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What happened so far…

Probability model

▪ Additive probability mass / density

▪ Empirical frequency approaches
density with high likelihood

Now: Empirical sciences

▪ What can we learn 
from observations?

▪ How? (Algorithms)

 

𝑃(𝐴)

𝑃(𝐴)

prepare outcome

independently repeatable

experiment



How can we use 
Probability?

Again, (at least) two schools of though.



What is Probability?

Question

▪ What is probability?

Example

▪ A bin with 50 red and 50 blue balls

▪ Person A takes a ball

▪ Question to Person B:
What is the probability for red?

What happened

▪ Person A took a blue ball 

▪ Not visible to person B

(4)



Philosophical Debate…

An old philosophical debate

▪ What does “probability” actually mean?

▪ Can we use probabilities for

▪ Events with fixed, already determined outcome?

– But we do not know it for sure

▪ Events in the future that will happen only once?

(5)



Philosophical Debate…

“Fixed outcome” examples

▪ Probability for: life on mars

▪ Probability that the code you wrote is correct

In the future, but not repeatable

▪ Probability for: rainfall tomorrow

▪ Probability for: Next season of SciFi-series canceled 

(6)



Two Camps

[https://en.wikipedia.org/wiki/Thomas_Bayes]

(7)

prepare outcome

independently repeatable

experiment

Frequentists’ (traditional) view

▪ Well defined experiment

▪ Probability = relative number
of positive outcomes

▪ Only meaningful as a mean of 
many experiments

Bayesian view

▪ Probability expresses a degree of belief

▪ Mathematical model of uncertainty

▪ Can be subjective



Mathematical Point of View

Mathematical definition of probability

▪ Properties of probability measures

▪ Defines rules for computing with probabilities

▪ Consistent with both views

▪ Model building is not math

▪ Which original probabilities to set/choose?

▪ Question arises when performing empirical science

We will use both

▪ Bayesian approaches for algorithms

▪ Frequentist arguments for “objective” error bounds

(8)



Operational Perspective

Mathematics

▪ Same rules, but different models

▪ Bayesian view is “more liberal”: fewer restrictions

(9)



Operational Perspective

What Bayesian statistics permits (in addition)

▪ Everything can be a random variable

▪ Models / model parameter

▪ Facts & single outcomes (“does Mars harbor live?”)

▪ Probabilities can be subjective

▪ But must be consistent (Kolmogorov Axioms)

▪ (Fairly general: Kolmogorov follow from Cox Axioms)

Frequentist: only experimental results “random”

▪ “Likelihood that a model is correct” not permitted

(10)

(strictly speaking)



Learning from Data
(Maybe in its simplest possible form)



Example: Coin flipping

We found a coin

▪ Want to determine if/how fair it is

Probabilistic model

▪ Throw it once: Bernoulli experiment (binary outcome)
 = 0,1 , 𝜃 = 𝑃 1

▪ Throw it 𝑛 times (independently):

Binomial distribution

𝑃 𝑘 =
𝑛
𝑘
𝜃𝑘 1 − 𝜃 𝑛−𝑘

▪ Determine 𝜃 from experiment

(12)



Note: Quite General

Structurally important example

▪ Similar

▪ Effectivity of medication

▪ Likelihood of failure of a mechanical part

▪ Structure

▪ Gaining one bit of information

▪ Can repeat independently often

(13)



Learn 𝑝 from Data 𝒟
Experiment

▪ We collect data 𝒟 = 𝑥1, … , 𝑥𝑛 ∈ 0,1 𝑛

▪ Data is i.i.d. (“independently identically distributed” )

▪ Model

𝑘 =෍

𝑖=1

𝑛

𝑥𝑖 , 𝑃 𝑘 =
𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

Experimental Result

▪ We observe 58 “1”s for 100 coin tosses

(14)



Learning from Data

Part I: (Classical) Frequentist statistics in action



Fair Coin Toss: What to expect

Baseline

▪ 𝑛 = 100

▪ 𝜃 = 0.5 (fair)

(16)

𝑘/𝑛 [%]

Experiment

▪ 𝑛 = 100

▪ 𝑘 = 58
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Frequentist Model

Possible questions

▪ Is the coin asymmetric (yes/no)?

▪ “Two sided test”

▪ Has the coin been tampered with towards “1”?

▪ “One sided test”

Null hypothesis

▪ The coin is fair (𝜃 = 0.5)

▪ How likely are different deviations?

▪ We look at the two-sided test

(17)



Two Sided Test

How often do we observe deviations Δ𝑘 ≥ 8?

𝑃 𝑘 − 50 ≥ 𝐾 = 2 ⋅ ෍

𝑘=𝐾

100

100
𝑘

𝜃𝑘 1 − 𝜃 𝑛−𝑘

≈ 13%

(18)
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“Conclusion”

Assuming the coin was fair

▪ Seeing the result we got will happen (on average)
to 13% of scientists (“𝑝 = 0.13”)

▪ Likely enough that we usually will not reject fairness

▪ Rather insufficient evidence for an unfair coin

▪ Traditional cut-offs: Likelihood of null-hypothesis

▪ 𝑝 = 0.05 („significant“)

▪ 𝑝 = 0.01 (“highly significant”)

▪ 𝑝 = 2.7 × 10−7 (“discovery” in fundamental physics)

(19)



“Conclusion”

Important

▪ The state of the world is unknown but fixed 

▪ Never talk about the likelihood of the coin being fair/unfair

▪ “Reality” is objective, not probabilistic

▪ Outcomes of experiments are random

▪ Not the “probability of coin is unfair”

▪ But: “probability of observing such an outcome”

Of course

▪ Want to know the likelihood of the “coin unfair”

▪ What does 𝑝 = 13% (or 𝑝 = 1%) tell us about it?

(20)



Example

Slightly more involved example

▪ Person feels unwell

▪ Doctor runs several tests for rare (and “bad”) disease

▪ Test outcome “positive”. Statistically,

▪ Sick person: Test always gives the correct answer

▪ Healthy person: False positive with 𝑝 = 1%

▪ But, we also know

▪ Disease is rare, only 1 in 10.000 patients has it

– …of patients seeing a doctor…

– …with these symptoms…

– …not looking at any testing.

(21)



Intuition

Soccer Stadium – 10000 people

1 person
actually sick

100 people with
positive test



How to Combine Likelihoods?

Bayes’ rule

Derivation

▪ Pr(AB) = Pr(A|B) · Pr(B)
Pr(AB) = Pr(B|A) · Pr(A)

 Pr(A|B) · Pr(B) = Pr(B|A) · Pr(A)

Pr(A|B) = 
Pr(B|A)·Pr(A)

Pr(B)



Joint Probabilistic Model

test neg test pos

not sick 0.99 0.01

sick 0.0 1.0

← 𝑃 𝑡𝑒𝑠𝑡 𝑠𝑖𝑐𝑘

← 𝑃 𝑡𝑒𝑠𝑡 𝑠𝑖𝑐𝑘

Test Characteristics

not sick 0.9999

sick 0.0001

← 𝑃 𝑠𝑖𝑐𝑘 ≔ 𝑃 𝑠𝑖𝑐𝑘 = 1

← 𝑃 𝑠𝑖𝑐𝑘 ≔ 𝑃 𝑠𝑖𝑐𝑘 = 0

Disease Characteristics

𝑃 𝑡𝑒𝑠𝑡, 𝑠𝑖𝑐𝑘 = 𝑃 𝑡𝑒𝑠𝑡 𝑠𝑖𝑐𝑘 ⋅ 𝑃 𝑠𝑖𝑐𝑘

Joint Model



𝑃 sick testPos =
𝑃 testPos sick ⋅ 𝑃 sick

𝑃 testPos

=
𝑃 testPos sick ⋅ 𝑃 sick

𝑃 testPos sick 𝑃 sick + 𝑃 testPos sick 𝑃 sick

=
1.0 × 0.0001

1.0 × 0.0001 + 0.01 × 0.9999

=
0.0001

0.0001 + 0.009999
≈ 0,009902

≈ 0,01

Joint Probabilistic Model

Applying Bayes’ rule

most likely healthy



New Conclusion

What did we do?

▪ Better model

▪ Larger, more realistic probability space

▪ Full model 𝑝(𝑡𝑒𝑠𝑡, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒)

▪ Conclude that disease is unlikely even 𝑝 = 0.01 test

▪ Avoid “prosecutor’s fallacy”

Still Frequentist

▪ This is still a frequentist model

▪ We just modeled correctly how experiments “repeat”

(27)



When does this turn Bayesian?

Other cases

▪ Test results: (all at 𝑝 ≤ 0.05)

▪ Customers prefer green gummy bears over red

▪ There is a new elementary particle

▪ There is live on mars

▪ There is live on mars, and it loves watching our sitcoms

▪ We cannot assign prior probabilities here

▪ p(“live on mars”) is not frequentist

(28)



When does this turn Bayesian?

“Sagan principle”

▪ “Extraordinary claims need extraordinary evidence”

▪ Plausibility goes into judgement

▪ P(“live on mars”) is “very low”

▪ P(“live on mars watches Alf”) is even lower

▪ This is Bayesian now

▪ Subjective

▪ Probability for “facts”

– They are true or false, strictly speaking

– We only model our “believe”

(29)



Learning from Data
Part I: (Classical) Frequentist statistics in action

Back to…



Coin Toss Experiment

Baseline

▪ 𝑛 = 100

▪ 𝜃 = 0.5 (fair)

▪ 𝑃(𝑘) for varying 𝑘

(31)

𝑘/𝑛 [%]

Experiment

▪ 𝑛 = 100

▪ 𝑘 = 58
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𝑃𝜃=0.58(𝑘)

Coin Toss Experiment

(32)
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Maximum Likelihood Estimator

▪ Estimate model parameter 

▪ MLE: highest likelihood for observation: 𝜃 = 0.58

▪ 95% “confidence interval” 𝑘 ∈ [48,68]



Coin Toss Experiment

(33)

𝑘/𝑛 [%]
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Maximum Likelihood Estimator

▪ 95% “confidence interval” 𝑘 ∈ [48,68]

▪ Assuming 𝜃 = 0.58 is the true model,
95% of experiments will see outcomes 𝑘 ∈ [48,68]

▪ Not likelihood or spread of true value

Experiment:
𝑘 = 58

95% confidence interval



Learning from Data

Part II: Bayesian statistics in action



Bayesian Variant

We now redo everything

▪ Bayesian framework

▪ Parameter “𝜃” is a random variable

▪ Reminder: 𝜃 is the probability of “1”

Bayesian model

𝑃 𝑘 𝜃 =
𝑛
𝑘
𝜃𝑘 1 − 𝜃 𝑛−𝑘

▪ No fundamental change

▪ Just consider 𝜃 as random variable now

(35)



Bayesian Variant

Inference Model

▪ Use Bayes rule

𝑃 𝜃 𝑘 =
𝑃 𝑘 𝜃 ⋅ 𝑃 𝜃

𝑃 𝑘

=
𝑃 𝑘 𝜃 ⋅ 𝑃 𝜃

𝜃=0׬
𝜃=1

𝑃 𝑘 𝜃 𝑑𝜃

(36)

“likelihood” “prior”

“evidence”
(“marginal likelihood”)

“posterior”



This is how it looks like

Bayesian approach

▪ Yields probability density over parameters

▪ Allows to use uncertainty

▪ Principle: Keep uncertainty as long as possible!

(38)
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𝑛= 100, 𝑘 = 58



This is how it looks like

Bayesian approach

▪ Yields probability density over parameters

▪ Allows to use uncertainty

▪ Principle: Keep uncertainty as long as possible!

(39)

𝑘/𝑛 [%]
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Experiment:
𝑛= 100, 𝑘 = 58
𝑛= 80, 𝑘 = 43
𝑛= 60, 𝑘 = 33
𝑛= 40, 𝑘 = 22
𝑛= 20, 𝑘 = 12
𝑛= 1, 𝑘 = 1

1 coin toss!



This is how it looks like

Bayesian approach

▪ Yields probability density over parameters

▪ Allows to use uncertainty

▪ Principle: Keep uncertainty as long as possible!

(40)

𝑘/𝑛 [%]
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Experiment:
𝑛= 100, 𝑘 = 58
𝑛= 80, 𝑘 = 43
𝑛= 60, 𝑘 = 33
𝑛= 40, 𝑘 = 22
𝑛= 20, 𝑘 = 12
𝑛= 1, 𝑘 = 1

1 coin toss!



But we want a value!

Inference

▪ Maximum à posteriori

𝜃est = arg max
𝜃

𝑃 𝜃 𝑘

▪ “True Bayesian”: Marginalization

𝜃est = න
𝜃=0

𝜃=1

𝜃 ⋅ 𝑃 𝜃 𝑘 𝑑𝜃 = 𝔼𝜃 𝑃 𝜃 𝑘

(41)

same as
maximum likelihood

for
flat prior p(θ)

This is 
“Bayesian style”



Two Types of Inference

“Estimation”

▪ Output most likely parameters

▪ Maximum density

– “Maximum likelihood”

– “Maximum a posteriori”

▪ Mean of the distribution

“Bayesian inference”

▪ Output probability density

▪ Distribution for parameters

▪ More information

▪ Marginalize to reduce dimension

p(x)

x

maximum

mean
distribution

p(x)

x

maximum
mean distribution



Bayesian Variant

In our example

▪ Use Bayes rule

𝑃 𝜃 𝑘 ~
𝑃 𝑘 𝜃 𝑃 𝜃

𝑃 𝑘

▪ Point of maximum density = expectation = 0.58

▪ Simple binomial distribution

▪ No priors used

(44)

(uninformative) 
flat prior

constant
(after experiment)

=
𝑛
𝑘
𝜃𝑘 1 − 𝜃 𝑛−𝑘



MLE? MAP? BI?

Maximum likelihood vs. a posteriori

▪ Prior needed if problem is ill-posed

▪ Not enough information from data

▪ And vice-versa: MLE ok for highly constrained models

Marginalization vs. Maximum A Posteriori

▪ No difference for simple distributions (Gauss, Binom)

▪ Pronounced differences possible in complex models

▪ “Full Bayesian” inference usually reduces overfitting

▪ Integrating over models favors simple models

▪ Unfortunately, it is often very (too) costly

(45)



Fair Coin Toss: What to expect

Baseline
▪ 𝑛 = 100

▪ 𝜃 = 0.5 (fair)

𝑘/𝑛 [%]

Experiment
▪ 𝑛 = 100

▪ 𝑘 = 58

𝑃(𝑘)

𝑃(𝜃|𝑘; 𝑛)
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Experiment:
𝑘 = 58

posterior (flat prior)

fair coin (comparison)

Conclusion
▪ 𝜃 = 0.58 most likely (MLE/MAP/Mean same in this case)

(46)

(scaled in y-axis)



Uncertainty!

Principle

▪ Keep uncertainty as long as possible!

(47)
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𝑛= 100, 𝑘 = 58
𝑛= 80, 𝑘 = 43
𝑛= 60, 𝑘 = 33
𝑛= 40, 𝑘 = 22
𝑛= 20, 𝑘 = 12
𝑛= 1, 𝑘 = 1

1 coin toss!



Summary



Bayesian & Frequentist Statistics

Bayesian features

▪ Any knowledge can be probabilistic

▪ Also: models & model parameters (“𝑝 𝜃 ”)

▪ No need for repeatable experiment

▪ Knowledge can be subjective

▪ Hand-crafted “priors”, not learned from data

Disadvantages

▪ Model parameters as random variables “𝑝 𝜃 ”
implies the use of priors

▪ Explicit or implicit – no way around knowledge modeling

▪ Frequentist: use “only” knowledge from data



What is it good for?

Bayesian vs. classical (frequentist)

▪ No “subjective” priors: Often same results

▪ But Bayesian approach lets us keep uncertainty along

▪ “Feels easier to use”

▪ Bayesian: general prior knowledge

▪ Different results if we had assumed coin “likely fair” or
“likely biased towards 1” or the similar

(50)



What is it good for?

My personal / subjective impression

▪ Bayesian vs. frequentist techniques all plausible

▪ Differences arise for subjective priors

▪ Unavoidable when modeling distributions over parameters 

▪ “Uninformative priors” are not always (never?) possible

When frequentist?

▪ Prove objective effect

▪ E.g.: Show that result in a scientific paper is “significant”

▪ E.g.: Measure accuracy of a (ML-) model

▪ Subjective probabilities harm credibility

(51)



What is it good for?

When Bayesian?

▪ Modeling knowledge
▪ Of a subjective agent

▪ Learn knowledge from data (over time)

▪ Quantify and encode uncertainty

▪ Ill-posed problems
▪ When data cannot provide all the information

▪ Regularization needed!

▪ Regularly the case in ML-applications

– Try explaining “cat images” without prior assumptions

▪ “AI” and “machine learning”
▪ Any complex result impossible without priors

(52)



#goBayesian

How do we do it?



Bayesian Principles

Model building

▪ Specify a complete model 𝑝 𝑥1, … , 𝑥𝑑 ( = ℝ𝑑)

▪ Always needed – not specifically Bayesian

▪ We can – in principle – compute any event probability

▪ Use Bayes’ rule to fuse probabilistic knowledge

▪ Combine observations and prior knowledge

▪ Use statistical priors to encode “helpful” information

▪ If there is not enough data, you need priors

– In ML, we always need priors!

▪ Btw: This is also true for frequentism

– Priors are build implicitly into the parametrization

– But do not distort “confidence” values

(54)



Bayesian Principles

Inferring knowledge

▪ “Learning” models

▪ Inferring “predictions” from fixed models

What to do

▪ Marginalize over all irrelevant variables

▪ This might include model parameters

▪ Reduces potential for overfitting

▪ Result is the function or value that remains

▪ Function: free variables of interest remain

▪ Value: expectation of the model over “everything”

(55)

If too costly, 
use MAP with an

appropriate
prior



More to come

We will practice this in the next video.

(56)

CU
later


