local connection / local correlations

e.g.: image/audio/text data

Recurrent neural networks

Markov-chain models with memory

Convolutional neural network
local connection / local correlations

Pooling layer
reduce resolution (half, third, …)

Convolution with stride
reduce resolution, learned filters

Convolutional Building Blocks

Dilated networks
aggregate context, same resolution

Image Classification

Convolution (typ. 3x3, residual)

Convolution (typ. 3x3, residual)

Pooling / striding (typ. 2x2)

Convolution (typ. 3x3, residual)

Convolution (typ. 3x3, residual)

Pooling / striding (typ. 2x2)

Fully Connected

output 1 output 2

data

many
layers

many
layers

What does ReLU do?

Architectural Building Blocks

Interpretation
ReLU-layer = arrangement of hyperplanes

network layer

Architectural Building Blocks

Interpretation
Nested ReLU-layer = nested convex cells

two network layers

Architectural Building Blocks

two network layers Interpretation
Nested ReLU-layer = nested convex cells

• Each cell has its own linear map
• applied to input to create output
• 𝐶0-continuous

Architectural Building Blocks

two network layers Interpretation
Nested ReLU-layer = nested convex cells

Activation Patterns
Encode combinatorial decisions

(which linear map to use)

𝐖1

𝐖2

𝐖3

Nomenclature

Language

NN-Talk

▪ Input – what goes into the network

▪ Output – what comes out of the network

▪ “Features”, “hidden layers” – values at inner neurons

▪ Feed Forward Network – sequential processing

▪ Layer – one computation step in a ff network

▪ “preactivation” – number(s) going into the non-linearity

▪ “activation” – either

▪ Numbers coming out of the non-linearity

▪ Wether a ReLU has been switched “on”

(26)

Formalization

Network

▪ 𝐿 layers 𝑙 = 1,… , 𝐿

▪ Activations 𝑦 𝑙 ∈ ℝ𝑑𝑙

▪ Input 𝑓 0 = 𝐱 ∈ ℝ𝑑0

▪ Output 𝑓 𝐿 ∈ ℝ𝑑𝐿

▪ Feed-forward

𝑓 𝑙 = op 𝑓 𝑙−1 , 𝑓 0 = 𝐱

▪ Layer function

▪ Linear: 𝑓 𝑙 𝐱 = 𝐖 𝑙 𝐱
(incl. conv., pooling, striding)

▪ Non-linear: 𝑓 𝑙 (𝐱) = 𝜑 𝐱

▪ All-in-one:
(27)

output 1 output 2

data

𝐱

𝑓 1

𝑓 2

𝑓 3

𝑓 4

𝑓 5

𝑓 6

𝑓 7

𝑓 𝐿

𝑓 𝑙 (𝐱) = 𝜑 𝐖 𝑙 𝐱

linear (conv/FC)
& non-linear

Training & Inference

Inference

outputs 1..n

data

class label
(unknown)

image

forward propagation

W

W

Discriminative Training

outputs 1..n

data

training data
(loss function)

training data

𝛻-descent
on weights 𝑊

back propagation

W

W

Some additional tricks…

Batch Normalization

Batch-Norm Layer

▪ Normalize

▪ mean 𝜇 = 0

▪ std. deviation 𝜎 = 1

▪ BN-Layer: per value

𝑥 ↦ 𝛼
𝑥 − 𝜇

𝜎
+ 𝛽

▪ Compute 𝜇, 𝜎 from data

▪ Learn 𝛼, 𝛽

BNBNBNBN BNBN

𝐲𝑖

𝐲𝑖+1

𝐖

Batch Normalization

Training

▪ Est. 𝜇, 𝜎 per batch

▪ Empirical ML-estimators ො𝜇, ො𝜎

▪ Keep running means
𝜇𝑖+1 → 𝑐 ො𝜇𝑖+1 + 1 − 𝑐 𝜇𝑖
𝜎𝑖+1 → ⋯

▪ Train 𝛼,𝛽 along with 𝐖

▪ Normalize

Testing: Normalize, too

▪ Use running averages

▪ 𝜇𝑇 , 𝜎𝑇 (𝑇 = last batch)

BNBNBNBN BNBN

𝐲𝑖

𝐲𝑖+1

𝐖

Batch Normalization

Some more alchemie

▪ Batch-Norm has problems

▪ High-variance input data
with small batches

▪ Generative Networks
(more later)

▪ Variants

▪ Instance Norm

– Only over one image

– All convs/filters

▪ Group Norm

▪ Layer Norm

BNBNBNBN BNBN

𝐲𝑖

𝐲𝑖+1

𝐖

Residual Connections

Residual networks

Allows very deep networks

Identity mapping as default
+

identity

batch norm

non-linearity

weights

batch norm

non-linearity

weights

Why all of this?

Batch-Norm

▪ “Covariate-Shift” – Data might hop around

ResNets (Batch-Norm?)

▪ “Vanishing gradients”

▪ Applying chain rule in network leads to dampening

▪ Some layers “do not move” anymore

What helps

▪ ResNet improves a lot

▪ BN causes “exploding grad.”, the (maybe) converges
(36)

Summary

(37)

Deep Networks

Stack of

▪ Matrices

▪ Non-linearities

▪ Simple ReLU “switches” do the trick (very well)

Optimization

▪ Simple down-hill optimization

▪ Local minima do not seem to hurt

Numerics

▪ Some tricks to keep everything stable

(38)

Modelling 2
STATISTICAL DATA MODELLING

Chapter 9

Deep Neural Networks

Informatik

Institut

für

Michael Wand · Institut für Informatik, JGU Mainz ·

[Deep Dream Image: Daniel Strecker]

Down the Deep End

• Back to the Future: Neural Networks

• Common Architectures

• Generative Models

(42)

Video #09

Deep Regressor

Image Classification

Loss function

▪ Typ. Point-wise loss σ𝑖=1
𝑛 𝑓𝑊 𝐱 𝑖 − 𝐲𝑖

𝑝

▪ Often least-squares: 𝐿 𝑓𝑊 𝐱 , 𝐲 = 𝑓𝑊 𝐱 − 𝐲 2
2

outputs

data

Convolution + pooling or striding
(typ. 20-100 layers)

Fully connected
(typ. global av. pooling + 1 layer)

Output values →

← Raw input images

Deep Classifiers

SVM / Logistic, Softmax Regression

linear separator
(now on the top layer)

training set

Loss Function

Notation

▪ Neural network 𝑓, weights 𝑊, input 𝐱, output 𝐲

▪ Supervised, training data: 𝐱𝑖 , 𝐲𝑖 𝑖=1..𝑛

▪ 𝑓𝑊 𝐱 = 𝐲

Different Loss Functions

Regression:

▪ Least squares 𝑓𝑊 𝐱𝑖 − 𝐲𝑖
2

Classification

▪ One-Hot-Vectors 𝐲𝑖

▪ Cross Entropy:

𝐻 softmax 𝑓𝑊 𝐱𝑖 , 𝐲𝑖

▪ Max-Margin:
margin 𝑓𝑊 𝐱𝑖 , 𝐲𝑖

Softmax:

softmax 𝐲 =

𝑒−𝑦1

σ𝑖=1
𝑛 𝑒−𝑦𝑖

⋮
𝑒−𝑦𝑛

σ𝑖=1
𝑛 𝑒−𝑦𝑖

CE-Loss

(49)

Geometry

(50)

𝛉1
𝛉2 𝛉3

𝐲 =
0
1
0

𝐲 =
1
0
0

𝐲 =
0
0
1

←
↑
𝐱
↓
→

strawberry

banana

orange

Softmax Regression

“Softmax” function 𝛔:ℝ𝐾 → ℝ𝐾

(51)

≔

𝑒𝑧1

σ𝑗=1
𝐾 𝑒𝑧𝑗

⋮
𝑒𝑧𝐾

σ𝑗=1
𝐾 𝑒𝑧𝑗

, 𝜎𝑚 𝐳 ≔
𝑒𝑧𝑚

σ𝑗=1
𝐾 𝑒𝑧𝑗

𝛔 𝐳

Classifier

Classifier

ℎ𝛉 𝐱 ≔ 𝛔
𝛉1
𝑇 ⋅ 𝐱
⋮

𝛉𝐾
𝑇 ⋅ 𝐱

𝐮 𝛉,𝐱

= 𝛔 𝐮 𝛉, 𝐱

→ ℎ𝛉 𝐱 ≔ 𝛔
𝑓𝐖 𝐱 1

⋮
𝑓𝐖 𝐱 𝐾

= 𝛔 𝑓𝐖(𝐱)

▪ Outputs class-probabilities

▪ All output vector entries in [0,1]

▪ Entries sum up to one

(52)

Classifier

Classifier

▪ MLE-Training via

(53)

arg min
𝛉∈ℝ𝐾×𝑑

෍

𝑖=1

𝑛

log ෍

𝑗=1

𝐾

𝑒 𝑓𝐖 𝐱 𝑗

normalization
factor 𝑍

− ෍

𝑚=1

𝐾

ต
𝐲𝑖,𝑚 ⋅

1 only for
correct class

log 𝜎𝑚 𝑓𝐖(𝐱)
neg −log−likelihood
of correct class

= arg min
𝛉∈ℝ𝐾×𝑑

෍

𝑖=1

𝑛

log 𝑍
normalization

− log 𝜎𝑐𝑙𝑎𝑠𝑠𝑖 𝑓𝐖(𝐱)

neg −log−likelihood

of correct class

Cross Entropy as Maximum-Likelihood

arg min
𝑊

𝐾𝐿 𝐲𝑖 ∥ 𝑓𝑊 𝐱𝑖

= arg min
𝑊

෍

𝑘=1

𝑛𝑙

𝐲𝑖 𝑘 log2
𝐲𝑖 𝑘

𝑓𝑊 𝐱𝑖 𝑘

= arg min
𝑊

𝐻 𝐲𝑖 , 𝑓𝑊 𝐱𝑖 −𝐻 𝐲𝑖

= arg min
𝑊

𝐻 𝐲𝑖 , 𝑓𝑊 𝐱𝑖

= arg min
𝑊

෍

𝑘=1

𝑛𝑙

𝐲𝑖 𝑘 log2 𝑓𝑊 𝐱𝑖 𝑘

= arg min
𝑊

log2 𝑓𝑊 𝐱𝑖 𝑘=𝑙𝑖

KL-Divergence
output ↔ labels

Class likelihood
(maximization)

Cross-Entropy
Loss

Geometry (on the top layer)

(55)

𝛉1
𝛉2 𝛉3

𝐲 =
0
1
0

𝐲 =
1
0
0

𝐲 =
0
0
1

←
↑
𝐱
↓
→

Image Classification

Loss function

▪ Cross-Entropy loss

▪ (Hinge loss would work in principle, but uncommon)

classes 1..n

data

Convolution + pooling or striding
(typ. 20-100 layers)

Fully connected
(typ. global av. pooling + 1 layer)

Softmax

Class probabilities →

← Raw input images

How well does it work?

ImageNet

▪ 14000000 Color images (RGB)

▪ Scraped from the web

▪ Annotated via crowdsourcing

▪ 20000 Classes

ImageNet Large Scale Visual Recognition Challenge

▪ 1000000 Training images

▪ 1000 Non-overlapping categories

(57)

How well does it work?

ImageNet Large Scale Visual Recognition Challenge

▪ 1000000 Training images

▪ 1000 Non-overlapping categories

Accuracy

▪ ≤ 2011: trad. methods 25% top-5 error

▪ 2012: AlexNet 16% top-5 error

▪ 2014: VGG-Net 08% top-5 error

▪ 2015: ResNet / Inception 05% top-5 error

▪ 2021: NFNet-v6 2.1% top5 error
(frontrunner on papers with code 31/05/21)

(58)

Example
(Tales from Down the Deep End)

Object Detection

CT scans from University Hospital Mainz

▪ Centroids of vertebra annotated

▪ 36 Classes:

▪ 18 different vertebra present in scans (C7, Th1-Th12, L1-L5)

▪ 17 spaces between vertebra

▪ 1 class for “not a vertebra”

▪ Training set: 152 CT scans

▪ Testing data: 66 CT scans

Microsoft Research Benchmark

▪ 150 examples (spine CTs)

Deep Residual Network

19 convolutional layers
1.809.336 trainable parameters

Stack of 3 Residual Layers

Residual Layers
have 2 conv. layers

Input: 49x49x17 voxels, 1 ch.
(52mm x 52mm x 34mm)

Conv. 5x5x5, 12 ch., stride 2x2x1

ResLayer stack @ 13x13x9, 24 ch.

ResLayer stack @ 7x7x5, 48 ch.

ResLayer stack @ 4x4x3, 96 ch.

Global avg. pooling over x,y,z

Fully connected (96 ch. → 36 classes)

Stride 2x2x2

ResLayer

Conv. 3x3x3

BatchNorm

ReLu

Conv. 3x3x3

BatchNorm

ReLu

ResLayer

ResLayer

σ

Sliding-Window Results

Task 2: 18 vertebrae types
▪ Identify vertebra by index (!)

▪ No context (bounding box)

Top-1-accuracy
▪ Testing data ~ 82%

Top-3-accuracy
▪ Testing data ~ 98%

Training
▪ Input: ~150 CT scans

▪ Training time: 10 min
(dual Titan-X)

◄ top-1 training

◄ top-1 testing

▼ top-3 training

▲ top-3 testing

82%

98%

Confusion matrices

1 training step 5 training steps 200 training steps

Numerical Optimization
– Conventional Wisdom –

1st Order: Gradient Descent

Gradient Descent:

▪ 𝛻𝐸 = direction of steepest ascent

▪ Take small steps in direction −𝛻𝐸

▪ When 𝛻𝐸 = 𝟎, a critical point is found.

▪ Small enough steps guarantee convergence

▪ In theory

▪ In practice: usually slow, unstable

▪ Does not work for ill-conditioned problems

Line Search

Gradient descent line search

▪ Step size for gradient descent

▪ Fit 1D parabola to E in gradient direction

▪ Perform 1D Newton search

▪ If E does not decrease at the new position

– Try to half step width (say up to 10-20 times).

– If this still does not decrease E, stop and output local
minimum.

Gradient Descent goes Boomboomboom

(68)

Gradient Descent can
be unstable

▪ Example:

▪ Rigid object

▪ Modeled by stiff springs

▪ Bad conditioned problem

▪ Gradient descent
cannot solve it in float32!

▪ Either no progress or explosion

▪ Newton Method works fine

▪ Converges in 5 steps, no boom

2nd Order Non-Linear Solvers

Newton optimization

▪ Iteratively solve linear problems

▪ 2nd order Taylor expansions. Requires:

▪ Function values

▪ Gradient

▪ Hessian matrix

▪ Typically, Hessian matrices are sparse.

▪ Should be SPD (otherwise: trouble)

▪ Use conjugate gradients to solve for critical points

(69)

Newton Optimization

Newton Optimization

▪ Basic idea: Local quadratic approximation of E:

▪ Solve for vertex (critical point) of the fitted parabola

▪ Iterate until a minimum is found (E = 0)

Properties:

▪ Typically much faster convergence,
more stable

▪ No convergence guarantee

)()()(
2

1
)()()()(00

T
0000 xxxxxxxxxx −−+−+ EHEEE

x0

(70)

Newton Line Search

Line search for Newton-optimization:

▪ Following the quadratic fit might overshoot

▪ Line search:

▪ Test value of E at new position

▪ Half step width until error decreases
(say 10-20 iterations)

▪ Switch to gradient descent,
if this does not work

(71)

Newton Optimization

Problem

▪ Steps might go uphill

▪ (Near-) zero or negative eigenvalues make problem
ill-conditioned.

Simple solution

▪ Add I to the Hessian for a small .

▪ Sum of two quadrics: I keeps solution at x0.

▪ Comprehensive method: Levenberg-Marquant

What if I Hate Deriving the Hessian?

Gauss Newton

𝐸 𝐱 =෍

𝑖=1

𝑛

𝑓𝑖 𝐱
2 → ෨𝐸 𝐱 =෍

𝑖=1

𝑛

𝛻𝑓𝑖 𝐱0 𝐱 − 𝐱0 + 𝑓𝑖 𝐱0
2

LBFGS

▪ “Quasi-Newton” method

▪ “Black box-solver”

▪ Needs only gradient + function values

Non-linear conjugate gradients:

▪ With line search

▪ Usually faster than simple gradient decent

Numerical Optimization
– Big Data & Deep Learning –

(74)

“Big” Data

ImageNet LSVRC

▪ 1000000 Training images

▪ 1000 Non-overlapping categories

▪ Resized to 224x224 pixels

Costs

▪ 147KB / image

▪ ca. 150GB/600GB image data (bytes / float32)

(75)

“Big” Data

Networks

▪ AlexNet (2012): 062M.0 params 1.5 GFlops

▪ VGG (2014): 138M.0 params 20 GFlops

▪ Inception (2014): 006.5M params 02 GFlops

▪ ResNet-152 (2015): 060M.0 params 11 GFlops

(costs per forward-pass)

(76)[https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96]

Training Algorithms

Gradient Descent

▪ Too expensive

Stochastic (Batch) Gradient Descent

▪ Sample only small batches (randomly)

▪ Small gradient descent steps

▪ No goodies

▪ No 2nd order information

▪ Not even line search

▪ Fixed LR-schedule

▪ “step decay”, typically 𝜆 = 0.1, 0.001, 0.0001

▪ Fancy LR-schedules (e.g. “1-cycle”)
(77)

SGD Properties

Interesting Properties

▪ Converges to GD for small enough steps

▪ Accumulate gradients by small steps

▪ Noise from SGD “batching” improves learning

▪ Better generalization for small batches / large LR

– Only in the beginning

– Always slow down later

– Empirical result

▪ Analytically

– Cross-Entropy Loss + SGD increases margin

– Similar to SVN (also: no need for hinge-loss)

(78)

More on SGD

Global minima?

▪ All of these only find local minima

▪ Problem seem to be saddle-points
rather than local minima

▪ Hand-wavy argument:
“In high dim., hard to go up in all directions”

▪ SGD is good at escaping saddle-points

2nd-order Method

▪ Seems overall more expensive in a big-data setting

▪ Precaution needed wrt. saddle-points

(79)

Close to the minimum

Remember: GD does not work well

▪ Oscilatory behavior for anisotropic parabola

▪ Fixed by conjugate gradients in numerics

▪ Simple trick for DL: “Momentum”

∇𝑊𝑓
𝑖+1 = 𝑐 ∇𝑊𝑓

𝑖 + 1 − 𝑐 ෣∇𝑊𝑓

▪ Improves a bit, useful at the end of training
(80)

Many Other Methods

ADAM (popular)

▪ Adjust/normalize LR per layer

▪ 1st/2nd-order momentum-like terms

RMSProp, AdaGrad, etc.

You can also use l-BFGS, if you like

(81)

How to solve general
problems?

Central Building Block: Regression

General Regressor
Data ∈ ℝn

Prediction ∈ ℝm

Inputs

Outputs

Trained with
Examples

maps
data to data

usually
excellent generalization

(not clear why)

Fully-Convolutional Network

Input / source ∈ ℝn

Regression target ∈ ℝn

convolutional layers

MGAN Style Transfer

[joint work with Chuan Li, 2016]

MGAN Style Transfer

[joint work with Chuan Li, 2016]

U-Net

“U-Net”

Input / source ∈ ℝn

Regression target ∈ ℝn

striding

striding

striding

striding

Residual
Connections

(add channels
to next layer)

upsampling

downsampling
(coarse graining)

Example: Segmentation

Fully-Convolutional Architectures

▪ Popular in image segmentation / annotation

▪ U-Net is the “Swiss-Army-Knife”

Example data from KITTI-Vision Benchmark Suite [Alhaija et al. 2018]
http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015

What does it actually do?

Variational Inversion

(also, we like pictures)

Variational Inversion

classes 1..n

data

fix class label

𝛻-descent on
image (unknown)

fixed weights 𝑊

back propagationW

W

Deep-Network (Discriminative!)

layer 1
(rgb pixels)

layer 2/3
(64 ch.)

… …

… … layer 4/5
(128 ch.)

layer 6/7
(256 ch.)

… …

layer 8/9
(512 ch.)

… …

convolution, non-linearities

Google‘s „Deep Dream (Inceptionism)“ Algorithms

Image: Daniel Strecker

Google‘s „Deep Dream (Inceptionism)“ Algorithms

Image: Daniel Strecker

“Deep Dream”

Source: Eric Wayne: “Google Deep Dream Getting Too Good”

https://artofericwayne.com/2015/07/08/google-deep-dream-getting-too-
good

Linear SVM Dream (C=0.00001, L2/L2)

(95)

Accuracy

▪ Train: 37.2%, Test: 36.8%

airplane automobile bird cat deer

dog frog horse ship truck

Linear SVM Dream (C=1.0, L2/L2)

(96)

Accuracy

▪ Train: 45.3%, Test: 39.8%

airplane automobile bird cat deer

dog frog horse ship truck

CIFAR-10 Class Averages

(97)

airplane automobile bird cat deer

dog frog horse ship truck

Dogs

Autoencoders
Nonlinear Dimensionality Reduction

Auto-Encoder: Non-linear PCA

Auto-Encoder

Original Data ∈ ℝn

Latend, Coarse-Grained
Representation ∈ ℝm

Reconstruction ∈ ℝn

𝑥1
𝑥2

(simulated)

Results lack details
(→ no entropy source)

least
squares
loss

Training Data
(tons of it)

Autoencoder
(PCA in latent space)

PCA
(linear dim. reduction)

Example: Generative Models

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]
(101)

Autoencoder
(PCA in latent space)

WGAN-GP
(generative adversarial network)

Example: Generative Models

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]
(102)

Cross Auto-Encoder

“Cross”-
Auto-Encoder

Original Data ∈ ℝn

Reconstruction ∈ ℝn

(Deep) Recommender
Systems

(Siamese Network)

Relate Incomparable Data

Problem

▪ Different modalities

▪ Direct comparison not meaningful

Relating Geometry Relating Images

relation?

comparison?

Latent Semantic Space

Geometry Images

Latent Space

sports car
car people

player
person

car

sports car
player

person

person
people

car

??
?

?

Latent Semantic Space

Geometry Images

sports car
car people

player
person

Latent Space
related related

unrelated

car

sports car
player

person

person
people

car

??
?

?

sports car
car people

player
person

A Few Shared Annotations

car

sports car
player

person

person
people

car

common
annotations:

glue embeddings
together

Information Gained

multi-modal correspondences

?
person!

person

recognize unlabeled data

sports car
car people

player
person

relate labels

Feature Sharing

Two matrices

▪ 𝐕 maps descriptors to latent space

▪ 𝐔 maps labels
1
0
0

,
0
1
0

, … ,
0
0
1

to latent space

W

=

V

●

UT

[Loeff & Farhadi 2008]

Siamese Network

input

image 𝑥𝑖

input
(latent space)

output
(latent space)

=

same
network!

(latent space)

other input

text 𝑥𝑖
′

output
(latent space)

one
network

per modality!

≠

Loss:

⋱ ⋰
cov 𝑥𝑖 , 𝑥𝑗

⋰ ⋱

− 𝐈

2
Loss:

dist 𝑥𝑖 , 𝑥𝑖
′ 2

input

image 𝑥𝑖

Summary

(119)

More on Deep Networks

Tasks

▪ Regression

▪ Basic usage: Network encodes a function

▪ Then add least-squares loss (or the similar)

▪ Classification

▪ Typically soft-max regression with non-linear function

▪ Dimensionality reduction

▪ Autoencoders

▪ Better generative models soon!

▪ Embedding

▪ Siamese networks

(120)

Modelling 2
STATISTICAL DATA MODELLING

Chapter 9

Deep Neural Networks

Informatik

Institut

für

Michael Wand · Institut für Informatik, JGU Mainz ·

[Deep Dream Image: Daniel Strecker]

Down the Deep End

• Back to the Future: Neural Networks

• Common Architectures

• Generative Models

(124)

Video #09

Generative Models

Overview

▪ Generative Models

▪ Generative networks

Methods

▪ Autoencoders revisited

▪ Problems with direct training

▪ Why not? – Normalizing flows

▪ Autoregressive models

▪ Generative adversarial networks

(125)

Generative Models

Generative Models

Given

▪ Samples (i.i.d.)

𝐱𝑖 ∈ ℝ
𝑑 , 𝑖 = 1,… , 𝑛

Task

▪ Reconstruct probability density

𝑝𝛉: ℝ
𝑑 → ℝ

such that
𝐱𝑖 ~ 𝑝𝛉

is likely/plausible.

▪ Need to find parameters 𝛉 ∈ ℝ𝑘.
(127)

How to do it?

You know the drill…

▪ Specify generator 𝑝𝜃
▪ Classically: E.g., a Gaussian

▪ Deep: E.g., a generative network

▪ Maximum likelihood (ML)

▪ Maximum a posteriori (MAP)

(128)

arg max
𝛉∈ℝ𝑘

𝑃 𝛉 ෑ

𝑖=1

𝑛

𝑝𝛉(𝐱𝑖) = arg min
𝛉∈ℝ𝑘

− log 𝑃 𝛉 +෍

𝑖=1

𝑛

− log 𝑝𝛉(𝐱𝑖)

arg max
𝛉∈ℝ𝑘

ෑ

𝑖=1

𝑛

𝑝𝛉(𝐱𝑖) = arg min
𝛉∈ℝ𝑘

෍

𝑖=1

𝑛

− log 𝑝𝛉(𝐱𝑖)

How to do it?

You know the drill…

▪ Specify generator 𝑝𝜃
▪ Classically: E.g., a Gaussian

▪ Deep: E.g., a generative network

▪ Maximum likelihood (ML)

▪ Maximum a posteriori (MAP)

(129)

arg max
𝛉∈ℝ𝑘

𝑃 𝛉 ෑ

𝑖=1

𝑛

𝑝𝛉(𝐱𝑖) = arg min
𝛉∈ℝ𝑘

− log 𝑃 𝛉 +෍

𝑖=1

𝑛

− log 𝑝𝛉(𝐱𝑖)

arg max
𝛉∈ℝ𝑘

ෑ

𝑖=1

𝑛

𝑝𝛉(𝐱𝑖) = arg min
𝛉∈ℝ𝑘

෍

𝑖=1

𝑛

− log 𝑝𝛉(𝐱𝑖)

Typically, in deep nets,
ML is the goal.

(but even that is hard)

Why Generative Models?

Applications for generative models

Creating samples – Example

▪ Input pretty pictures 𝐱𝑖 ∈ ℝ
𝑑 , 𝑖 = 1, … , 𝑛

▪ Learn 𝑝𝛉

▪ Output more pretty pictures 𝐱 ~ 𝑝𝛉

(130)

Why Generative Models?

Applications for generative models

Data reconstruction – Example

▪ Again, learn 𝑝𝛉 from examples first

▪ Now, collect noisy/incomplete data 𝐝

▪ E.g.: Noise, distortions

▪ E.g.: Missing pixels

▪ Model noise/distortion as likelihood 𝑃 𝐝 𝐱

▪ Reconstruct 𝐱 via

𝑃 𝐱 𝐝 ~𝑃 𝐝 𝐱 𝑃 𝐱 = 𝑃 𝐝 𝐱 𝑝𝜃 𝐱

(131)

learned prior

Reconstruction Applications

Image Denoising

(132)

Reconstruction Applications

Hole Filling

(133)
incomplete statistical

completion

[R
es

ul
ts

 b
y

A
le

xa
nd

er
 B

er
ne

r
(M

R
F-

M
od

el
)]

Hole Filling in 3D Scans

(134)[J
oi

nt
 w

or
k

w
it

h
M

ar
ti

n
B

ok
el

oh
, 2

01
0

(u
np

ub
lis

he
d)

]

Generative Networks

Generative Networks

(136)

class labels

images

random noise

images

lady
(deep fake)

lady
(deep fake)

guy
(deep fake)

𝐳~𝒩𝟎,𝐈

Convolutional Networks?

Convolutional network
Discriminative network

Convolutional network
Generative network

Max- / Average Pooling
Difficult to reverse

Striding
Just run in reverse

?

While we are at it…

Striding
Aliasing issues
(e.g.: visible grid
pattern in images)

Resampled striding

1) upsampling with
low-pass reconstruction filter

2) unstrided convolution

Anti-aliased (for hq-results)

aliasing

(w/generative CNN)

How to Create the Output?

Convolutional network
Generative network

Synthesis
(after many layers…)

Input
(for example noise)

How to Create the Output?

Great! How do we train it?

Fully convolution generator
many layers
some with stride
maybe upsampling layers, too

Autoencoder

Auto-Encoder: Non-linear PCA

Auto-Encoder

Original Data ∈ ℝn

Latend, Coarse-Grained
Representation ∈ ℝm

Reconstruction ∈ ℝn

𝑥1
𝑥2

(simulated)

least
squares
loss

Training Data

Autoencoder Issues

Latent representation

▪ Arbitrary representation

▪ Sampling might yield garbage

Fixes

▪ Fit Gaussian to latent space

▪ Empirically, works well (YMMV)

▪ Variational Autoencoder

▪ More principled solution

(143)

PCA in latent space

𝒩𝟎,𝐈 in latent space

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Autoencoder Issues

Lack of information

▪ Bottleneck reduces
information content

▪ Loss of entropy

▪ Need new randomness

▪ L2-loss enforces reproduction
of original image

▪ High-frequency details lost

▪ Blurry results

▪ “Perceptual” metric difficult

▪ In a vague sense, this is
what GANs learn

(144)

PCA in latent space

𝒩𝟎,𝐈 in latent space

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Autoencoder Issues

Autoencoders

▪ Dimensionality reduction

▪ Deterministic,
not probabilistic

Fixes

▪ VAEs ff. introduce
probabilistic model

(145)

PCA in latent space

𝒩𝟎,𝐈 in latent space

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]

Training of
Generative Networks

Learning Schemes

Generative
NetworkOriginal Data ∈ ℝn

Gaussian Noise ∈ ℝm

Training Data

z

x

New Samples

Learning Schemes

Generative
NetworkOriginal Data ∈ ℝn

Gaussian Noise ∈ ℝm

Training Data

x

New Samples

Learning Schemes

Generative
NetworkOriginal Data ∈ ℝn

Gaussian Noise ∈ ℝm

Training Data

x

New Samples

N𝟎,𝐈(z)


Σ = 𝐈

p(x)

Problem: Need Normalized Density!

N𝜇,Σ(z)  Σ

p(x)

N𝜇,Σ(z) 

Σ

correct
(normalized)

incorrect
(unnormalized)

p(x)

Problems:

inversion
difficult

normalization
difficult

Let’s try…

We will have…

▪ Samples (i.i.d.)

𝐱𝑖 ∈ ℝ
𝑑 , 𝑖 = 1, … , 𝑛

▪ Noise source: 𝐳 ∈ ℝ𝑘 , 𝐳~𝒩𝟎,𝐈

▪ Generative network

𝑓𝛉: ℝ
𝑘 → ℝ𝑑𝐱 , 𝛉 ∈ ℝ𝑑𝛉

𝑓𝛉 𝐳 = 𝐱

▪ ML-objective

𝛉 = arg max
𝛉∈ℝ𝑘

ෑ

𝑖=1

𝑛

𝑝𝛉(𝐱𝑖)

(151)

𝐳~𝒩𝟎,𝐈

𝐱~𝑝 𝐱 𝐳

𝑓𝛉

Let’s try…

We will have…

▪ In order to maximize

𝛉 = arg max
𝛉∈ℝ𝑘

ෑ

𝑖=1

𝑛

𝑝𝛉(𝐱𝑖)

▪ We need to compute

𝑝𝛉 𝐱𝑖 = 𝒩𝟎,𝐈 𝑓𝛉
−1 𝐱𝑖 ⋅ det ∇𝑓𝛉

−1 𝐱𝑖

(152)

𝐳~𝒩𝟎,𝐈

𝑓𝛉

𝐱 = 𝑓𝛉 𝐳

Wait – why is that?

𝑝𝛉 𝐱𝑖 = 𝒩0,𝐈 𝑓𝛉
−1 𝐱𝑖 ⋅ det ∇𝑓𝛉

−1 𝐱𝑖

(153)

Jacobian: Geometric Interpretation

Function
𝑓:ℝ𝑛 → ℝ𝑚

Jacobian matrix (“Gradient”)

∇𝑓 =

𝜕𝑥1𝑓1 𝐱 ⋯ 𝜕𝑥𝑛𝑓1 𝐱

⋮ ⋱ ⋮
𝜕𝑥1𝑓𝑚 𝐱 ⋯ 𝜕𝑥𝑛𝑓𝑚 𝐱

=

|
𝜕1𝑓(𝐱)

|
⋯

|
𝜕𝑛𝑓(𝐱)

|
∈ ℝ𝑛×𝑚

𝑥2

𝑥1

2 f(x)

1 f(x)

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

Integral Transformations
Integration by substitution:

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = න
𝑔−1 𝑎

𝑔−1 𝑏

𝑓 𝑔 𝑡 ⋅ 𝑔′ 𝑡 𝑑𝑡

Need to compensate

▪ Speed of movement affects
measured area

▪ Faster: shrinks measured area

▪ Slower: inflates

f(x)

f(x)

g(t)

g(t)

Transformation of Integrals:

▪ 𝑔 ∈ 𝐶1, invertible

▪ Jacobian approximates

local behavior of 𝑔 ⋅

▪ Determinant: local area/volume change

න
Ω

𝑓 𝐱 𝑑𝐱 = න

Multi-Dimensional Substitution

x2

x1

2 g(y)

1 g(y)

𝑓 𝑔 𝐳 ⋅ det 𝛻𝑔 𝐳 𝑑𝐳

𝑔−1 Ω

Probability Density

Probability of an Event A:

▪ Forward application

𝑃 A = න
𝐱∈A

𝑝 𝐱 𝑑𝐱

= න
𝐳∈𝑔−1 A

𝑝 𝑔 𝐳 det ∇𝑔 𝐳 𝑑𝐳

▪ Reverse problem

𝐱 = 𝑓𝛉 𝐳 → 𝑝 𝐱 = 𝑝 𝐳 𝐱 = 𝑝𝐳 𝑓𝛉
−1 𝐱

▪ Thus

𝑝 𝐱 = 𝑝 𝑓𝛉
−1 𝐱 det ∇𝑓𝛉

−1 𝐱

= det ∇𝑓𝛉 𝐱 −1

(157)

This is our life now

We will have…

▪ In order to maximize

𝛉 = arg max
𝛉∈ℝ𝑘

ෑ

𝑖=1

𝑛

𝑝𝛉(𝐱𝑖)

▪ We need to compute

𝑝𝛉 𝐱𝑖 = 𝒩𝟎,𝐈 𝑓𝛉
−1 𝐱𝑖 ⋅ det ∇𝑓𝛉

−1 𝐱𝑖

▪ Which is not so easy

▪ Inverting the network 𝑓𝛉 is difficult/costly (if possible)

▪ Computing the Jacobian matrix is costly

▪ Computing the determinant is costly

(158)

𝐳~𝒩𝟎,𝐈

𝑓𝛉

𝐱 = 𝑓𝛉 𝐳

Vanilla-Version

First attempt

▪ Just use an arbitrary network

Compute inverse?

▪ E.g. fit an (approximate) inverse network to it

▪ Takes minutes (all data points), each time

Compute determinant

▪ Backprop + linear algebra

▪ Determinants of large matrices, per data point

Maybe not impossible, but very expensive
(159)

𝐱

𝐳

Why not?
Normalized Flows

Clever Architecture

NICE –
making our life easier

[Dinh et al. 2014]

▪ Input 𝐱 ∈ ℝ𝑛

▪ Output 𝑓 𝐱 ∈ ℝ𝑛 (and 𝑑 < 𝑛)

𝑓 𝐱 = 𝐱[1 ∶𝑑] 𝐱 𝑑+1 ∶ 𝑛 +𝑚 𝐱[1 ∶ 𝑑]

▪ Inverse

𝑓−1 𝐲 = 𝐲[1 ∶𝑑] 𝐲 𝑑+1 ∶ 𝑛 −𝑚 𝐲[1 ∶ 𝑑]

▪ det ∇𝑓 𝐱 = det
𝐈 𝟎
∇𝑚 𝐈

= 1

▪ Swap parts 𝐱[1 ∶ 𝑑], 𝐱 𝑑 +1: 𝑛 with every layer
(161)

𝐱

𝐲

+

𝑚

Nicer

RealNVP [Dinh et al. 2017]

▪ Function

𝑓 𝐱 = 𝐱[1 ∶𝑑] 𝐱 𝑑+1 ∶ 𝑛 ⊙ exp 𝑠 𝐱 1 ∶𝑑 +𝑚 𝐱[1 ∶𝑑]

▪ Inverse

𝑓−1 𝐲 = 𝐲[1 ∶𝑑] 𝐲 𝑑+1 ∶ 𝑛 −𝑚 𝐲 1 ∶𝑑 ⊙exp 𝑠 𝐱 1 ∶ 𝑑

−1

▪ det ∇𝑓 𝐱 = det
𝐈 𝟎

□

(162)

𝐱

𝐲 𝑚

𝑠

•

+

𝑒𝑠1

⋱
𝑒𝑠𝑑

Training

Maximum Likelihood Training

arg max
𝛉∈ℝ𝑘

ෑ

𝑖=1

𝑛

𝑝𝛉 𝐱𝑖 = arg min
𝛉∈ℝ𝑘

෍

𝑖=1

𝑛

− log 𝑝𝛉 𝐱𝑖

Neg-log-likelihood

− log 𝑝𝛉 𝐱 = − log 𝒩0,𝐈 𝑓𝛉
−1 𝐱 − log det ∇𝑓𝛉 𝐱 −1

= − log 𝒩0,𝐈 𝑓𝛉
−1 𝐱 + log det ∇𝑓𝛉 𝐱

(163)

Training

Neg-log-likelihood

− log 𝑝𝛉 𝐱 = − log 𝒩0,𝐈 𝑓𝛉
−1 𝐱 − log det ∇𝑓𝛉 𝐱 −1

= − log 𝒩0,𝐈 𝑓𝛉
−1 𝐱 + log det ∇𝑓𝛉 𝐱

Multi-layer network

− log 𝑝𝛉 𝐱

= − log 𝒩0,𝐈 𝑓𝛉
−1 𝐱 +෍

𝑙=1

𝐿

log det ∇𝑓𝛉
(𝑙)

𝐱

(164)

Results

Quality

▪ Good image quality, but optimized GANs are better

▪ Newer variants of related ideas perform better

Versality

▪ We have an explicit likelihood

▪ Can be used as prior for image completion,
reconstruction etc.

Speed

▪ Evaluation fast and training, too.

(165)

Autoregressive Models

Autoregressive Models

Sequence

▪ Data
𝑥1, 𝑥2, … , 𝑥𝑑 ∈ ℝ

▪ Distribution
𝑝 𝑥1, 𝑥2, … , 𝑥𝑑

▪ Chain rule (in general)

𝑝 𝑥1, 𝑥2, … , 𝑥𝑑

(167)

= 𝑝 𝑥1 ⋅ 𝑝 𝑥2|𝑥1 ⋯ 𝑝 𝑥𝑑−1|𝑥𝑑−2, … , 𝑥1 ⋅ 𝑝 𝑥𝑑|𝑥𝑑−1, … , 𝑥1

Autoregressive Models

Idea

▪ Predict one value at a time

𝑥1, then 𝑥2, then 𝑥3, …, then 𝑥𝑑

▪ Generative probabilistic model

predict distribution 𝑝 𝑥𝑑|𝑥𝑑−1, … , 𝑥1
based on values 𝑥𝑑−1, … , 𝑥1 ∈ ℝ

(168)

𝑥1 𝑥2 𝑥𝑖⋯ 𝑥𝑖+1

s
o

ftm
a

x

𝑃 𝑥𝑖+1 = 1

𝑃 𝑥𝑖+1 = 2

𝑃 𝑥𝑖+1 = 𝑘

⋮→ ?

still intractable,
but we just use a

network

Image generation: PixelRNN / PixelCNN

▪ Images are created pixel-by-pixel

▪ Along diagonals (left-top)

▪ PixelRNN: recurrent neural network (LSTM)

▪ PixelCNN: convolution kernel (faster)

▪ Distribution for 𝑥𝑖+1
▪ 256 proability values (entries) for 256 pixel grey-scales

▪ RGB-values are predicted sequentially (!)

Improvements possible

▪ Multi-resolution version (e.g. PixelCNN++, U-net like)

Concrete Examples

(169)

WaveNet

Dilated Convolutions

▪ Multi-scale structure

▪ Auto-regressive architecture

▪ Used for generating sound

▪ Expensive training (sequential processing)
(170)

output

input

hidden

hidden

⋮

Generative Adversarial
Networks (GANs)

Never mind the likelihood…

Alternative idea

▪ We do not learn a distribution

▪ Instead, we (only) learn a sampler

Sampling seems easier

▪ It is possible to learn “good” samplers without
explicit representation of the likelihood

“Generative Adversarial Networks”

▪ Idea: Complaining is easier than doing

▪ Let the complainers teach the doers

(172)

Learning Scheme

Generator

Original
Data ∈ ℝn

Noise ∈ ℝm, m ≪ n

Realistic? ∈ [0,1]n

Adversary

Synthesized
Data ∈ ℝn

Formalization

Data: Samples (i.i.d.)

𝐱𝑖 ∈ ℝ𝑑 , 𝑖 = 1, … , 𝑛

Networks

▪ Generator 𝐺𝛉: ℝ
𝑘 → ℝ𝑑

▪ Takes random noise

𝐳~𝒩𝟎,𝐈, −𝐳 ∈ ℝ𝑘

▪ Outputs “fake” samples
𝐱 ∈ ℝ𝑑

▪ Discriminator 𝐷𝛟: ℝ
𝑑 → 0,1

▪ Learns to distinguish “real” from “fake” data

▪ Output: likelihood of “real”
(174)

G

D
𝐱 ∈ ℝ𝑑

𝐳 ∈ ℝ𝑘

𝐷 𝐱 ∈ [0,1]

𝐳~𝒩𝟎,𝐈

Loss Function

Distributions

▪ 𝑝𝑑𝑎𝑡𝑎: ℝ
𝑑 → ℝ actual data distribution

▪ 𝑝𝐺: ℝ
𝑑 → ℝ generator distribution

▪ 𝑝(𝐳):ℝ𝑘 → ℝ latent noise distribution (typ. 𝒩0,𝐈)

Objective function

min
𝛉

max
𝛟

𝑉 𝐷𝛟, 𝐺𝛉

𝑉 𝐷𝛟, 𝐺𝛉 = 𝔼𝐱~𝑝𝑑𝑎𝑡𝑎 log𝐷𝛟 𝐱 + 𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝛟 𝐺𝛉 𝐳

(175)

Loss function

View of the discriminator

𝔼𝐱~𝑝𝑑𝑎𝑡𝑎 log𝐷𝛟 𝐱 + 𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝛟 𝐺𝛉 𝐳

View of the generator

𝔼𝐱~𝑝𝑑𝑎𝑡𝑎 log𝐷𝛟 𝐱 + 𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝛟 𝐺𝛉 𝐳

(176)

large

D recognizes true images

large

low score for images of G

min
𝛉

max
𝛟

𝑉 𝐷𝛟, 𝐺𝛉

indifferent

No information for G

small

G fools D

Optimization

Training

▪ Discriminator tries to distinguish real / fake

▪ Maximize prediction accuracy

▪ Generator tries to fool discriminator

▪ Minimizes prediction accuracy

▪ Minimax game

▪ Nash equilibrium at true distribution

Nash-Equilibrium

Optimal discriminator

𝐷𝐺
∗ 𝐱 =

𝑝𝑑𝑎𝑡𝑎 𝐱

𝑝𝑑𝑎𝑡𝑎 𝐱 + 𝑝𝐺 𝐱
(Bayes-optimal likelihood ratio)

Optimal generator?

𝔼𝐱~𝑝𝑑 log𝐷𝐺
∗ 𝐱 + 𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝐺

∗ 𝐺𝛉 𝐳

= 𝔼𝐱~𝑝𝑑 log
𝑝𝑑 𝐱

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱
+ 𝔼𝐳~𝑝(𝐳) log 1 −

𝑝𝑑 𝐱

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

= 𝔼𝐱~𝑝𝑑 log
𝑝𝑑 𝐱

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱
+ 𝔼𝐳~𝑝(𝐳) log

𝑝𝐺 𝐱

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

(178)

min
𝛉

max
𝛟

𝑉 𝐷𝛟, 𝐺𝛉

short: 𝑝𝑑 = 𝑝𝑑𝑎𝑡𝑎

Nash-Equilibrium

Optimal generator?

𝔼𝐱~𝑝𝑑 log𝐷𝐺
∗ 𝐱 + 𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝐺

∗ 𝐺𝛉 𝐳

= 𝔼𝐱~𝑝𝑑 log
𝑝𝑑 𝐱

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱
+ 𝔼𝐳~𝑝(𝐳) log

𝑝𝐺 𝐱

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

For 𝑝𝑑𝑎𝑡𝑎 = 𝑝𝐺 , we obtain

…= 𝔼𝐱~𝑝𝑑 log
1

2
+ 𝔼𝐳~𝑝(𝐳) log

1

2
= 2 log

1

2

Next, we show that this is really optimal

(179)

short: 𝑝𝑑 = 𝑝𝑑𝑎𝑡𝑎

Optimality

First term in objective

𝔼𝐱~𝑝𝑑 log𝐷𝐺
∗ 𝐱 = න

𝐱∈ℝ𝑑
𝑝𝑑 𝐱 log

𝑝𝑑 𝐱

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱
𝑑𝐱

= log
1

2
+න

𝐱∈ℝ𝑑
𝑝𝑑 𝐱 log

𝑝𝑑 𝐱

1
2
𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

𝑑𝐱

= log
1

2
+ 𝐾𝐿 𝑝𝑑 𝐱 ‖

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

2

(180)

short: 𝑝𝑑 = 𝑝𝑑𝑎𝑡𝑎

Optimality

Second term in objective

𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝐺
∗ 𝐺𝛉 𝐳

= න
𝐳∈ℝ𝑘

𝑝(𝐳) log
𝑝𝐺 𝐺𝛉 𝐳

𝑝𝑑 𝐺𝛉 𝐳 + 𝑝𝐺 𝐺𝛉 𝐳
𝑑𝐳

= log
1

2
+ 𝐾𝐿 𝑝𝐺 𝐱 ‖

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

2

(181)

short: 𝑝𝑑 = 𝑝𝑑𝑎𝑡𝑎

Optimality

Sum of the two terms

𝑉 𝐷𝐺
∗ , 𝐺𝛉 = 2 log

1

2
+𝐾𝐿 𝑝𝐺 𝐱 ‖

𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

2

+ 𝐾𝐿 𝑝𝑑 𝐱 ‖
𝑝𝑑 𝐱 + 𝑝𝐺 𝐱

2

= 2 log
1

2
+ 2 𝐽𝑆 𝑝𝐺 𝐱 ‖ 𝑝𝑑 𝐱

(182)

minimum value

(as shown before)

short: 𝑝𝑑 = 𝑝𝑑𝑎𝑡𝑎

so much for the theory, but now…

Practice

How to Build & Operate a GAN

Practical Training

▪ Min-max game is unrealistically hard to compute

▪ Thus: simultaneous gradient descent on 𝑉 𝐷𝛟, 𝐺𝛉
▪ Alternate true/fake images every other iteration

▪ Significant problem

▪ Theoretically, this scheme does not necessarily converge

▪ Practically, it is highly unstable

▪ Can be stabilized with a big bag of tricks

▪ Typical problems

▪ Vanishing gradients: typically 𝐷 wins, 𝐺 stalls

▪ Mode collapse: 𝐺 learns a small set of deceiving examples

(184)

How to Build & Operate a GAN

Tips & Tricks (useful)

▪ Images: Using a convolutional generator

▪ Strided convolutions for upsampling

▪ Maybe resampling filters

▪ Known as “DCGAN” – deep convolutional GAN
[Radford et al. ICLR 2016]

▪ DCGAN approach has become standard

(185)

How to Build & Operate a GAN

Tips & Tricks (≈ Alchemy)

▪ Training

▪ Discriminator might get too smart

– Schedule updates

– Modify objective for 𝐺 slightly
max log𝐷 instead of min log(1 − 𝐷)

▪ BatchNorm is problematic

▪ Use InstanceNorm instead

▪ At least separate batches for “true” and “fake”

▪ Batch-Discrimination

▪ Feed batches at once to D

▪ Avoids (to some extend) “mode-collapse”
(186)

Wasserstein GANs

JS has its issues…

Problems with KL/JS

▪ Point-wise comparison

▪ Unaligned densities yield singularities in KL (not in JS)

▪ Gradients of JS vanish

▪ GANs optimize JS → vanishing gradients
(188)

Reminder

𝐾𝐿 𝑝 ∥ 𝑞 =෍

𝑖=1

𝑛

𝑝𝑖 log2
𝑝𝑖
𝑞𝑖

(discrete probabilities)

𝐽𝑆 𝑝 ∥ 𝑞

=
1

2
𝐾𝐿 𝑝 ∥

𝑝+𝑞

2
+𝐾𝐿 𝑞 ∥

𝑝+𝑞

2

JS has its issues…

These two distributions

▪ Approximately the same distance

▪ How to get closer: JS not informative

(189)

Earth-Mover’s Distance – Wasserstein W1

New Idea

▪ “Optimal transport”

▪ Move probability density from 𝑝 to 𝑞

▪ Cost = mass x distance

▪ Optimal transport = “earth-mover’s distance” (Wasserstein W1)
(190)

Definition (basic)

Transport Plan

▪ Shovel red to blue

▪ Amount of shoveled red must add to blue

▪ Cannot take more than available

(191)

Definition (basic)

Transport Plan

▪ Discrete model
𝑝1, … , 𝑝𝑛, 𝑞1, … , 𝑞𝑛

▪ Transport plan

𝜋𝑝,𝑞 𝑖, 𝑗 ≥ 0,− −෍

𝑖

𝜋𝑝,𝑞 𝑖, 𝑗 = 𝑝𝑗 ,− −෍

𝑗

𝜋𝑝,𝑞 𝑖, 𝑗 = 𝑞𝑖

▪ “Shoveling-costs”

𝐶 𝜋𝑝,𝑞 =෍

𝑖,𝑗

𝜋𝑝,𝑞 𝑖, 𝑗 𝑖 − 𝑗

𝑊1 𝑝, 𝑞 = inf
valid 𝜋

𝐶 𝜋𝑝,𝑞

(192)

Definition (basic)

General case

▪ Distributions 𝑝, 𝑞:ℝ𝑑 → ℝ

▪ Transport plan:

Joint distribution 𝜋 𝑥, 𝑦 such that

𝜋 𝑥 = 𝑝 𝑥 ,−𝜋 𝑦 = 𝑞 𝑦

▪ Wasserstein-distance

𝑊1 𝑝, 𝑞 = inf
distr. 𝜋 𝑥,𝑦 ,

𝜋 𝑥 =𝑝 𝑥 ,

𝜋 𝑦 =𝑞 𝑦

𝔼 𝑥,𝑦 ~𝜋 𝑥 − 𝑦

(193)

Wasserstein GANs

Great idea

▪ Replace JS-distance in
GAN-objective
by Wasserstein-distance

▪ No vanishing gradients

▪ Fixes (some) convergence issues

▪ Problem:
Looks very very highly totally unfortunately

▪ – intractable

Really great idea

▪ We can compute it indirectly
(194)

Kantorovich-Rubinstein Duality

Wasserstein distance

𝑊1 𝑝, 𝑞 = inf
distr. 𝜋 𝑥,𝑦 ,

𝜋 𝑥 =𝑝 𝑥 ,

𝜋 𝑦 =𝑞 𝑦

𝔼 𝑥,𝑦 ~𝜋 𝑥 − 𝑦

Dual characterization

𝑊1 𝑝, 𝑞 = sup
𝑓 𝐿≤1

𝔼𝑥~𝑝 𝑓 𝑥 − 𝔼𝑦~𝑞 𝑓 𝑦

What does it buy us?

▪ Still intractable (high-dim. 𝑓)

▪ But we can use a network to approximate 𝑓
(195)

Lipschitz-constant
bounded for 𝑓

Old Design

Old GAN

min
𝛉

max
𝛟

𝑉 𝐷𝛟, 𝐺𝛉

𝑉 𝐷𝛟, 𝐺𝛉 = 𝔼𝐱~𝑝𝑑𝑎𝑡𝑎 log𝐷𝛟 𝐱 + 𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝛟 𝐺𝛉 𝐳

Gradients (downhill)

∇𝛟𝐷 =
1

𝑛
෍

𝑖=1

𝑛

∇𝛟 log𝐷𝛟 𝐱𝑖 +
1

𝑛
෍

𝑖=1

𝑛

∇𝛟 log 1 − 𝐷𝛟 𝐺𝛉 𝐳𝑖

∇𝛉= −
1

𝑛
෍

𝑖=1

𝑛

∇𝛉 log 1 − 𝐷𝛟 𝐺𝛉 𝐳𝑖

(196)

Old Design

Old GAN – “improved” variant

min
𝛉

max
𝛟

𝑉 𝐷𝛟, 𝐺𝛉

𝑉 𝐷𝛟, 𝐺𝛉 = 𝔼𝐱~𝑝𝑑𝑎𝑡𝑎 log𝐷𝛟 𝐱 + 𝔼𝐳~𝑝(𝐳) log 1 − 𝐷𝛟 𝐺𝛉 𝐳

Gradients (downhill)

∇𝛟𝐷 =
1

𝑛
෍

𝑖=1

𝑛

∇𝛟 log𝐷𝛟 𝐱𝑖 +
1

𝑛
෍

𝑖=1

𝑛

∇𝛟 log 1 − 𝐷𝛟 𝐺𝛉 𝐳𝑖

∇𝛉=
1

𝑛
෍

𝑖=1

𝑛

∇𝛉 log 𝐷𝛟 𝐺𝛉 𝐳𝑖

(197)

New Design

Wassserstein GAN
min
𝛉

max
𝛟

𝑊𝐷𝛟 𝐷𝛟 , 𝐺𝛉

𝑊𝐷𝛟
𝑝𝑑𝑎𝑡𝑎, 𝑝𝐺 = 𝔼𝐱~𝑝𝑑𝑎𝑡𝑎 𝐷𝛟 𝐱 + 𝔼𝐳~𝑝(𝐳) 𝐷𝛟 𝐺𝛉 𝐳

Gradients

∇𝛟𝐷 =෍

𝑖=1

𝑛

∇𝛟𝐷𝛟 𝐱𝑖 +෍

𝑖=1

𝑛

∇𝛟𝐷𝛟 𝐺𝛉 𝐳𝑖

∇𝛉= −෍

𝑖=1

𝑛

∇𝛉 𝐷𝛟 𝐺𝛉 𝐳𝑖

(198)

with ∇𝐱𝐷𝛟 𝐱 ≤ 1

Modifications

Discriminator 𝐷 → “Critic” 𝐷

▪ Same architecture for 𝐷

▪ But no probabilistic output (no sigmoid)

▪ Needs Lipschitz-condition!

▪ Option 1: Clipping of gradients

– Original WGAN paper, does not work so well

▪ Option 2: Gradient penalty

– Penalty term ∇𝐷 − 1 2, works better

▪ Option 3: Spectral normalization

– Limit singular values of weight layers

Overall very similar to original GAN
(199)

Some Results

Simple Solution: AE+ GAN

Adversarial
Auto-Encoder

Original Data ∈ ℝn

Latend, Coarse-Grained
Representation ∈ ℝm

Reconstructed Data ∈ ℝn

Realistic? ∈ [0,1]n

< Training images

<<

Noise → Images

MGANs [joint work with Chuan Li] trained on CelebA, GAN with AE conditioned on VGG-features

Autoencoder
(PCA in latent space)

WGAN-GP
(generative adversarial network)

Wasserstein-GAN-GP (limited GPU)

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]
(204)

Style-Based GAN [Kerras et al. 2018]

(205)

Tero Karras, Samuli Laine, Timo Aila:
A Style-Based Generator Architecture for Generative Adversarial Networks, 2018

[image by Wikipedia user OwlsMcGee, https://en.wikipedia.org/wiki/File:Woman_1.jpg]

Summary

Generative Models

Generative deep networks

▪ Learning is a surprisingly difficult problem
▪ Even if we assume/have “magic” regressors

▪ Difficulties
▪ Relative Likelihood: Inverting networks

▪ Absolute likelihood: proper normalization

Several tricks (we saw only an excerpt here)

▪ Autoencoders

▪ Flow-based models

▪ Autoregressive models

▪ Generative adversarial networks
(207)

