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Statistical Data Modeling

This lecture is about:
= ..understanding inductive reasoning

= ...done algorithmically / systematically




Our School of Thought

Empirical modeling mental deduced

image |_model consequence> consequences
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= Model for reality
= Rely on observation
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= Good models are

n Pred|ct|ve object natural(real)>
o (nature / real) consequence (consequence)
= Falsifiable
Learning from data independently repeatable
= Probabilistic
= Always comes

with uncertainty experiment




Probability Theory
Recap

(skip ahead if familiar)



Modeling Uncertainty

Recap: Finite probability space (0, P)
= “Sample space” Q = {w4, ..., W, }

= “Outcomes” w € Q)
= Exactly one w € Q will happen

= Probability P(w) € [0,1] for each w € Q
= The sum of all probabilities is 1.



Events

Event: Set of outcomes
= Sample space O = {w4, ..., w,,} (finite)
= Any subset A € () is called an “event”

= Rule: sum up

Example: Dice

= P("odd™)y =P("1") + P("3") + P("5")
= 3 x% —




Summary: Probability Measure

Basic Ildea

= Every outcome has a likelihood BRI

= Complex events: Sum up likelihoods

“Learning” model from data PE1) = .= P(76") =
= Determine likelihood of outcomes
“Inferring” likelihood of events —
= Sum up likelihoods of outcomes e e o
g

that lead to event



Formal Definition

Probability



Technical Complications

Basic stochastic lecture > 5 slides
= Problems if Q infinite

= Particularly relevant:
= Real numbers as outcome
= Real vectors as outcome

= Power set P(R) is not “measurable”
= Cannot define consistent “sum” of probabilities

(10)



Technical Complications

Mathematical definition

= Replace set of all subset P(Q) by
“set of reasonable subsets”

= g-Algebra of Q)
= "Event space” F

= Define P( ) as normed, non-negative, additive
measure on that algebra

Intuition

= Same intuition: Summing up / integrating
“probability mass” on domain

(1)



Kolmogorov's Axioms

Probability space
= Sample space: Q
= Event space: (QQ) € P(Q) (F is a o-algebra)
= Events: e S(Q)

= Probability measure: P:7 - R

Axioms: Please behave like discrete case!
= Positive: P(4) >0
= Additive: ([ANB =0| = [P(A)+ P(B) =P(AUB)]

= Normed: P(Q)) =1
(12)



Other Properties Follow

Derived from Kolmogorov's axioms

= P(A) € [0..1]

= P(A)=P(Q\A)=1-P(A)

- P(P) =0

= P(A U B)=P(A) + P(2) - P(AN D)

We are still “summing up” density
counted twice

(13)



Discrete vs. General Model

/

§)

p as “density” on ()

IS an event
P(/) =%, p(w)
= p(wy) + p(wy,) + p(wy3)
+ p(Wyo) + p(wsg) + p(ws,)
+ p(Wse) + p(ws;) + p(Wag)

Consistent with discrete model

(15)



Continuous Density

Major Motivation: Density model

= No elementary probabilities

= Instead: density p: R —» R>Y

===l
-

-
-
-
-

......

IS an event

P(4) = |, p(x) dx

- Density p(x) with

p(x) >0 and _fQ p(x)dx=1

(16)



Probability Densities
Setup

= Domain Q € R%, outcomes x € R

= Probability density
p: Q> R (integrable)

= Properties
vx e Q:p(x) =0

fxeﬂp(x)dx =1

= Events

P( >==f p()dx  (for A € B())

(B = Borel o-algebra) 7)



Continuous Density

=)

: :Pﬂll-'l i ‘

Intuition

= Just “very small” outcome “buckets”

(18)



Probability Densities

density
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P(1) = j p()dx

05T
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Remarks

= Densities vs. probability

= P(4) to denote probability of events/outcomes
= p(x) to denote probability densities

= Only integrals of p are probabilities

(19)



Probability Densities

density

—_ —_
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P(1) = j p()dx

05T
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Remarks

» Remark: p(x) > 1is possibleaslongas [p =1
= p(x) are not probabilities, but densities

(20)



Probability Densities

Dirac-Delta pulses
P(0), w; € {1,..9) p(), x € R / p(x) = Z,8(x - w;) P(w;)
ﬂ H M H ‘ | T Intuition: (Modeling 1)
12345).6789 T3 & 5 [ra®(x) dx =1
l * 6(x) ,very large close to x“
discrete model continuous model §(x) = 0 everywhere else
Remarks

= Discrete models through Dirac densities

= We will use this as much as possible
to unify notation

(21)



Random Variables

Naming convention
= Sample space () with probability measure P

= Mapping X: Q —» R¢ is called “random variable”

= Often equivalentto 0 = R?

= X = x can be an “elementary” outcome,
but does not have to

Description with densities
= We describe random variables with densities

p(x) = probability density for “X = x"

(22)



Marginals

Example
. 14 ’i
= Random variables X,V € [0,1] n(x,y)
= Joint distribution p(x, y) y jd% |
= We do not know y

(could by anything) 0 s

= What is the distribution of x? o x i1
) .

p(x) = f p(x,y)dy N(x)

o N S

"‘Marginal Probability”



Marginals

General rule

= Marginal probability p(x,y)

= Integrate / sum over all unspecified

e . Yy dy 3
= Specified variables j
= What we care about |
= Often: observed / measured

0 x |1
= Unspecified variables '
= Not relevant in this context

p(x
- Might be “latent” (unobservable) /\\p( )
0 x 1

= Might be model parameters
(more later) “Marginal Probability”




summary



What we have seen so far...

Probability space

= Density on some domain, sums up to 100%

Probability densities

= Continuous elementary outcomes

Events

= Subsets (that can be measured)

Marginal distributions

= Distribution for events (subsets) where
we have only partial information:

p(x,v) = p(x)

LN N ] [ ]
\ J \




Statistical
Dependency



Conditional Probability (Rnd-Var.)

Conditional Probability

= P(A|B) = Probability of A given B
lis true]

= Definition
P(ANnB) = P(A|B) - P(B)

Corollary
- If P(B) # 0:
P(A|B) _ P(ANB)

P(B)



Conditional Probability

Statistical Independence

= Definition

A and B independent
& P(ANB) =P(4)-P(B)

= Knowing the value of A4 does not yield
information about B

= And vice versa
= Also: P(An B) =P(4) - P(B) (= P(A|B) - P(B))
means that P(4|B) = P(4), and P(B|A) = P(B)



Random Variables

Conditional Probability

= p(x|y) = Probability density of
x given y [has occured| y

= Definition
p(x,y) = pxly) - p(y)

Corollary X
= If p(y) # O:
p(xly) = 222

p(y)



Conditional Probability

Statistical Independence

= Definition:

x and y independent
< pxy) =pE) - p(y)

= Knowing the value of x
does not yield information
about y (and vice versa)

= p(xly) = px)
= p(y[x) = p(y)




Factorization

Independence = Density Factorization

p(xy1, X;) p(xy)  p(x;)

X2 . - { X X IEI;I_\
= | | _l—.ﬁ: |
X f

Xq

p(x1,%3) = p(x1) X p(x2)



Factorization

Not Independence — No Factorization

p(xy,x;)

Xy ‘i E

p (x4, X5)




Factorization

Independence = Density Factorization

p(xy,x;)

T7

12 ..

Xq

s

p(x)

12 ..

Xq

p(x1,%3) = p(x1) X p(x2)

0(k%)

0(d - k)

A

p(x;)



Complexity

Curbing complexity
= n pieces of information (bits)
— up to 2™ different combinations
— up to 2™ different probabilities

= Statistical dependencies

= Arbitrary structure:
all combinations might matter

= Fully independent: linear
2n instead of 2™

= Truth is “in between”
Restricted dependencies make model feasible

(35)



More Drastic Example

Random Images
= 100 x 100 pixel
= 8 bit (256 grey values)

Independent Pixels

= 256 X 1002 =2560000
probability values

Arbitrary Dependencies

- 256100 = 2,57 x 1024082

possible images / probabilities complex dependency
(M-GAN)
(36)




Modeling
Examples



How to build a probability space?

Statistics appears unintuitive
= Often: Choice of () major problem
= Looking at events can be misleading
= Often: higher dimensionality needed

(38)



How to build a probability space?

Example: Weather in Mainz

= [nteresting events: {rain, , cloudy}

Model 1: Low-level

= Sample space: () = Set of all states of the earth’s
atmosphere

= ICON weather model: 265M grid cells, 10 (major) variables

= Define events by thresholds o4 -
= Water / ice content i

= Very expensive (too expensive?)
= But captures the situation quite comprehensively
(39)



How to build a probability space?

Example: Weather in Mainz

= [nteresting events: {rain, , cloudy}

Model 2a: Event-level
= Problematic: Q ={rain, , cloudy}

= Not mutually exclusive
= Sun can shine during rain
= Complex dependencies need to be captured

= Not suitable for reasoning about the weather

(40)



How to build a probability space?

Example: Weather in Mainz

= |nteresting events: {rain, , cloudy}

Model 2b: Event-level
= All combinations: A

Q ={rsc, sc, re, 15,7 s, ¢, O} AWA

= All possible combinations of events v 1)

= Some might be impossible,i.e, P =0

_ : more knowledge:
Exponential costs no rain without clouds

= 2™ outcomes for n Boolean variables

= Not uncommon, if dependency structure is not known
(41)



How to build a probability space?

Example: Weather in Mainz

= Random variables:
= rainfall [mm] (R)
[m/s] (R)
= cloudcover [%] (R)

rainfall

Model 3: 3D Density " 0

= Naive discretization: Histogram/bins
= Again, exponential in number of variables

= | different values, n variables: k™ outcomes

(42)



How to build a probability space

Rules of thumb

= Define “experiment” clearly

= Collect variables
= Observables & unobserved / latent parameters

= Assume all combinations have likelihood (densities)
= Unless you know better
= Model assigns probability for all relevant combinations

= |f you know better
= Restrict dependencies
= Only then you can build a complex model

(43)



summary



What we have seen so far...

Statistical independence
= Probability/density factorizes

p(x, ) =px) -p()
= Dependency: potentially complex function structure
p(x, )

Conditional probability

p(x,v)

(x,
p()

[

= Conditional density ,x given v“: p(x|v) =

= Take joint density p(x, v)
= Renormalize by p(v) (because y has happened already)

Complexity

= Unrestricted dependencies lead to exponential model size
(45)



Calculus with
Densities



Summary

tl;dw: Calculus
= Discussing functions p: Q - R

= Understanding them better:

= Switch the basis /
project on test-functions

(47)



Moments of Distributions

Density Function (1D) |
- pi R — R>0 /\f\

Expected Value / Mean: . .
= E(p) = 1 :=(p, x) A \
= Jpp(x) - x dx = i x
Variance: (%) (x - 1)
\ )

= Var = g% := , (X — 2 N e
ar(p) =o (p, (x — 1)*) SO
= Jpp(0) - (x — p)? dx M X




Standard Deviation

Bounds on spread

= Standard deviation

o= \/Var(p)

= Expected range of variation




Moments of Distributions

Multi-variate density function
= Density p: R — R0

" E(p) = p:=(p,x) = Jpap(x) -xdx
= Cov(x;,x;) = {p, (x; — k) (xj — 7))
= fP(X) (g — p) (x5 — pj) dx
R4 X,

(% conrn )

p(x, X,)




Properties

Expected value
= E(X+Y) = E(X) + E(Y)
« E(WX) = LE(X)

Variance
= Var(AX) = A?Var(X)

= Let X, Y be independent, then:
Var(X +Y) = Var(X) + Var(Y)



cntropy

(There will be a whole video on this)



Entropy

Entropy: How random? 69
HOO = = ) p(x) logy p(x:)
i=1 e
Model 1p(x)

= Binary coding

< >

= 0 (log%) bits for...

= ...events with probability p | p(x)

5




Examples

| p(x)

1 p(x)




Limits:

Repeating Experiments



Law of Large Numbers

. independently repeatable
Repeated experiment ’ I

= Experiment, outcome x € R .

experiment

= Repeated n times (black box)

We look at the mean

(Weak) law of large numbers
7y_r){)loPr(I)?n —ul>€)=0



Stochastic Convergence

Averaging of independent trials

1
= Convergence rate is —

g n NGO
= Lousy convergence rate g




Proof

Proof: weak law of large numbers
= Additionally assumption: finite variance Var(X.) = ¢?

= The theorem then follows from
= Additivity of variances
= Chebyshev's bound

_ 1(< 1 (% no? o?
Var(X,) = Var (E (; Xi)) = ﬁ(; Var(Xi)) =3 =

— o)
:O-(Xn)z\/_ﬁ

= Chebyshev: Pr(|X —u| = ko) < %



Algebra with
Random Variables



Random Variable Vector Algebra

Vector algebra

= Given independent random variables X,
= Look at operation Z = f(X,V) withQ, = Qy X Q

Scaling random variables
= Scaling variable:  Z = 1X (Factor /1 not random)

= Scaling variable: p,(z) = py G z)

Adding independent random variables
= Adding variables: 7 =X+

= Convoling densities: p,(z) = p,(x) ® p, (V)
(61)



Convolution Example

—

1 14
Po Po | /\

10 7 2 10 7 2

Uniform distribution on [0,1]:
= “Box” function
= Auto-convolution yields “triangle” function
= Remark: Increases smoothness by one order

(62)



Illustration

.
L
............

.
.
.....
...........

........

(63)



Remarks

Repeated auto-convolution

= Of a uniform distribution
= Yields increasingly smooth functions
= Called “B-splines of order k" (for k-fold convolution)
= Converges to Gaussian normal distribution

= Of general distributions
= Converges to special limit distributions
= Gaussian if mean and variance exist
- Even if distributions are different (but independent)
— "Central limit theorem”

(64)



Central Limit Theorem

Why are so many phenomena normal-distributed?

= Let X,, ..., X,, be real (1D) random variables
with means y; and finite variances o/ .

= Then the distribution of the mean

- N(0,1)

converges to a normal distribution.

Multi-dimensional variant
= Similar result for multi-dimensional case

(65)



Common
Parametric Distributions



Well-known probability distributions

Important distributions [ ()

= Uniform distribution
= Only defined for finite domains

= Maximum entropy
among all distributions

a b X

| p(x)

= Binomial distribution
= Coin-flipping ‘

= (one bit at a time) X




Well-known probability distributions

Important distributions

= Gaussian / normal distribution
= |Infinite domains

= Maximizes entropy
for fixed variance

= Heavy tail distributions
= “QOutlier robust”

= Example: Exponential/Laplace/LT
= Drops-off “slower than Gaussian”

1 p(x)

X

| p(x)

N\

a b X



Uniform distribution

What should we say?
= Fixed domain Q with...
= _finite area |Q| = fQ 1dx < o0

= Density
1

p(x) = ﬁ

Attention

= No uniform distribution on infinite domains [ *

= No “uniform distribution on R”



Binomial Distriubution

Binomial Distribution

= Two possible outcomes “1","0"
= Probabilities p, (1 — p)

= Repeated n times i.i.d.

Formulas
. m4qn n k n—=k
= p(k times "1") = (k)p (1—p)
"pu=np

= 0% =np(1—p)
= Asymptotically (n — o) Gaussian (CLT)

(70)



Gaussians

Gaussian Normal Distribution

= TwWO parameters: i, o

= Density:
N, (x) L5
X) = e 20
we V21o?
= Mean: u

= Variance: g*

Gaussian normal distribution



Log Space
Neg-log-density

(x — p)? ,
log IV, 5 (x) = P +§ln(27w )

G = )2

202 T H

Calculations in log-space

= Densities of products of Gaussians are
Sums of quadratic polynomials

= Calculations simplified in log-space
= Attention: Sum of Gaussians do not simplify!

— Modelling 1



Multi-Variate Gaussians

Gaussian normal distribution in d dimensions

= Two parameters
e p(xy, X;)
= Mean p (d-dim-vector) ety
= Covariance matrix  (dxd matrix) | X2 Z
I/ ’Ll/’/
= Density X

1 1 _
(2m) 2 det(Z) 2



Log Space
Neg-Log Density

5 %(x — wWTZ 1 (x — ) + const

= Quadratic multivariate polynomial

Consequences

= Optimization (maximum density)
— linear system

= Gaussians are ellipsoids
= Eigenvectors of X are main axes
= Eigenvalues are extremal variances




Example: A “Heavy Tail"-Distribution

More spread out than Gaussian

= Exponential distribution
p(x) = Ae~Al
x =0
« Mean: 171
= Variance: 172

= Laplace distribution .
Gaussian vs Laplace

1 distribution
p(X) = Ele Alx=l (height normalized)
x €ER
= Mean: u

= Variance: 2172



summary



What we have seen so far...

Moments

= Mean, variance, etc...

= Project density on polynomials
Limits

= Weak law of large numbers

= Central limit theorem (finite variance)

(Some) Standard distributions
= Binomial distribution
= Gaussian normal distribution

= Exponential / Laplace distribution

(77)



