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What is Information?

Defining Information
= Probability Theory

= Randomness = genuine new information

How much Information?

= Answer: “How random?”



Axioms of Information

Random Information
= Random variable X
= Discrete probability distribution p(x)

Information

= [(x) — Information contained in observation of x
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“Frequentist” Model of Information

independently repeatable

experiment
(black box)

How to understand information?

= Repeatable experiment
= Qutcomes Q = {xq, ..., X, }
= Elementary probabilities p(xy), ..., p(xy,)

(10)



“Frequentist” Model of Information

enc(x) QZIHS:
tihe outcomes are

X7, XKa2, X2z, Xg

ex erlment Channel
blgckbox
(operator) Alice Bob (receiver)

Communication

= Send outcomes over channel from Alice - Bob
= Alice runs experiments
= Both Alice and Bob know the experimental setting
= Bob does not know the random outcome

= How much information is in outcome x;?
(1)



Defining
Information



Axioms of Information

Axioms

= [(x) = f(p(x)) for some |

« Information should only depend on probability

= p() <p() = f(p() > f(p()
= Rarer events should carry more information
= f strictly decreasing

= f(1)=0
= Certain events carry no (new) information

= x, v independent = I((X, )) =1(x) +1(V)
= Information should add up
= Independent experiments yield “totally new information”



Solution

Solution .
f(p) = —logp = log—

p
Proving the properties \ this solution

IS unique
n I(x) — log (MP to baSl.S)
p(x) PS: we will
. usually use log
p(x) < p( )ﬁlogp(x)>logp( ) 2
=logl =0
. _ 1
x, v independent = logp(x’ ;= logp(x)p( )
= log 75 + log 175



Summary so far...

Probability
= Independent events: Product of probabilities
= Number between 0 and 1

Information

= Information is additive
= More info: larger value
= No information =0

= Information of event = negative logarithm of prob.

1
" I(x) = —logp(x) = log——

= Usually: base 2 (measured in bits)



Neg-Log Likelihoods
quantify
Information Content

Next question: How much information
Is “in the whole distribution™



Information in Outcomes = | & —

Alice observes an outcome x _—— [ g
= Alice needs to send Bob I(x) bits

Alice observes an outcomes yx,

= Model: Two independent runs
= Alice needs to send Bob I(x) + I(v) bits

Alice keeps observing outcomes x,, x,, x5, ...
= Model: independent repetitions

= Alice needs to send Bob E,..,[I(x)] bits on average

(17)
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Entropy

Definition: Entropy

HX)=-= ) p(x;)log, p(x;) mean
( b
;=1: neg log pro

information

= zp(xi)l(xi) mear
i=1

expected

= Exepm) (1 (x )) information

Measures: How ‘random” is p?



Examples

| p(x)
T T L L L R L B B
X1 Xy X3 X,
n
H) = - Slogt =1
p __Z:E og— = logn
=1
p(x)
L O L B
X1 Xy X3 X,

L L O el
A
p(x)
I L L B

H(p)=1-log1 =0



Finite Outcome Spaces

Definition of H(X) requires finite Q(X)
= Generalization to continuous variables non-trivial

« Just replacing ¥ by [ leads to significant problems
= |s done as ,Differential Entropy”:

Yip(x)logp(x;) — [ p(x)logp(x;)
= Problems include

= Negative values (density > 1)
= Not transformation invariant

(22)



Finite Outcome Spaces

“Proper” limit fixes some problems
= But entropy becomes infinite for continuous variable

= “Limiting density of discrete point”

Coding length for continuous functions
= One can specify resolution limits / uncertainty

= Often no obvious resolution
= Careful trade-off needed

We stick to the discrete version

= Or just ignore the issue, when it comes up



Coding Theory
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Coding Theory _enc(x)
Entropy g R

= Minimum number of bits required to transmit
information about event x
= We draw events i.i.d.
= We send each outcome separately
— After being asked for the answer
— (Certain outcomes: no answer required)

= Coding theorem
= m(x) = message about x optimally encoded in bits

5 H((() < Eiepo (length(m(x))) < H({() +1

Random variable X distributed according to p(x)



Huffman Codes

Constructing a code enc(x)

= Huffman algorithm

= Optimal for single events send in bits
= Multiple symbols: Overhead up to one bit each
= Optimality reached with "arithmetic coding”



Huffman Codes

5% 4% 53% 6% 1% 25%

Algorithm

= Build a tree
= Start with outcomes as leave nodes

= [teratively:
= Combine two lowest-probability nodes to new inner node
= Until we have a root node

= Using a priority queue, if you care about run time



Huffman Codes
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Huffman Codes

2 4 s I sl

4% 5% 6% 1% 25% 53%



Huffman Codes
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Huffman Codes

Coding
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Huffman Codes 111001110000
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Bit-Coding
Coding of Symbols

= Number of bits < log$+ 1

= Information = code length (up to one bit)
= Entropy = expected code length (up to one bit)



summary

(38)



Summary: Information & Entropy

Information is randomness
= “Frequentist” repeated coding scenario

= Analysis of coding length
= Information I(x) = —logp(x)

= Entropy  H(p) = — Xz, p(x;) log p(x;)
— IE:vap [1(x)]

Not just pure theory

= Coding can be achieved (and is used) in practice

(39)
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Entropy:

Additional Definitions
& Theorems



Joint Entropy

Joint Entropy

H(X, )=—§§:P(xi» )1og, p(xs, v))

i=1j=1

= Simply the entropy of the joint distribution p(x, v)

Theorem

H(X,V)=HX)+ H()
e plx,v) =p)p(y)
= Additive iff independent

Attention: Do not mix up with H(p4, p,) for cross-entropy



Conditional Entropy

Conditional Entropy

Ny

H(X| ):_anp(xil )loga p(xily;)

i=1j=1

= Simply the entropy of the conditional
distribution p(x|v)



Conditional Entropy
Marginal Entropy

HOO = = ) p(x)logy p(x)

—_ S (Z p(xi, )) (1082 Z p(xi, ))

i=1 \ j=1

= Simply the entropy of the marginal
distribution p(x)



Conditional Entropy

Theorem: Chain Rule
HX,V)=HX|V)+H()
=H(V|X)+ H(X)

Proof

= Very simple :-)



“Divergences”

Comparing Probability
Distributions



Cross Entropy

Situation

= Two different distributions », p-
(same probability space)

Definition: Cross Entropy (aka Relative Entropy)
H(p1,p2) = — z p1 () logz p2 (x;)

Ildea = Bl ()

= Coding events x~p; with codes optimized for p,



How to Read This...

Often: Searching for “codes”

first argument second argument output
data distribution coding distribution coding length

NS n /
H(pi,p2) = — 2 p1(x;)1og, po(x;)
(=1

Properties
= Non-symmetric!
= Vp,: H(p1,02) = H(p1,p1) = H(p1)
= Reverse (H(p,,p,) vs H(p,)) is not true!

= |[n optimization problems: Usually vary p,
(51)



Kullback-Leibler Divergence

Kullback-Leibler Divergence

pq(x;)
po(x;)

n
KL(py Il pp) = Zpl(xi)logz
i=1

— H(pl; pZ) T H(pl; pl)

= H(py,p2) — H(py)

Idea
= Measure coding efficiency p, using p,-codes
= Price to pay for coding in p, rather than p;

= Compare with optimum for p,
= Measures how far distribution p, is from p,



Kullback-Leibler Divergence

Kullback-Leibler Divergence

first argument second argument output
data distribution coding distribution increase in coding length

NS
KL(p1 I p2) = H(p1,p2) — H(py)

Idea

= Compare two distributions
= Loss in coding efficiency [in bits]
= Extra message length (Alice - Bob)
= Just cross-entropy minus baseline H(py, p1)

= Again, not symmetric



KL and JS Divergences

Kullback-Leibler Divergence
= Distance = 0
= Zero distance means same distribution
= Not symmetric:
KL(p; |l p,) different from KL(p, Il p1)
= “Almost a metric”

Jensen—-Shannon Divergence
= Symmetrized version

1 1
= JSD(p1 I p2) = EKL(Z% I p2) + EKL(pZ I p1)



What kind of metric is this?

KL-Divergence

pq(x;)
po(x;)

n
KL(p1 Il p2) = ZP1(xi)10g2
i=1

difference in Information

for the same outcomes x;
n A

. A\
= p1(x;)[logs p1(x;) —log, po(x;)]
i=1
weighted by probability
of occurrence in p,

(55)



What kind of metric is this?

KL-Divergence

1 p(x)
A difference in Information
for the same outcomes x;
n AL
4 N\
KL(y I p2) = ) 1 (e)lloga pi (x:) = log, py (x:)]

i=1
weighted by probability
of occurrence in p,

(56)



Mutual Information

Mutual Information
ICX;V)=HX)+H()—-H(X,Y)

= Entropy of the marginal distributions
minus that of the joint distribution



Mutual Information

p(Y)

X

Marginal & Joint Histograms
= Consider H(X), H(Y), H(X,Y)

1Y) =HX) + HY) — H(X,Y)

p(X,Y)

p(X)



Mutual Information

Alternative Formulas
ICX;V)=HX)+H()—-H(X,Y)

= H(X) — H(X|V)
=H(Y) —H(V|X)
X p(xl )
= — 1
PRl (o),



Mutual Information

As a measure of dependency
= Most general gradual measure of dependency
= J(X;V) =0 & X,V areindependent

= J(X;V) > H(X) + H(Y): “maximally” dependent
= Joint histogram becomes very sparse
= H(X,Y) very small
— Zero not possible for discrete Q it H(X),H(Y) > 0
— Limit for #Q(X), #Q(Y) —» o

= Alternative measures such as correlation miss cases
= Example: Linear correlation iff PCA spectrum flat

= Does (e.g.) not detect quadratic dependencies
(60)



Computation

p(Y)
—

p(X,Y)

T

SRR | e

X

Actual Histograms
= Compute H(X),H(Y), H(X,Y)
= Costly: 0(|Qx| X |Qy]) (e.g., exponential in dimension)



Computation

Parametric Distributions

= Closed-Form Expressions for Gaussians etc.

« H(N,5) =3In ((Zﬂe)d det(Z))



Computation

Approximations

= Sample-based Entropy
= Measure only on input/training data of a DA/ML application

= Nearest-neighbors-methods

= Lower-bounds by “variational Bayes”
= Build neural network f: predicting Y from X (or vice versa)
= Least-squares fit ||Y — f(0)||?
= Entropy of Gaussian error (covariance of errors)
— Gives an upper bound of H(X,Y)
— Upper bound of entropy of the joint Histogram
— Has negative contribution, i.e.: lower bound for I(X;Y)



Application
Softmax Regression

(64)



Multi-Label Case ... .t

Task l

= n Data points, indexedbyi =1..n
= Data x; € R” with...
= ..label vectors y; € {0,1}"*
- "One hot vectors”

= Learn class-specific parameters 6, ...,0, € R

Notation
= y(x) € {1, ..., K} denotes class index of input x

(65)



Multi-Label Case

Unnormalized classifier

— 91 —
up(x) = ; X
— 0, -

Class probabilities via softmax o: R* - R

e

P(y(x) =1) a1 (ug(x))
fo(x) = : = :
Py(x) = K) i (U (X))

0 (V) =

(66)



Softmax Regression

MLE Training via

= arg min
fERKX

= arg min
feERKX

n _

2.

=1

=1

K

log z eOmx

N—

m=1

—

normalization

z — log(fg (X)y(x))

T
— Oy X

N——_—
(neg)—log—likelihood
of correct class

(67)



Cross Entropy Loss

Alternative formulation

= One-hot vectors y; are “ground truth” distribution
= Overclasses 1...K

= Training: Make output distribution f(x) similar to y;
= Use KL-divergence to Compare

KL(y; Il fo(xp) = ZYL long (xl)

= We will see: l\/||n|m|zat|on same for cross-entropy
n
H(yi,p2) = = ) vilogs f5 (<)

= Which is per-class maximume-likelihood

(68)



KL as Cross Entropy as MLE

argemin KL(yl- I fe(xi)) - KL-Divergence



KL as Cross Entropy as MLE

argemin KL(yl- I fe(xi)) - KL-Divergence
n
6 £~ [fo(xi)]x

— argemin (H(Yirfe (Xi)) - H(Yi))

= argemin (H (yi, fo (xl))) - X-Entropy
n
= arg min z Lyl logalfo (x)]k
v =
= arg minlog, /s (Xi)]y(xi) < MLE

0



Thoughts About

The Nature of
Information




Properties of Mutual Information

p(Y)

—'

Y

Bijection invariant

|

X

p(X,Y)

p(X)

= Discrete Q(X) = {1, ...,ny}, Q(Y) = {1, ..., ny}
= For bijective my: Q(X) = Q(X), my: QYY) = Q(Y)
10GY) = I(myg (X); my (V)

= Invertible functions do not change information



Bijection Invariance

Applies to other measures

= Entropy
H(X) = H(rm(X))
For any bijection m: X —» X

= Proof

HOO = ) () logp(x)
i=1

n
= z p(xry) log p(xp(y) (identifying x; with i)

i=1
= H(n(X))

(73)



Bijection Invariance

Information theoretic measures
= Entropy

= Mutual Information

are invariant under
= Bijective mappings,
= j.e.: application of “information preserving functions”

= Applies to divergences only if both p4, p, are
transformed the same way

= Cross-Entropy, KL-Divergence, J-S-Divergence

(74)



Data Processing

Deterministic Information Processing

= Arbitrary function
f:0X) - Q)
= We can only lose information

H(X) = H(f (X))

(75)



Data Processing

(Probabilistic) Data Processing Inequality

= Random variables with densities

X,Y,Zwithp(x,y,2)
= Chain-like dependency structure

a p(z|y) . p(y]x) n p(x)

p(x,y,z) =pzly) -p(y|x) - p(x)

= Data processing inequality
I(X;Y)=1(X;7)

. btw, this is called
a "Markov chain”

(76)



Information

Information
= Originate from random process X

Processing / Calculating
= Deterministic processes can only reduce information

= Probabilistic processes can add information,
out cannot add information on original X

= Bijections (invertible maps) do not change anything

(77)



Probabilistic Evolution of Information

X1, .., X, further trajectory $—9
—e 8 P (Kol Xe)
o« " models physics
Xo: Initial motion of projectile +(£2ra1i$jt(3rmlgn§gs
Example

= Trajectory of a projectile
= Imprecision due to limited knowledge (wind)

= |f motion was deterministic
= No information loss: vVt = 0: H(X;) = H(X,)
- Physics is reversible (= bijective)

— But we have incomplete knowledge -
78



Probabilistic Evolution of Information

> @ @ —s

L D (O 8

With random perturbations

= Old information gradually replaced
by new randomness

= Loss: X; cannot be fully reconstructed from X;, 4
= Gain: X; not fully predictable from X,_; (new random info.)

= Information is probabilistic
« Available knowledge reduces entropy of P(X;)

(79)



In one sentence

o
o — 2 ¥ T

@ @
X t_ 1 X t X t+ 1 Gegenstand Jnaturnotwendige Gegenstand
(Natur) Folgen” (Folgezustand)

real world (objective & unknown)

Information in machine learning
Being able to predict (e.qg., the future)
means

reducing the uncertainty/entropy
(of the probability distribution of the outcome)

(80)



So - What /s
Information?



What is Information?

Transmission

guys,
the outcomes are

Frequentist Information ayesian Information?

Bayesian Probabilities — Information
= One time-events
= Model uncertainty & subjective knowledge
= Information = “I learned something new”

(Note: Personal view/interpretation) (82)



summary



Divergences: Comparing Distributions

Divergences
= Cross entropy (a.k.a. relative entropy)
= KL divergence & JS divergence
= Mutual Information

Computation
= Analytical solution

= Numerics: very expensive
= Linear/quadratic in |Q| usually means exponential in input
= There are many dirty tricks / approximations

(84)



Divergences: Comparing Distributions

What do they do?
= Measure differences in distributions wrt. information

= Pure “information”
= Every bit of random noise counts

X-Entropy, KL/JS-Divergence
= Compare information of corresponding outcomes

Mutual Information
= Ml is fully bijection invariant (XE/KL/JS are not!)

Use with care

= Pure information is not always what you want! (85)



