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What happened so far...

Probability model
= Additive probability mass / density

= Empirical frequency approaches
density with high likelihood

Now: Empirical sciences

= What can we learn
from observations?

= How? (Algorithms)




HOW can wWe use
Probability?

Again, two schools of though.



What is Probability?

Question
= What is probability?

Example
= A bin with 50 red and 50 blue balls
= Person A takes a ball

= Question to Person B:
What is the probability for red?

What happened
= Person A took a blue ball
= Not visible to person B




Philosophical Debate...

An old philosophical debate
= What does “probability” actually mean?

= Can we use probabilities for
= Events with fixed, already determined outcome?
- But we do not know it for sure
= Events in the future that will happen only once?



Philosophical Debate...

“Fixed outcome” examples
= Probability for: life on mars
= Probability that the code you wrote is correct

In the future, but not repeatable
= Probability for: rainfall tomorrow
= Probability for: Next season of SciFi-series canceled



Two Camps

Frequentists’ (traditional) view

= Well defined experiment

= Probability = relative number .
of positive outcomes e

= Only meaningful as a mean of
many experiments

Bayesian view
= Probability expresses a degree of belief
= Mathematical model of uncertainty "
= Can be subjective

[https://en.wikipedia.orlg/rwiki/Thomas_Bayes]

(7)



Mathematical Point of View

Mathematical definition of probability

= Properties of probability measures
= Defines rules for computing with probabilities
= Consistent with both views

= Model building is not math
= Which original probabilities to set/choose?
= Question arises when performing empirical science

We will use both

= Bayesian approaches for algorithms
= Frequentist arguments for “objective” error bounds
(8)



Operational Perspective

Mathematics
= Same rules, but different models
= Bayesian view is “more liberal”: fewer restrictions



Operational Perspective

What Bayesian statistics permits (in addition)

= Everything can be a random variable
= Models / model parameter
= Facts & single outcomes (“does Mars harbor live?”)

= Probabilities can be subjective
= But must be consistent (Kolmogorov Axioms)
- (Fairly general: Kolmogorov follow from Cox Axioms)

Frequentist: only experimental results “‘random’

= “Likelihood that a model is correct/"\not permitted
(strictly speaking)

(10)



L earning from Data

(Maybe in its simplest possible form)



Example: Coin flipping

We found a coin
= Want to determine if/how fairitis

Probabilistic model

= Throw it once: Bernoulli experiment (binary outcome)
O =1{0,1}, 0 =P(1)

= Throw it n times (independently):

independently repeatable

Binomial distribution
M\ Hk n—k .
P(k) = (k)e (1—6)

= Determine 6 from experiment

(12)



Note: Quite General

Structurally important example

= Similar
= Effectivity of medication
=« Likelihood of failure of a mechanical part

= Structure
= Gaining one bit of information
= Can repeat independently often

(13)



Learn p from Data D

Experiment

= We collectdata D = (x4, ..., x,,) € {0,1}"
= Datais i.i.d. (“independently identically distributed”)

= Model

=Y xn PO =()pta—pr
=1

Experimental ReSUIt independently repeatable
= We observe 58 “1"s for 100 coin tosses

(14)



L earning from Data

Part I: (Classical) Frequentist statistics in action



Fair Coin Toss: What to expect

P(k) for varying k
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Frequentist Model

Possible questions

= |s the coin asymmetric (yes/no)?
= “Two sided test”

= Has the coin been tampered with towards “1"?
= "One sided test’

Null hypothesis
= The coinis fair (6 = 0.5)

= How likely are different deviations?
= We look at the two-sided test

(17)



Two Sided Test
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“Conclusion”

Assuming the coin was fair

= Seeing the result we got will happen (on average)
to 13% of scientists (“p = 0.13")

= Likely enough that we usually will not reject fairness
= Rather insufficient evidence for an unfair coin

= Traditional cut-offs: Likelihood of null-hypothesis
= p = 0.05 (,significant”)
= p = 0.01 ("highly significant”)
« p = 2.7 %x 1077 (“"discovery” in fundamental physics)

(19)



“Conclusion”

Important

= The state of the world is unknown but fixed
= Never talk about the likelihood of the coin being fair/unfair
= "Reality” is objective, not probabilistic

= OQutcomes of experiments are random
= Not the “probability of coin is unfair”
= But: "probability of observing such an outcome”

Of course

= Want to know the likelihood of the “coin unfair”
= What does p = 13% (or p = 1%) tell us about it?

(20)



Example

Slightly more involved example

= Person feels unwell
= Doctor runs several tests for rare (and “bad”) disease

= Test outcome “positive”. Statistically,
= Sick person: Test always gives the correct answer
= Healthy person: False positive with p = 1%

= But, we also know
= Diseaseisrare, only Tin 710.000 patients has it
— ...of patients seeing a doctor...
— ..with these symptoms...
— ..not looking at any testing.

(21)



Intuition

Soccer Stadium - 10000 people

100 people with 1 person
positive test actually sick




How to Combine Likelihoods?

Bayes' rule

Pr(B | A)-Pr(A)

Pr(A ] B) = or (o)
Derivation
= Pr(AnB) = Pr(A|B) - Pr(B)
Pr(AnB) =Pr(B|A) - Pr(A)

— Pr(A|B) - Pr(B) = Pr(B|A) - Pr(A)



Joint Probabilistic Model

Test Characteristics

notsick 099  0.01 — P(

sick 0.0 1.0 « P(

Disease Characteristics
notsick 09999 <« P(sick)

sick  0.0001 « P(ﬁ)

Joint Model

)
|sick)

P(test,sick) = P( |sick) - P(sick)



Joint Probabilistic Model
Applying Bayes' rule

_ P( |sick) - P(sick)
P (sicK] ) = B )
B P( |sick) - P(sick)
P |sick) P(sick) + P( |sick)P(sick)
B 1.0 X 0.0001
~ 1.0 X 0.0001 + 0.01 x 0.9999
0.0001
~ (0,009902

~ 0.0001 + 0.009999
~ 0,01 <« most likely healthy



New Conclusion

What did we do?

= Better model
= Larger, more realistic probability space
= Full model p(test, )

= Conclude that disease is unlikely even p = 0.01 test
= Avoid “prosecutor’s fallacy”

Still Frequentist
= This is still a frequentist model
= We just modeled correctly how experiments “repeat”

(27)



When does this turn Bayesian?

Other cases

= Test results: (all at p < 0.05)
= Customers prefer green gummy bears over red
= There is a new elementary particle
= Thereis live on mars
= Thereis live on mars, and it loves watching our sitcoms

= We cannot assign prior probabilities here
= p(“live on mars”) is not frequentist

(28)



When does this turn Bayesian?

“Sagan principle”

= “Extraordinary claims need extraordinary evidence”
= Plausibility goes into judgement
= P("live on mars”) is “very low”
= P("live on mars watches Alf") is even lower

= This is Bayesian now
= Subjective
= Probability for “facts”
— They are true or false, strictly speaking
- We only model our "believe’

(29)



Back to...
Learning from Data

Part I: (Classical) Frequentist statistics in action



Coin Toss Experiment

— Pg=0.5(k)
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= P(k) forvarying k

(31)



Coin Toss Experiment
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Maximum Likelihood Estimator

= Estimate model parameter
= MLE: highest likelihood for observation: 8 = 0.58

= 95% “confidence interval” k € [

68]

(32)



Coin Toss Experiment
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= 95% “confidence interval” k € [
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68]

= Assuming 6 = 0.58 is the true model,
95% of experiments will see outcomes k € [48,68]

= Not likelihood or spread of true value

(33)



L earning from Data

Part Il: Bayesian statistics in action



Bayesian Variant

We now redo everything
= Bayesian framework

= Parameter “6"” is a random variable
= Reminder: 6 is the probability of “1"

Bayesian model

P(k|0) = (Z) ok (1 — o)~k

= No fundamental change
= Just consider 8 as random variable now

(35)



Bayesian Variant

Inference Model
= Use Bayes rule

P(O|k)

v
“posterior’

“likelihood’  “prior”
/_H /_H
P(k|68) - P(6)

(

P(k)
\W_/

“evidence”’
(“marginal likelihood”)

(36)



This is how it looks like
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Bayesian approach
= Yields probability density over parameters

= Allows to use uncertainty

= Principle: Keep uncertainty as long as possible!

(38)



This is how it looks like
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Bayesian approach

= Yields probability density over parameters
= Allows to use uncertainty

= Principle: Keep uncertainty as long as possible!

(39)



This is how it looks like
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Bayesian approach

= Yields probability density over parameters
= Allows to use uncertainty

= Principle: Keep uncertainty as long as possible!

(40)



But we want a value!

same as
maximum likelihood
for

flat prior p(0)

Inference
= Maximum a posteriori

Oest = arg max P(0|k)
E

This is
= “True Bayesian”: Marginalization

6=1
ost = f 0 P(61k) d6 = Ey[P(8110)]
6

=0

(47)



Two Types of Inference

“Estimation”

= Qutput most likely parameters
= Maximum density
—- "Maximum likelihood”

Ap(x)
maximum
N distribution

- "Maximum a posteriori”

>
- Mean of the distribution X
“ . " P() .
Bayesian inference maximum
mean ! distribution

= Qutput probability density
« Distribution for parameters
= More information

= Marginalize to reduce dimension




Bayesian Variant

In our example

(uninformative)

= Use Bayes rule flatprior
P(k|6)
P(O|k) ~
S

constant
(after experiment)

- ()oa-or-

= Point of maximum density = expectation = 0.58
= Simple binomial distribution
= No priors used

(44)



MLE? MAP? BI?

Maximum likelihood vs. a posteriori

= Prior needed if problem is ill-posed
= Not enough information from data
= And vice-versa: MLE ok for highly constrained models

Marginalization vs. Maximum A Posteriori
= No difference for simple distributions (Gauss, Binom)

= Pronounced differences possible in complex models

= “Full Bayesian” inference usually reduces overfitting
= Integrating over models favors simple models
= Unfortunately, it is often very (too) costly

(45)



Fair Coin Toss: What to expect
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=n = 100

= § = 0.5 (fair)

Conclusion
= 6 = 0.58 most likely (MLE/MAP/Mean same in this case)

Experiment
*n = 100
= k=58

(46)



Uncertainty!
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= Keep uncertainty as long as possible!

(47)



summary



Bayesian & Frequentist Statistics

Bayesian features

= Any knowledge can be probabilistic
= Also: models & model parameters (“p(6)")
= No need for repeatable experiment

= Knowledge can be subjective
« Hand-crafted “priors”, not learned from data

Disadvantages

= Model parameters as random variables “p(6)"
implies the use of priors

= Explicit or implicit — no way around knowledge modeling
= Frequentist: use “only” knowledge from data



What is it good for?

Bayesian vs. classical (frequentist)

= No “subjective” priors: Often same results
= But Bayesian approach lets us keep uncertainty along
= "Feels easier to use”

= Bayesian: general prior knowledge

= Different results if we had assumed coin “likely fair” or
‘likely biased towards 1" or the similar

(50)



What is it good for?

My personal / subjective impression
= Bayesian vs. frequentist techniques all plausible

= Differences arise for subjective priors
= Unavoidable when modeling distributions over parameters
= “Uninformative priors” are not always (never?) possible

When frequentist?

= Prove objective effect
= E.g.: Show that result in a scientific paper is “significant”
= E.g.: Measure accuracy of a (ML-) model

= Subjective probabilities harm credibility

(57)



What is it good for?

When Bayesian?
= Modeling knowledge

= Of a subjective agent
= Learn knowledge from data (over time)
= Quantify and encode uncertainty

= |ll-posed problems
= When data cannot provide all the information
= Regularization needed!
= Reqgularly the case in ML-applications
— Try explaining “cat images” without prior assumptions

= “Al" and “machine learning”
= Any complex result impossible without priors

(52)



goBayesian

How do we do it?




Bayesian Principles

Model building

= Specify a complete model p(xy, ..., x;) (@ = RY)
= Always needed — not specifically Bayesian
= We can — in principle — compute any event probability

= Use Bayes' rule to fuse probabilistic knowledge
= Combine observations and prior knowledge

= Use statistical priors to encode “helpful” information
= |f there is not enough data, you need priors
— In ML, we always need priors!

= Btw: This is also true for frequentism
— Priors are build implicitly into the parametrization

— But do not distort “confidence” values
(54)



Bayesian Principles

Inferring knowledge
= “Learning” models
= Inferring “predictions” from fixed models

If too costly,
use MAP with an
appropriate
prior

What to do

= Marginalize over all irrelevant variables
= This might include model parameters
= Reduces potential for overfitting

= Result is the function or value that remains
= Function: free variables of interest remain
= Value: expectation of the model over “everything”

(55)



More to come

We will practice this in the next video.

(56)



