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What is Information?

Defining Information

▪ Probability Theory

▪ Randomness = genuine new information

How much Information?

▪ Answer: “How random?”



Axioms of Information

Random Information

▪ Random variable 𝑋

▪ Discrete probability distribution 𝑝(𝑥)

Information

▪ 𝐼(𝑥) – Information contained in observation of 𝑥
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(operator) Alice Bob (receiver)

Experiment Transmission

“Frequentist” Model of Information



(9)

guys,

the outcomes are
x7, x42, x23, x8(channel)

enc(𝑥)

(operator) Alice Bob (receiver)

Experiment Transmission

“Frequentist” Model of Information



“Frequentist” Model of Information

How to understand information?

▪ Repeatable experiment

▪ Outcomes Ω = 𝑥1, … , 𝑥𝑛

▪ Elementary probabilities 𝑝 𝑥1 , … , 𝑝 𝑥𝑛
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“Frequentist” Model of Information

Communication

▪ Send outcomes over channel from Alice → Bob

▪ Alice runs experiments

▪ Both Alice and Bob know the experimental setting

▪ Bob does not know the random outcome

▪ How much information is in outcome 𝑥𝑖?
(11)

guys,

the outcomes are
x7, x42, x23, x8

(operator) Alice Bob (receiver)

(channel)
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Axioms of Information

Axioms

▪ 𝐼 𝑥 = 𝑓 𝑝(𝑥) for some 𝑓

▪ Information should only depend on probability

▪ 𝑝 𝑥 < 𝑝 𝑦 ⇒ 𝑓 𝑝 𝑥 > 𝑓 𝑝 𝑦

▪ Rarer events should carry more information

▪ 𝑓 strictly decreasing

▪ 𝑓 1 = 0

▪ Certain events carry no (new) information

▪ 𝑥, 𝑦 independent ⇒ 𝐼 x, y = 𝐼 x + 𝐼(y)

▪ Information should add up

▪ Independent experiments yield “totally new information”



Solution

Solution

𝑓 𝑝 = − log 𝑝 = log
1

𝑝

Proving the properties

▪ 𝐼 𝑥 = log
1

𝑝 𝑥

▪ 𝑝 𝑥 < 𝑝 𝑦 ⇒ log
1

𝑝 𝑥
> log

1

𝑝 𝑦

▪ log 1 = 0

▪ 𝑥, 𝑦 independent ⇒ log
1

𝑝 𝑥,𝑦
= log

1

𝑝 𝑥 𝑝 𝑦

= log
1

𝑝 𝑥
+ log

1

𝑝 𝑥

this solution
is unique
(up to basis)

PS: we will 
usually use log2



Summary so far…

Probability

▪ Independent events: Product of probabilities

▪ Number between 0 and 1

Information

▪ Information is additive

▪ More info: larger value

▪ No information = 0

▪ Information of event = negative logarithm of prob.

▪ 𝐼 𝑥 = − log 𝑝 𝑥 = log
1

𝑝 𝑥

▪ Usually: base 2 (measured in bits)



Neg-Log Likelihoods

quantify

Information Content

Next question: How much information
is “in the whole distribution”?



Information in Outcomes

Alice observes an outcome 𝑥

▪ Alice needs to send Bob 𝐼(𝑥) bits

Alice observes an outcomes 𝑥, 𝑦

▪ Model: Two independent runs

▪ Alice needs to send Bob 𝐼 𝑥 + 𝐼 𝑦 bits

Alice keeps observing outcomes 𝑥1 , 𝑥2 , 𝑥3 , …

▪ Model: independent repetitions

▪ Alice needs to send Bob 𝔼𝑥∼𝑝 𝐼 𝑥 bits on average

(17)
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Entropy

Definition: Entropy

𝐻 𝑋 = −෍

𝑖=1

𝑛

𝑝 𝑥𝑖 log2 𝑝 𝑥𝑖

= ෍

𝑖=1

𝑛

𝑝 𝑥𝑖 𝐼 𝑥𝑖

= 𝔼𝑥~𝑝(𝑥) 𝐼 𝑥

Measures: How “random” is 𝑝?

mean
neg log prob

mean 
information

expected
information



Examples

p(x) p(x)

p(x) p(x)

𝐻 𝑝 = −෍

𝑖=1

𝑛
1

𝑛
log

1

𝑛
= log𝑛

𝐻 𝑝 = 1 ⋅ log 1 = 0

x1 x2 x3 xn

x1 x2 x3 xn

x1 x2 x3 xn

x1 x2 x3 xn



Finite Outcome Spaces

Definition of 𝐻 𝑋 requires finite Ω 𝑋

▪ Generalization to continuous variables non-trivial

▪ Just replacing ∑ by ∫ leads to significant problems 

▪ Is done as „Differential Entropy“:
∑𝑖 𝑝 𝑥𝑖 log 𝑝 𝑥𝑖 → ∫𝑥 𝑝 𝑥𝑖 log 𝑝 𝑥𝑖

▪ Problems include

▪ Negative values (density > 1)

▪ Not transformation invariant

(22)



Finite Outcome Spaces

“Proper” limit fixes some problems

▪ But entropy becomes infinite for continuous variable

▪ “Limiting density of discrete point”

Coding length for continuous functions

▪ One can specify resolution limits / uncertainty

▪ Often no obvious resolution

▪ Careful trade-off needed

We stick to the discrete version

▪ Or just ignore the issue, when it comes up
(23)



Coding Theory



Coding Theory

Entropy

▪ Minimum number of bits required to transmit 
information about event 𝑥

▪ We draw events i.i.d.

▪ We send each outcome separately

– After being asked for the answer

– (Certain outcomes: no answer required)

▪ Coding theorem

▪ 𝑚(𝑥) = message about 𝑥 optimally encoded in bits

▪ 𝐻 𝑋 ≤ 𝔼𝑥~𝑝 𝑥 length 𝑚 𝑥 < 𝐻 𝑋 + 1

Random variable X distributed according to p(x)



Huffman Codes

Constructing a code

▪ Huffman algorithm

▪ Optimal for single events send in bits

▪ Multiple symbols: Overhead up to one bit each

▪ Optimality reached with “arithmetic coding”



Huffman Codes

Algorithm

▪ Build a tree

▪ Start with outcomes as leave nodes

▪ Iteratively:

▪ Combine two lowest-probability nodes to new inner node

▪ Until we have a root node

▪ Using a priority queue, if you care about run time

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
5% 4% 53% 6% 7% 25%



Huffman Codes
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Huffman Codes
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Huffman Codes

𝑥2 𝑥1 𝑥3𝑥4 𝑥5 𝑥6

9% 13%

22%

47%

100%
0

0

0

0 0

1
11

1 1

0000 0001 0010 0011 01 1

Coding
assign bits to edges

Decoding
just follow tree

4% 5% 53%6% 7% 25%

111001110000

111001110000



Bit-Coding

Coding of Symbols

▪ Number of bits  ≤ log
1

𝑝 𝑥
+ 1

▪ Information = code length (up to one bit)

▪ Entropy = expected code length (up to one bit)



Summary

(38)



Summary: Information & Entropy

Information is randomness

▪ “Frequentist” repeated coding scenario

▪ Analysis of coding length

▪ Information 𝐼 𝑥 = − log 𝑝(𝑥)

▪ Entropy 𝐻 𝑝 = −∑𝑖=1
𝑛 𝑝 𝑥𝑖 log 𝑝 𝑥𝑖

= 𝔼𝑥~𝑝 𝐼 𝑥

Not just pure theory

▪ Coding can be achieved (and is used) in practice

(39)
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& Theorems



Joint Entropy

Joint Entropy

𝐻 𝑋, 𝑌 = −෍

𝑖=1

𝑛𝑥

෍

𝑗=1

𝑛𝑦

𝑝 𝑥𝑖 , 𝑦𝑗 log2 𝑝 𝑥𝑖 , 𝑦𝑗

▪ Simply the entropy of the joint distribution 𝑝 𝑥, 𝑦

Theorem
𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌

⇔ 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦

▪ Additive iff independent

Attention: Do not mix up with 𝐻 𝑝1, 𝑝2 for cross-entropy



Conditional Entropy

Conditional Entropy

𝐻 𝑋 𝑌 = −෍

𝑖=1

𝑛𝑥

෍

𝑗=1

𝑛𝑦

𝑝 𝑥𝑖|𝑦𝑗 log2 𝑝 𝑥𝑖|𝑦𝑗

▪ Simply the entropy of the conditional
distribution 𝑝 𝑥|𝑦



Conditional Entropy

Marginal Entropy

𝐻 𝑋 = −෍

𝑖=1

𝑛𝑥

𝑝 𝑥𝑖 log2 𝑝 𝑥𝑖

= −෍

𝑖=1

𝑛𝑥

෍

𝑗=1

𝑛𝑦

𝑝 𝑥𝑖 , 𝑦𝑗 log2෍

𝑗=1

𝑛𝑦

𝑝 𝑥𝑖 , 𝑦𝑗

▪ Simply the entropy of the marginal
distribution 𝑝 𝑥



Conditional Entropy

Theorem: Chain Rule

𝐻 𝑋, 𝑌 = 𝐻 𝑋 𝑌 + 𝐻 𝑌
= 𝐻 𝑌 𝑋 + 𝐻 𝑋

Proof

▪ Very simple :-)



“Divergences”

Comparing Probability 
Distributions



Cross Entropy

Situation

▪ Two different distributions 𝑝1, 𝑝2
(same probability space)

Definition: Cross Entropy (aka Relative Entropy)

𝐻 𝑝1, 𝑝2 = −෍

𝑖=1

𝑛

𝑝1 𝑥𝑖 log2 𝑝2 𝑥𝑖

Idea

▪ Coding events 𝑥~𝑝1 with codes optimized for 𝑝2

= 𝔼𝑥~𝑝1 𝐼𝑝2 𝑥



Often: Searching for “codes”

𝐻 𝑝1 , 𝑝2 = −෍

𝑖=1

𝑛

𝑝1 𝑥𝑖 log2 𝑝2 𝑥𝑖

Properties

▪ Non-symmetric!

▪ ∀𝑝2: 𝐻 𝑝1, 𝑝2 ≥ 𝐻 𝑝1, 𝑝1 = 𝐻 𝑝1
▪ Reverse (𝐻 𝑝2, 𝑝1 vs 𝐻 𝑝1 ) is not true!

▪ In optimization problems: Usually vary 𝑝2

How to Read This…

(51)

first argument
data distribution

second argument
coding distribution

output
coding length



Kullback-Leibler Divergence

Kullback-Leibler Divergence

𝐾𝐿 𝑝1 ∥ 𝑝2 = ෍

𝑖=1

𝑛

𝑝1 𝑥𝑖 log2
𝑝1 𝑥𝑖
𝑝2 𝑥𝑖

= 𝐻 𝑝1 , 𝑝2 − 𝐻 𝑝1 , 𝑝1

= 𝐻 𝑝1 , 𝑝2 − 𝐻 𝑝1
Idea

▪ Measure coding efficiency 𝑝1 using 𝑝2-codes
▪ Price to pay for coding in 𝑝2 rather than 𝑝1

▪ Compare with optimum for 𝑝1
▪ Measures how far distribution 𝑝2 is from 𝑝1



Kullback-Leibler Divergence

Kullback-Leibler Divergence

𝐾𝐿 𝑝1 ∥ 𝑝2 = 𝐻 𝑝1 , 𝑝2 − 𝐻 𝑝1
Idea

▪ Compare two distributions

▪ Loss in coding efficiency [in bits]

▪ Extra message length (Alice → Bob)

▪ Just cross-entropy minus baseline 𝐻 𝑝1, 𝑝1

▪ Again, not symmetric 

first argument
data distribution

second argument
coding distribution

output
increase in coding length



KL and JS Divergences

Kullback-Leibler Divergence

▪ Distance ≥ 0

▪ Zero distance means same distribution

▪ Not symmetric:

𝐾𝐿 𝑝1 ∥ 𝑝2 different from 𝐾𝐿 𝑝2 ∥ 𝑝1

▪ “Almost a metric”

Jensen–Shannon Divergence

▪ Symmetrized version

▪ 𝐽𝑆𝐷 𝑝1 ∥ 𝑝2 ≔
1

2
𝐾𝐿 𝑝1 ∥ 𝑝2 +

1

2
𝐾𝐿 𝑝2 ∥ 𝑝1



What kind of metric is this?

KL-Divergence

(55)

𝐾𝐿 𝑝1 ∥ 𝑝2 = ෍

𝑖=1

𝑛

𝑝1 𝑥𝑖 log2
𝑝1 𝑥𝑖
𝑝2 𝑥𝑖

= ෍

𝑖=1

𝑛

𝑝1 𝑥𝑖 log2 𝑝1 𝑥𝑖 − log2 𝑝2 𝑥𝑖

difference in Information
for the same outcomes 𝑥𝑖

weighted by probability
of occurrence in 𝑝1



What kind of metric is this?

KL-Divergence

(56)

𝐾𝐿 𝑝1 ∥ 𝑝2 = ෍

𝑖=1

𝑛

𝑝1 𝑥𝑖 log2 𝑝1 𝑥𝑖 − log2 𝑝2 𝑥𝑖

difference in Information
for the same outcomes 𝑥𝑖

weighted by probability
of occurrence in 𝑝1

p(x)

x1 x2 x3 xn



Mutual Information

Mutual Information

𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌

▪ Entropy of the marginal distributions
minus that of the joint distribution



Mutual Information

Marginal & Joint Histograms

▪ Consider 𝐻(𝑋), 𝐻(𝑌), 𝐻(𝑋, 𝑌)

𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌

𝑋

𝑌

𝑝 𝑋, 𝑌

𝑝 𝑋

𝑝 𝑌



Mutual Information

Alternative Formulas

𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌

= 𝐻 𝑋 − 𝐻 𝑋 𝑌

= 𝐻 𝑌 − 𝐻 𝑌 𝑋

= −෍

𝑖=1

𝑛𝑥

෍

𝑗=1

𝑛𝑦

𝑝 𝑥𝑖 , 𝑦𝑗 log2
𝑝 𝑥𝑖 , 𝑦𝑗

𝑝 𝑥𝑖 𝑝 𝑦𝑗

= 𝐾𝐿 𝑝 𝑥𝑖 , 𝑦𝑗 ∥ 𝑝 𝑥𝑖 𝑝 𝑦𝑗



Mutual Information

As a measure of dependency

▪ Most general gradual measure of dependency

▪ 𝐼 𝑋; 𝑌 = 0 ⇔ 𝑋, 𝑌 are independent

▪ 𝐼 𝑋; 𝑌 → 𝐻 𝑋 + 𝐻 𝑌 : “maximally” dependent

▪ Joint histogram becomes very sparse

▪ 𝐻(𝑋, 𝑌) very small

– Zero not possible for discrete Ω if 𝐻 𝑋 ,𝐻 𝑌 > 0

– Limit for #Ω 𝑋 , #Ω 𝑌 → ∞

▪ Alternative measures such as correlation miss cases

▪ Example: Linear correlation iff PCA spectrum flat

▪ Does (e.g.) not detect quadratic dependencies

(60)



Computation

Actual Histograms

▪ Compute 𝐻(𝑋), 𝐻(𝑌), 𝐻(𝑋, 𝑌)

▪ Costly: O( Ω𝑋 × Ω𝑌 ) (e.g., exponential in dimension)

𝑋

𝑌

𝑝 𝑋, 𝑌

𝑝 𝑋

𝑝 𝑌



Computation

Parametric Distributions

▪ Closed-Form Expressions for Gaussians etc.

▪ 𝐻 𝒩𝜇,Σ =
1

2
ln 2𝜋𝑒 𝑑 det Σ (differential entropy)



Computation

Approximations

▪ Sample-based Entropy

▪ Measure only on input/training data of a DA/ML application

▪ Nearest-neighbors-methods

▪ Lower-bounds by “variational Bayes”

▪ Build neural network 𝑓: predicting 𝑌 from 𝑋 (or vice versa)

▪ Least-squares fit 𝑌 − 𝑓 𝑋 2

▪ Entropy of Gaussian error (covariance of errors)

– Gives an upper bound of 𝐻(𝑋, 𝑌)

– Upper bound of entropy of the joint Histogram

– Has negative contribution, i.e.: lower bound for 𝐼(𝑋; 𝑌)



Application

Softmax Regression

(64)



Multi-Label Case

Task

▪ 𝑛 Data points, indexed by 𝑖 = 1…𝑛

▪ Data 𝐱𝑖 ∈ ℝ𝑑 with…

▪ …label vectors 𝐲𝑖 ∈ 0,1 𝐾

– “One hot vectors”

▪ Learn class-specific parameters 𝛉1, … , 𝛉𝐾 ∈ ℝ𝑑

Notation

▪ 𝑦 𝐱 ∈ {1,… , 𝐾} denotes class index of input 𝐱

(65)



Multi-Label Case

Unnormalized classifier

𝐮𝛉 𝐱 =

− 𝛉1 −

⋮
− 𝛉𝑘 −

𝐱

Class probabilities via softmax 𝛔:ℝ𝐾 → ℝ𝐾

𝜎𝑚 𝐲𝑖 ≔
𝑒𝑦𝑚

∑𝑗=1
𝐾 𝑒𝑧𝑗

,

𝑓𝛉 𝐱 ≔
𝑃 𝑦 𝐱 = 1

⋮
𝑃 𝑦 𝐱 = 𝐾

=
𝜎1 𝐮𝛉(𝐱)

⋮
𝜎𝐾 𝐮𝛉(𝐱)

(66)



Softmax Regression

MLE Training via

(67)

𝛉= arg max
𝛉∈ℝ𝐾×𝑑

ෑ

𝑖=1

𝑛

𝑓𝛉 𝐱 𝑦(𝐱)

= arg min
𝛉∈ℝ𝐾×𝑑

෍

𝑖=1

𝑛

− log 𝑓𝛉 𝐱 𝑦(𝐱)

= arg min
𝛉∈ℝ𝐾×𝑑

෍

𝑖=1

𝑛

log ෍

𝑚=1

𝐾

𝑒𝛉𝑚
𝑇 ⋅𝐱

normalization

− 𝛉𝑦 𝐱
𝑇 ⋅ 𝐱

neg −log−likelihood
of correct class



Cross Entropy Loss

Alternative formulation

▪ One-hot vectors 𝐲𝑖 are “ground truth” distribution

▪ Over classes 1…𝐾

▪ Training: Make output distribution 𝑓(𝐱) similar to 𝐲𝑖
▪ Use KL-divergence to compare

𝐾𝐿 𝐲𝑖 ∥ 𝑓𝜃 𝐱𝑖 =෍

𝑖=1

𝑛

𝐲𝑖 log2
𝐲𝑖

𝑓𝜃 𝐱𝑖

▪ We will see: Minimization same for cross-entropy

𝐻 𝐲𝑖 , 𝑝2 = −෍

𝑖=1

𝑛

𝐲𝑖 log2 𝑓𝜃 𝐱𝑖

▪ Which is per-class maximum-likelihood

(68)



KL as Cross Entropy as MLE

arg min
𝛉

𝐾𝐿 𝐲𝑖 ∥ 𝑓𝛉 𝐱𝑖

= arg min
𝛉

෍

𝑘=1
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Thoughts About

The Nature of 
Information

what
information?



Properties of Mutual Information

Bijection invariant

▪ Discrete Ω 𝑋 = 1,… , 𝑛𝑋 , Ω 𝑌 = 1,… , 𝑛𝑌

▪ For bijective 𝜋𝑋: Ω 𝑋 → Ω 𝑋 , 𝜋𝑌: Ω 𝑌 → Ω 𝑌

𝐼 𝑋; 𝑌 = 𝐼 𝜋𝑋 𝑋 ; 𝜋𝑌 𝑌

▪ Invertible functions do not change information

𝑋

𝑌

𝑝 𝑋, 𝑌

𝑝 𝑋

𝑝 𝑌



Bijection Invariance

Applies to other measures

▪ Entropy

𝐻 𝑋 = 𝐻 𝜋 𝑋

For any bijection 𝜋: 𝑋 → 𝑋

▪ Proof

𝐻 𝑋 =෍

𝑖=1

𝑛

𝑝 𝑥𝑖 log 𝑝(𝑥𝑖)

=෍

𝑖=1

𝑛

𝑝 𝑥𝜋 𝑖 log 𝑝(𝑥𝜋 𝑖 )

= 𝐻 𝜋 𝑋

(73)

(identifying 𝑥𝑖 with 𝑖)



Bijection Invariance

Information theoretic measures

▪ Entropy

▪ Mutual Information

are invariant under

▪ Bijective mappings,

▪ i.e.: application of “information preserving functions”

▪ Applies to divergences only if both 𝑝1, 𝑝2 are 
transformed the same way

▪ Cross-Entropy, KL-Divergence, J-S-Divergence

(74)



Data Processing

Deterministic Information Processing

▪ Arbitrary function

𝑓: Ω 𝑋 → Ω 𝑌

▪ We can only lose information

𝐻 𝑋 ≥ 𝐻 𝑓 𝑋

(75)



Data Processing

(Probabilistic) Data Processing Inequality

▪ Random variables with densities

𝑋, 𝑌, 𝑍 with 𝑝(𝑥, 𝑦, 𝑧)

▪ Chain-like dependency structure

𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑧|𝑦 ⋅ 𝑝 𝑦|𝑥 ⋅ 𝑝 𝑥

▪ Data processing inequality

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍

(76)

XYZ
𝑝 𝑧|𝑦 𝑝 𝑦|𝑥 btw, this is called

a “Markov chain”

𝑝 𝑥



Information

Information

▪ Originate from random process 𝑋

Processing / Calculating

▪ Deterministic processes can only reduce information

▪ Probabilistic processes can add information,
but cannot add information on original 𝑋

▪ Bijections (invertible maps) do not change anything

(77)



Probabilistic Evolution of Information

Example
▪ Trajectory of a projectile

▪ Imprecision due to limited knowledge (wind)

▪ If motion was deterministic
▪ No information loss: ∀𝑡 ≥ 0:𝐻(𝑋𝑡) = 𝐻(𝑋0)

– Physics is reversible (≡ bijective)

– But we have incomplete knowledge
(78)

𝑋0: Initial motion of projectile

𝑋1, … , 𝑋𝑛: further trajectory

𝑝 𝑋𝑡+1 𝑋𝑡
models physics
+ randomness

(e.g. air turbulence)



Probabilistic Evolution of Information

With random perturbations

▪ Old information gradually replaced
by new randomness

▪ Loss: 𝑋𝑡 cannot be fully reconstructed from 𝑋𝑡+1

▪ Gain: 𝑋𝑡 not fully predictable from 𝑋𝑡−1 (new random info.)

▪ Information is probabilistic

▪ Available knowledge reduces entropy of 𝑃 𝑋𝑡

(79)

𝑋𝑡 𝑋𝑡+1𝑋𝑡−1



In one sentence

Information in machine learning

Being able to predict (e.g., the future)

means

reducing the uncertainty/entropy

(of the probability distribution of the outcome)

(80)

𝑋𝑡 𝑋𝑡+1𝑋𝑡−1



So – What is 
Information?



What is Information?

Bayesian Probabilities → Information

▪ One time-events

▪ Model uncertainty & subjective knowledge

▪ Information = “I learned something new”

(82)

*#$ ?!!?!!

Frequentist Information Bayesian Information?

(Note: Personal view/interpretation)



Summary



Divergences: Comparing Distributions

Divergences

▪ Cross entropy (a.k.a. relative entropy)

▪ KL divergence & JS divergence

▪ Mutual Information

Computation

▪ Analytical solution

▪ Numerics: very expensive

▪ Linear/quadratic in Ω usually means exponential in input

▪ There are many dirty tricks / approximations

(84)



Divergences: Comparing Distributions

What do they do?

▪ Measure differences in distributions wrt. information

▪ Pure “information”
▪ Every bit of random noise counts

X-Entropy, KL/JS-Divergence

▪ Compare information of corresponding outcomes

Mutual Information

▪ MI is fully bijection invariant (XE/KL/JS are not!)

Use with care

▪ Pure information is not always what you want!
(85)


