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Recap: Previous Video

Probability Theory

▪ Mathematical Axioms
▪ Basis for all modeling of uncertainty

▪ Frequentist Interpretation / Application
▪ Repeatable experiments

▪ Bayesian Interpretation / Application
▪ General believes

▪ Might be subjective

(2)



Hertzman’s Principle #1

Laplace (1814)

“Probability theory is nothing more than
common sense reduced to calculation”

Pierre-Simon Laplace
(1749–1827)

[im
age: W

ikipedia]

from Hertzman’s course notes: [http://www.dgp.toronto.edu/~hertzman/ibl2004/bayes2004.pdf] (3)



Statistics & Machine Learning

• Machine Learning Basics

• Bayesian Inference for ML

• Learning & Inference

Video #04

(4)



Machine Learning
& Bayesian Statistics



Machine Learning & Statistics

What is machine learning?

▪ Derive solution from examples (data)

▪ “Data driven” computer science

▪ Given a task and examples

▪ Statistical ML: Use statistical techniques

▪ “Real world” data such as photos, sound, etc.,
rather than curated data bases

▪ Algorithmic induction

(6)



Machine learning

Typical Tasks

▪ Regression

learn function 𝑓: 𝑋 → 𝑌

▪ Classification

special case – 𝐵 is a set of categories

▪ Density reconstruction

learn probability distribution 𝑝 𝐱 , 𝐱 ∈ 𝑋

(7)



Machine learning

Typical Tasks

▪ Compression / simplification / structure discovery
▪ Dimensionality reduction

▪ Clustering

▪ Latent (unobserved) variable discovery

▪ …and the similar

▪ Control
▪ Learn decision making

– Steer some agent, or self-driving car

– Play chess, GO, Robo-Soccer

▪ Several actions, long term consequences

▪ There are probably more

(8)



Training Data

How / which data is provided?

▪ Supervised learning
▪ Full “example solutions”

▪ Example: Regression from pairs 𝐱𝑖 , 𝐲𝑖 𝑖=1..𝑛

▪ Unsupervised learning
▪ Unannotated data, infer solution from structure

▪ Example: Density reconstruction from points 𝐱𝑖 𝑖=1..𝑛

▪ Semi-supervised learning
▪ Only some examples are “full solutions”

▪ Ex.: Classification from 𝐱𝑖 𝑖=1..𝑛 and 𝐱𝑖 , 𝐲𝑖 𝑖=1..𝑚, usually 𝑚 ≪ 𝑛

▪ Reinforcement learning: 
▪ Qualitative feedback, only after a while

(9)



Statistical Approach

Meta-Algorithm

▪ Obtain training data

▪ Fit probabilistic model to the data

▪ Use probabilistic model to solve problem

▪ Inferring solutions: Minimize risk of errors / loss

(10)



Statistical Approach

Goals

▪ Objective: Generalizability

▪ Learned model should work on non-training data

▪ of the same statistics as the training data

▪ Usual approach

▪ Practical objective: “Fit model well to training data”

▪ Control for “overfitting” (being “too specific”)

(11)



Machine Learning
& Bayesian Statistics

Example: Classification



Example Application

Machine Learning Example

▪ Classification

Application Example

▪ Automatic scales at
supermarket

▪ Detect type of fruit
using a camera

Banana 1.25kg

Total 13.15 €

camera

(13)



Learning Probabilities

Toy Example

▪ Distinguish pictures of
oranges and bananas

▪ 100 training pictures each

▪ Find rule to distinguish pictures

(14)



Learning Probabilities

Very simple approach

▪ Compute average color

▪ Learn distribution

red

green

(15)



Machine Learning:

“Generative Models”



Learning Probabilities

red

green

(17)



Density Reconstruction

red

green

(18)



Bayesian Risk Minimization

red

green

?

?

?

“banana”
(p=51%)

“banana”
(p=90%)

“orange”
(p=95%)

banana-orange
decision 
boundary

(19)



Generative Learning

Very simple idea

▪ Collect data

▪ Estimate probability distribution

▪ Use learned probabilities for classification

▪ Always decide for the most likely case
(largest probability)

Easy to see

▪ If probability distributions is known exactly:
decision is optimal (in expectation)

▪ “Minimal Bayesian risk classifier”
(20)



Simple Algorithm: Histograms

red

green
dim() = 2..3

(21)



Simple Algorithm: Fit Gaussians

red

green

(22)



Machine Learning:

“Discriminative Models”



Idea: Why all the fuss?

red

green

we only need the
banana-orange

decision 
boundary

(24)



k-Nearest Neighbors

red

green

2/11 banana

(25)



Linear Classifier (e.g. SVM)

red

green

hyperplane
separator
SVM: large margin

(26)



General Classifiers

red

green

separating
manifold

(27)



Generalization



Unreliable Models

Previous example

▪ Betting on stock prices

▪ Polynomial fitting

▪ Seven observations

Degree 𝑘 polynomial

▪ 𝑘 = 6 fits any data

▪ Unique model

▪ But no predictive power

▪ 𝑘 = 5,4,3…? fits any data

▪ More or less reliable

time

pr
ic

e short the
stock!

time

pr
ic

e

(to the
moon!)

buy the
stock!

(29)



We Care (Only) About Generalization

Performance on Training Data

▪ Might be misleading

▪ For example:

▪ High degree polynomial fits perfectly

▪ Very unlikely to fit in general

Problem

▪ How indicative is training performance for
general performance (off-training data)?

▪ Big error for complex models, small error for small models

▪ We will make this quantitative soon

(30)



Bias Variance Trade-Off

(31)

error

model complexity

model weakness
in fitting data

error in finding
good fit

generalization
error

we can’t
measure
if it fits

we can’t
fit



Summary
Video #04a



Summary

Machine Learning

▪ Inductive reasoning: Learn solutions from examples

▪ Training vs. generalization: Beware of overfitting

Machine Learning & Statistics

▪ Build suitable probabilistic model

▪ Determine probability distributions from examples

Two main approaches

▪ Generative: model statistics of everything

▪ Discriminative: Focus on task (classification)
(33)
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Statistics & Machine Learning

• Machine Learning Basics

• Bayesian Inference for ML

• Learning & Inference
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Bayes’ Rule



Derivation of Bayes’ rule

Bayes’ rule

Derivation

▪ Pr(AB) = Pr(A|B) · Pr(B)
Pr(AB) = Pr(B|A) · Pr(A)

 Pr(A|B) · Pr(B) = Pr(B|A) · Pr(A)

Pr(A|B) = 
Pr(B|A)·Pr(A)

Pr(B)

(37)



Bayes for Densities

Bayes’ rule for densities

𝑝(𝑥|𝑦) = 
𝑝(𝑦|𝑥) · 𝑝(𝑥)

𝑝(𝑦)

= 
𝑝(𝑦|𝑥) · 𝑝(𝑥)

න
𝑥∈Ω 𝑋

𝑝(𝑦|𝑥)𝑝(𝑥)𝑑𝑦

(38)



Bayes Rule for Densities: Visualization

𝑎

𝑏

𝑝 𝑎

𝑝 𝑏

𝑝 𝑎, 𝑏

(39)



Bayes Rule for Densities: Visualization

𝑎

𝑏

𝑝 𝑎

𝑝 𝑏

𝑝 𝑎, 𝑏

𝑝 𝑎|𝑏 =
𝑝 𝑎, 𝑏

𝑝 𝑏

𝑝 𝑏|𝑎 =
𝑝 𝑎, 𝑏

𝑝 𝑎

𝑝 𝑎|𝑏 =
𝑝 𝑏|𝑎 𝑝 𝑎

𝑝 𝑏

𝑝 𝑏 = න
𝑎

𝑝 𝑎, 𝑏 𝑑𝑎



Bayesian Statistics for ML
A Practical How-To

Recommended Reading:
http://www.dgp.toronto.edu/~hertzman/ibl2004/notes.pdf



Bayesian Toolset

Rules

▪ Normalization

න
Ω

𝑝 𝐱 𝑑𝐱 = 1 , න
Ω

𝑝 𝐱|𝐲 𝑑𝐱 = 1

▪ Marginalization

𝑝 𝐱 = න
Ω

𝑝 𝐱, 𝐲 𝑑𝐲

(42)



Bayesian Toolset

More rules…

▪ Product rule

𝑝 𝐱, 𝐲 = 𝑝 𝐱 𝐲 ⋅ 𝑝 𝐲

𝑝 𝐱, 𝐲, 𝐳 = 𝑝 𝐱 𝐲, 𝐳 ⋅ 𝑝 𝐲, 𝐳
= 𝑝 𝐱 𝐲, 𝐳 ⋅ 𝑝 𝐲 𝐳 ⋅ 𝑝 𝐳

▪ Product rule: condition on any (sub-) tuple(s)

𝑝 𝐱, 𝐲, 𝐳 = 𝑝 𝐱, 𝐲 𝐳 ⋅ 𝑝 𝐳
= 𝑝 𝐱 𝐲, 𝐳 ⋅ 𝑝 𝐲|𝐳 ⋅ 𝑝 𝐳

(43)



Bayesian Toolset

Rules

▪ Marginalization (e.g. “nuisance” parameters)

𝑝 𝐱 = න
Ω 𝜑

𝑝 𝐱, 𝜑 𝑑𝜑

▪ Integrate over everything you do not care about

▪ If too costly: maximize with well-designed prior

▪ Direct observation

𝑝 𝐱|𝐲 =
𝑝 𝐱, 𝐲

𝑝 𝐲
▪ We have seen / we know 𝐲

▪ Divide joint pd 𝑝 𝐱, 𝐲 by 𝑝 𝐲 to obtain conditional pd

(44)



Bayesian Toolset

When to use what?

▪ Marginalization

𝑝 𝐱 = න
Ω 𝐲

𝑝 𝐱, 𝐲 𝑑𝐲

▪ 𝐲 could be anything

▪ Want likelihood for 𝐱 (overall, any 𝐲)

▪ Conditioning

𝑝 𝐱|𝐲 =
𝑝 𝐱, 𝐲

𝑝 𝐲
▪ We have seen / we know 𝐲!

▪ 𝐲 is fixed, we want to update
(renormalize) distribution

𝑦

𝑥
𝑝 𝑥

𝑝 𝑥, 𝑦

Marginalization

∫ 𝑑𝑦

𝑦

𝑥

𝑝 𝑦 𝑝 𝑥, 𝑦

Conditioning

𝑝 𝑥|𝑦

(45)



Bayesian Toolset
𝑝 𝐱, 𝐲Bayes’ Rule

𝑝 𝐱 𝐲 =
𝑝 𝐲 𝐱 ⋅ 𝑝(𝐱)

𝑝 𝐲

▪ “Inverse” problem

▪ We know conditional & marginal probabilities

▪ We want to know the inverse conditional

▪ Determine 𝑝 𝐱 𝐲 from 𝑝 𝐲 𝐱 , 𝑝(𝐱)

Bayes vs. simple conditioning

▪ We do not have 𝑝 𝐱, 𝐲 directly

▪ But we can model / observe 𝑝 𝐲 𝐱 , 𝑝(𝐱)

(46)



Example

Measurement device

▪ State of measured object: 𝐗

▪ Measured data: 𝐃

We can model how device works

▪ “Likelihood” 𝑝 𝐃 𝐗

We have a rough idea how 𝐗 looks like

▪ “Prior” 𝑝 𝐗

With this, we can compute inverse 𝑝 𝐗 𝐃

(47)

What is 𝐗 given data 𝐃?

𝑝 𝐗 𝐃



Hertzman’s Principles

Laplace (1814)

“Probability theory is nothing more than
common sense reduced to calculation”

Further principles

▪ Build complete model

▪ Infer knowledge (given observations)

▪ Bayes’ Rule to infer from observation

▪ Marginalize to remove unknown parameters

Pierre-Simon Laplace
(1749–1827)

[im
age: W

ikipedia]

from Hertzman’s course notes: [http://www.dgp.toronto.edu/~hertzman/ibl2004/bayes2004.pdf] (48)



Likelihoods & Priors

Merging Information



Bayesian Models

Scenario

▪ Customer picks banana       (X = 0)   or orange      (X = 1)

▪ Object X creates image D

Modeling

▪ Given image D (observed), what was X (latent)?

𝑃 𝑋 𝐷 =
𝑃 𝐷 𝑋 𝑃(𝑋)

𝑃 𝐷

𝑃 𝑋 𝐷 ~𝑃 𝐷 𝑋 𝑃(𝑋)

(50)



Relation

Easy to confuse

▪ 𝑝 𝑥|𝑦 and 𝑝 𝑥, 𝑦 with 𝑦 fixed

Difference

▪ 𝑝 𝑥|𝑦 =
𝑝 𝑥,𝑦

𝑝 𝑦
=

𝑝 𝑥,𝑦

∫Ω 𝑥 𝑝 𝑥,𝑦 𝑑𝑥

▪ Conditional probability is normalized

▪ Integrates to one

▪ Careful for varying 𝑦!

▪ 𝑝 𝑥|𝑦 ∼ 𝑝 𝑥, 𝑦 (not proportional in 2D!) 

▪ Normalization varies with 𝑦!

(51)



Bayes Rule for ML

Variables: Explanation X, data D, model 𝜃

Learning 𝜃 given training pairs 𝐷, 𝑋

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

Inferring 𝑋 from data 𝐷 given model 𝜃

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

𝑃𝜃 𝑋 𝐷 ~𝑃𝜃 𝐷 𝑋 𝑃(𝑋)

independent of 𝑋

(52)



Bayesian Models

Statistical Model

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷
posterior evidence

priorlikelihood

(53)



Bayesian Models

Our Classifier

fruit → img freq. of fruits

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷
fruit image
probability

posterior

(54)



Bayesian Models

Generative Model

Properties

▪ Comprehensive model:
Full description of how data is created

▪ Might be complex (how to create images of fruit?)

fruit → img freq. of fruits

learn learn

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

compute / ignore
(compute from
learned likelihood)

compute fruit image
probability

posterior

(55)



Bayesian Models

Discriminative Model

Often easier to learn

▪ Learn mapping from phenomenon to explanation

▪ Less “powerful”: needs less data

▪ Not trying to explain the whole phenomenon

▪ Can use reduced representation / features

fruit → img freq. of fruits

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷
fruit image
probability

learn directly

posterior

(56)



Generative Models

𝑥

𝐷

𝑝 𝑋

𝑝 𝐷

𝑝 𝑋, 𝐷

𝑝 𝑋|𝐷 =
𝑝 𝑋, 𝐷

𝑝 𝐷

𝑝 𝐷|𝑋 =
𝑝 𝑋,𝐷

𝑝 𝑋

(57)



Generative Models

𝑋

𝐷

𝑝 𝑋

𝑝 𝐷

𝑝 𝐷|𝑋

modeled
directly

modeled
directly

(58)



Generative Models

𝑋

𝐷

𝑝 𝑋

𝑝 𝑋|𝐷 ~ 𝑝 𝐷|𝑋 𝑝 𝑋

𝑝 𝐷|𝑋

modeled
directly

modeled
directly

(59)



Generative Models

𝑋

𝐷

𝑝 𝑋

𝑝 𝐷

𝑝 𝑋, 𝐷

𝑝 𝑋|𝐷 ~ 𝑝 𝐷|𝑋 𝑝 𝑋

𝑝 𝐷|𝑋

modeled
directly

modeled
directly

(60)



Discriminative Model

𝑋

𝐷

𝑝 𝑋

𝑝 𝐷

𝑝 𝑋, 𝐷

𝑝 𝑋|𝐷

𝑝 𝐷|𝑋

modeled
directly

(61)



Discriminative Model

𝑋

𝐷

𝑝 𝑋

𝑝 𝐷

𝑝 𝑋, 𝐷

𝑝 𝑋|𝐷

𝑝 𝐷|𝑋

modeled
directly

For example:
Regression / prediction
from sparse / low-dim.

features

𝑝 𝑋, 𝐷
not

modeled

(62)



Autoencoder
(PCA in latent space)

WGAN-GP
(generative adversarial network)

Example: Generative Models

[results courtesy of D. Schwarz, D. Klaus, A. Rübe]
(63)



Discriminative Models

(64)

City

Airplane

House

Canyon

Church

Teleferic

Roller Coaster

Piano

Village

[not an actual classification result, just photos]



Summary
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Summary

Bayesian Toolset

▪ Conditioning: We know something

▪ Marginalization: We disregard something

▪ “Bayesian inference”:
Got a question, marginalize over everything not asked for

▪ Chain rule: Joint density from conditional & marginal

▪ Build 𝑝(𝑥, 𝑦) from 𝑝 𝑥 𝑦), 𝑝 𝑥

▪ Stepwise modeling

▪ Bayes rule: Flip conditional

▪ Build 𝑝 𝑦, 𝑥 from 𝑝 𝑥 𝑦 , 𝑝 𝑦

▪ Interpret measurement/observation

(67)
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Statistics & Machine Learning

• Machine Learning Basics

• Bayesian Inference for ML

• Learning & Inference

Video #04



Let’s say we have a model already…

Inference



Inference

Model

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

Situation

▪ We know the model parameters 𝜃 (e.g. classifier par.)

▪ Fixed during inference

▪ Determined during learning

▪ We have observed data 𝐷 (e.g. photo of fruit)

▪ We want to infer 𝑋 (e.g. class of fruit)

(71)



Three Variants

Model

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

Inference Schemes

▪ Maximum Likelihood (simplest)

▪ Maximum-a-posteriori (with prior)

▪ Bayesian inference (most fancy, but often intractable)

(72)



Maximum Likelihood
Estimation



Maximum Likelihood

Fixed Parameters 𝜃

ML-Estimation (MLE)

▪ Only data likelihood, maximize for best 𝑋
▪ Ignore prior, or uniform (pseudo-) prior

▪ Model must be from restrictive family

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

~𝑃𝜃 𝐷 𝑋 𝑃𝜃 𝑋

= 𝑃𝜃 𝐷 𝑋

෠𝑋 = arg max
𝑋∈Ω 𝑋

𝑃𝜃 𝐷 𝑋

data term
(likelihood)

only

(74)



Maximum-A-Posteriori (MAP)
Estimation



Maximum-A-Posteriori (MAP)

Fixed model parameters 𝜃

MAP-Estimation

▪ Maximize for best 𝑋
▪ Prior 𝑃𝜃(𝑋) non-trivial: 𝑋 can be from overly flexible family

▪ Prior will fill in missing information

▪ Can solve ill-posed problems, weak data term 𝑃𝜃 𝐷 𝑋

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

~𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

෠𝑋 = arg max
𝑋∈Ω 𝑋

𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

posterior distribution
(unnormalized)

(76)



Inference

Numerical trick for MAP/MLE

▪ Obtain 𝑋 by maximizing

𝑃 𝑋 𝐷 ~𝑃 𝐷 𝑋 𝑃(𝑋)

▪ Neg-log likelihoods: 𝐸 ⋅ = − ln𝑃 ⋅

𝐸 𝑋 𝐷 ~𝐸 𝐷 𝑋 + 𝐸(𝑋)

Useful for i.i.d. data

𝑃 𝐷 𝑋 = ෑ

𝑖=1

𝑛

𝑃 𝐝𝑖 𝑋 → 𝐸 𝐷 𝑋 = ෍

𝑖=1

𝑛

𝐸 𝐝𝑖 𝑋

notation 𝐸 ⋅
used in Mod-1

(variational modeling)

(77)



“Bayesian Inference”



Bayesian Inference

Marginalization: Solution is the mean

ത𝑋 = 𝔼𝑋~𝑃𝜃 𝑋 𝐷 𝑋

= න
𝐱∈Ω 𝑋

𝐱 ⋅
𝑃𝜃 𝐷 𝐱 𝑃𝜃(𝐱)

𝑃𝜃 𝐷
𝑑𝐱

Determine 𝑋 = ത𝑋 by marginalization

▪ Average all solutions (can be expensive)

▪ Weight by posterior

▪ Same as estimation for simple posteriors (e.g., Gaussian)

▪ Requires “proper” normalization; no neg-log tricks
(79)



ML & MAP Learning
(ML/MAP Parameter Estimation)



Maximum Likelihood

Maximum likelihood parameter estimation

𝑃𝜃 𝑋, 𝐷 = 𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

መ𝜃 = arg max
𝜃∈Ω 𝜃

𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

Idea

▪ Maximize likelihood of observed data under model

▪ Attention: Need properly normalized densities!

– Normalization usually depends on 𝜃

– Thus, cannot be neglected

– Often serious computational problem

▪ Optional prior on 𝑋, no prior on 𝜃

properly normalized,
∫ = 1

(81)



Maximum A Posteriori

Maximum a posteriori parameter estimation

𝑃 𝜃| 𝑋, 𝐷 =
𝑃 𝑋,𝐷 𝜃 𝑃 𝜃

𝑃 𝑋, 𝐷

መ𝜃 = arg max
𝜃∈Ω 𝜃

𝑃 𝑋, 𝐷 𝜃 𝑃 𝜃

Idea

▪ Add a prior on 𝜃

▪ Use Bayes‘ rule to determine posterior on 𝜃

▪ Again, 𝑃 𝑋, 𝐷 𝜃 must be normalized correctly

▪ Scale factor usually depends on 𝜃

properly normalized,
∫ = 1

often 𝑃 𝑋, 𝐷 𝜃 = 𝑃 𝐷 𝑋, 𝜃 𝑃 𝑋 𝜃 is used

(82)



Learning via
Bayesian Inference



Bayesian Inference

Bayesians just ask simple*) questions:

ҧ𝜃 = 𝔼 𝜃 ⋅ 𝑃 𝜃 𝐷

If you wanted Bayesian estimates:

መ𝜃 = arg max
𝜃

𝑃 𝜃 𝐷

▪ This is not the same as „simple“ MAP

▪ We will see later why / how this works differently

*) Computational costs might skyrocket. Terms and limitations apply.



Bayesian Inference

Bayesians just ask simple*) questions:

*) Computational costs might skyrocket. Terms and limitations apply.

𝑃 𝜃 𝐷 = 𝑃 𝐷 𝜃 𝑃 𝜃 /𝑃(𝐷)

“marginal likelihood”
(given θ)

prior on θ



Bayesians just ask simple*) questions:

𝑃 𝜃 𝐷 ~ 𝑃 𝜃 න
Ω 𝑋

𝑃 𝐷, 𝑋 𝜃 𝑑𝑋

Bayesian Inference

(86)

Marginal Likelihoodmarginalization
of latent variable X



Bayesian Inference

Bayesians just ask simple*) questions:

Pros & Cons
▪ Good: Improved generalization behavior (more later)

▪ Bad: Integral over inferred model 𝑋 might be infeasible
(87)

chain rule

𝑃 𝜃 𝐷 ~ 𝑃 𝜃 න
Ω 𝑋

𝑃 𝐷, 𝑋 𝜃 𝑑𝑋

~ 𝑃 𝜃 න
Ω 𝑋

𝑃 𝐷 𝑋, 𝜃 𝑃 𝑋 𝜃 𝑑𝑋

prior on θ

likelihood prior on X

Marginal Likelihood



Remark: Break in Notation

Break in Naming

▪ No longer looking for a probabilistic mapping

𝐷 → 𝑋, i.e. learn P 𝑋 𝐷

▪ In the discussion of Bayesian learning, only 𝐷 is data

▪ We have computed

𝑃 𝜃 𝐷 ~ 𝑃 𝜃 න
Ω 𝑋

𝑃 𝐷, 𝑋 𝜃 𝑑𝑋

▪ So 𝑋 is not fixed

▪ Only 𝐷 is training data

▪ Otherwise, substitute training data 𝐷 by pairs 𝐷, 𝑋

▪ Likelihood must measure the fit
(88)



Simple question:

𝑃 𝜃 𝐷, 𝑋 ~ 𝑃 𝜃 න
Ω 𝐷,𝑋

𝑃 𝐷, 𝑋 , 𝐷′, 𝑋′ 𝜃 𝑑 𝐷′, 𝑋′

So, again

(89)

Marginal Likelihood



Bayesian Inference

Calculation (notation tedious):

Looks awful, but is actually simple

▪ Integrate over likelihood of predictions

(90)

𝑃 𝜃 𝐷, 𝑋 ~ 𝑃 𝜃 න
Ω 𝐷,𝑋

𝑃 𝐷, 𝑋 , 𝐷′, 𝑋′ 𝜃 𝑑 𝐷′, 𝑋′

= 𝑃 𝜃 න
Ω 𝑋

𝑃 𝐷′, 𝑋′ 𝐷, 𝑋 , 𝜃 𝑃 𝐷′, 𝑋′ 𝜃 𝑑 𝐷′, 𝑋′



Summary
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Summary

Answers to questions

▪ Maximum Likelihood Estimation (MLE)

▪ Maximum A Priori (MAP) Estimation

▪ Bayesian inference

Two modes

▪ Inference (fixed model parameters 𝜃)

▪ Training/learning (of 𝜃)

(96)



Computational Hurdles

General Model

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

MLE/MAP Inference (𝜃 fixed)

▪ Can ignore denominator

▪ Can use unnormalized densities

MLE/MAP Learning (𝜃 fixed)

▪ Denominator counts (usually depends on 𝜃)

▪ Careful with normalization (dependence on 𝜃)

MLE / MAP

Maximum search 
on log-density

(97)



Computational Hurdles

General Model

𝑃𝜃 𝑋 𝐷 =
𝑃𝜃 𝐷 𝑋 𝑃𝜃(𝑋)

𝑃𝜃 𝐷

Bayesian Inference of 𝑋/𝜃

▪ Need high-dimensional integration

▪ Need to be careful to weight everything correctly

▪ Normalization of numerator affects weight

▪ Log-space computations usually do not help

▪ Learning:

Again – be careful with dependencies on 𝜃

Bayesian 
Inference

Integration

(98)


